Issues in Cryptography

Ronald L. Rivest
MIT Laboratory for Computer Science
Outline

- “Where’s Alice?”
 --- The Secure Platform Problem
- Digital Signatures
- Repudiation
The “Alice abstraction”

- Assumes Alice can generate and use her secret key SK_A, while keeping it secret.
- Alice’s secret key SK_A is her “cyber-soul”, her “electronic identity” (or pseudonym), her way of identifying herself. SK_A is Alice!
Cryptography in Theory

SK_A

Alice

Internet
But Alice is not a computer!

- Alice needs a computer (or at least a processor) to store her secret key SK_A and perform cryptographic computations on her behalf.
- In particular, her processor should produce Alice’s digital signature when appropriately authorized...
Cryptography in Practice

Alice? Alice!

Internet
But her OS is not secure!

- Modern OS’s (Windows, Unix) are too complex to be adequately secure for many applications (viruses, Trojan horses).
- Would you base the security of an Internet presidential election on the security of Linux?
- Alice’s key SK_A may be vulnerable to abuse or theft...
Can SK_A go on a smart card?
But her OS is still not secure!

- Smart card has no direct I/O to Alice.
- When Alice authorizes a digital signature, she must trust OS to present correct message to smart card for signing.
Can SK_A go on a phone or PDA?
But this looks very familiar!

- Same story as for PC, but smaller!
- PC smart card \rightarrow Phone SIM card.
- Phones now have complicated OS’s, downloadable apps, the whole can of worms.
- Little has changed.
Why can’t we solve problem?

- There is a *fundamental conflict*!
- Downloadable apps and complexity are:
 - *Necessary* for reasonable UI
 - *Incompatible* with security
The following are incompatible:
- A reasonable UI
- Security
But Digital Sigs Need Both!

- **Security**
 to protect secret key and securely show user what is being signed.

- **Reasonable UI**
 to support complex and variable transactions.
Are Digital Signatures Dead?

- As usually conceived, perhaps...
- We should change our mind-set:
 - A digital signature is not nonrepudiable proof of user’s intent, but merely plausible evidence.
 - We should build in repudiation mechanisms to handle the damage that can be caused by malicious apps.
 - Repudiate signatures, not keys.
Use a Co-Signing Registry

- Signature not OK until saved and co-signed by user’s *co-signing registry* (e.g. at home or bank).
- User can easily review all messages signed with his key.
- Registry can follow user-defined policy on co-signing.
- Registry can notify user whenever his key is used to sign something.
Use One-Time Signing Keys

✓ Registry can give user a set of one-time signing keys, so damage from key compromise is limited. Registry won’t co-sign if key was used before.

In this case, registry really holds user’s secret signing key, and signs for him when authorized by one-time key.
Repudiation

- May not be so hard to live with, once we accept that it is necessary.
- Consistent with legal status of handwritten signatures (can be repudiated, need witnesses for higher security).
Conclusions

- Cryptography works great, but insecure OS’s make digital signatures problematic, because of conflict between security and reasonable UI’s.
- Design systems that are robust in face of some key abuse (Alice may not always know what is being signed by her key!)
(THE END)