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Abstract

We present an optimal single-winner preferential vot-
ing system, called the “GT method” because of its in-
teresting use of symmetric two-person zero-sum game
theory to determine the winner. Game theory is not
used to describe voting as a multi-player game be-
tween voters, but rather to define when one voting
system is better than another one. The cast ballots
determine the payoff matrix, and optimal play corre-
sponds to picking winners optimally.

The GT method is quite simple and elegant, and
works as follows:

• Voters cast ballots listing their rank-order pref-
erences of the alternatives.

• The margin matrix M is computed so that for
each pair (x, y) of alternatives, the pairwise mar-
gin M(x, y) is the number of voters preferring x
over y, minus the number of voters preferring y
over x.

• A symmetric two-person zero-sum game G is de-
fined where the payoff matrix is M . Each player
picks an alternative and wins M(x, y) points
when he picks x and the opponent picks y.

• An optimal mixed strategy p∗ is computed,
where p∗(x) is the probability that a player
picks x under optimal play. If the optimal mixed
strategy is not unique, we use the “most bal-
anced” one. This optimal strategy is the same
for both players, since the game is symmetric.

∗Orig. version April 8, 2010; rev. April 10, 2010

• The election winner is determined by a random-
ized method, based for example on the use of
ten-sided dice, that picks outcome x with prob-
ability p∗(x). If there is a Condorcet winner x,
then p∗(x) = 1, and no dice are needed. We
also briefly discuss a deterministic variant of GT,
which we call GTD.

The GT system, essentially by definition, is opti-
mal : no other voting system can produce election
outcomes that are liked better by the voters, on the
average, than those of the GT system. We also look
at whether the GT system has several standard prop-
erties, such as monotonicity, consistency, etc.

The GT system is not only theoretically interest-
ing and optimal, but simple to use in practice; it is
probably easier to implement than, say, IRV. We feel
that it can be recommended for practical use.

1 Introduction

Voting systems have a rich history, and are still be-
ing vigorously researched. We refer the reader to sur-
veys and texts, such as Börgers [1], Brams [2], Brams
and Fishburn [3], Fishburn [12], or Tideman [31], for
overviews.

The purpose of this paper is to describe a prefer-
ential voting system, called the “GT” voting system,
to study its properties, and to compare it with some
previous voting system proposals.

The GT system appears to be new (which, if true,
is a surprise to us, given the great volume of litera-
ture already written on voting systems). However, it
is nonetheless quite similar to a proposal by Laffond
et al. [19] for parties to pick platform issues, a situa-
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tion attributed by Shubik [29] to Downs [7]. It may
well be the case that the idea of using game theory
in the manner we propose was privately but widely
understood to be a possibility, but wasn’t explicitly
promulgated because it involved randomization.

Candidates and ballots We assume an election
(contest) whose purpose is to select a single winner
from a set of m alternatives. We call the alternatives
“candidates.” Let n denote the number of voters.

We restrict attention to preferential voting sys-
tems, where each voter’s ballot lists the candidates
in decreasing order of preference: first choice, second
choice, and so on.1 The reader may assume for now
that all ballots are full (they list all the candidates);
Section 6 explains how variations such as truncated
ballots and write-ins are easily handled.

Profiles, preference and margin matrices, and
margin graphs A collection C of (cast) ballots is
called a profile. A profile is a multi-set, since two
ballots may have the same rank order listing of the
candidates. The size |C| of a profile is the number of
ballots it contains.

Given a profile, one can derive the associated pref-
erence matrix N— the m × m matrix whose (x, y)
entry is the number of ballots in the profile that ex-
press a preference for candidate x over candidate y.
Each such entry is nonnegative, and

N(x, y) +N(y, x) = n , (1)

since all ballots are assumed to be full.
It is also useful to work with the margin matrix—

the m×m matrix M defined by

M(x, y) = N(x, y)−N(y, x) , (2)

so that M(x, y) is the margin of x over y—that is,
the number of voters who prefer x over y minus the
number of voters who prefer y over x. The matrix M
is anti-symmetric with diagonal 0; for all x, y we
have:

M(x, y) = −M(y, x) . (3)
1There are many voting systems, such as approval voting

or range voting, where ballots do not list candidates in order.
Our methods do not apply to such systems.

From the margin matrix M we can construct a di-
rected weighted margin graph G whose vertices are
the candidates and where there is an edge from x
to y weighted M(x, y) whenever M(x, y) > 0. If
M(x, y) = M(y, x) = 0 then voters are, on the
whole, indifferent between x and y, and there are
no edges between x and y. A directed graph is called
a tournament if there is exactly one edge between
each pair of vertices. It is called a weighted tour-
nament if each such edge has an associated positive
numeric weight. Although when the number of voters
is large the margin graph for the profile of cast ballots
is almost certainly a weighted tournament, a voting
system should be well-defined in all cases, including
those cases when voters are indifferent between two
candidates and there are no edges between the corre-
sponding vertices.

Voting system – social choice function A vot-
ing system provides a social choice function that
takes as input a profile of cast ballots and produces
as output the name of the election winner. (In some
proposals the output may be a set of winners.) The
social choice function may be deterministic or ran-
domized. While most (but not all) voting systems
in the literature are deterministic, the GT system is
randomized. We also describe a deterministic vari-
ant, GTD, of the GT system.

1.1 Example

Suppose we have an election with four candidates A,
B, C, D and 100 voters. The cast ballots have the
profile:

(40) A B C D
(30) B C A D
(20) C A B D
(10) C B A D

Here 40 voters list A first, B second, C third, D fourth.
Nobody likes D.

The preference matrix N for this profile is the fol-
lowing.
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Figure 1: The margin graph for our simple example.
Twenty more voters prefer A over B than prefer B
over A. Candidates A, B, and C are in a cycle and are
otherwise unbeaten; so there is no Condorcet winner
and this election exhibits a “generalized tie.”

A B C D
A 0 60 40 100
B 40 0 70 100
C 60 30 0 100
D 0 0 0 0

The corresponding margin matrix M is the follow-
ing.

A B C D
A 0 20 -20 100
B -20 0 40 100
C 20 -40 0 100
D -100 -100 -100 0

Figure 1 gives the associated margin graph.

2 Generalized Ties

A Condorcet winner is a candidate x who beats every
other candidate in a pairwise comparison; that is, for
every other candidate y, more voters prefer x to y
than prefer y to x. Thus, the margin matrix M has
only positive entries in every off-diagonal position of
row x. Equivalently, for each other candidate y, the
margin graph contains a directed edge from x to y.

If there is no Condorcet winner, we say that there is
a “generalized tie,” since for every candidate x there

exists some other candidate y whom voters like as
much as (or more than) x.

In the given example, it is clear that D should lose,
but it is not so clear which of A, B, and C should win.
The margin graph contains a cycle: a majority of vot-
ers prefer A to B, a majority of voters prefer B to C, and
a majority of voters prefer C to A. Such “Condorcet
cycles” were first studied by the eighteenth-century
philosopher and mathematician Marie Jean Antoine
Nicolas de Caritat, marquis de Condorcet.

Even when there is a generalized tie—and thus no
clear winners—there may be clear losers, such as D
in our example. The “Smith set” is defined to be the
smallest set of candidates who collectively dominate
all of the other candidates, i.e., every candidate in
the Smith set beats every candidate outside of the
Smith set in a pairwise comparison. The generalized
tie is really just between the candidates in the Smith
set. See Smith [30] and Börgers [1] for definition and
discussion of Smith sets.2

The GT method does not need to compute the
Smith set; it suffices for our purposes to consider the
generalized tie to be a generalized tie between all of
the candidates. The GT method nonetheless always
names as a winner a candidate in the Smith set (see
De Donder et al. [6]).

The interesting question is then:

When there is a generalized tie, how
should one do the “tie-breaking” to pick a
single winner?

3 Breaking Ties Using A Ran-
domized Method

We feel strongly that the best way of breaking a
generalized tie is to use an appropriate randomized
method. Of course, when there is a clear winner (by
which we mean a Condorcet winner) then a random-

2The definition of the Smith set for this purpose needs care-
ful treatment when the margin M(x, y) is zero—it is actually
most convenient to assume that each of x and y “beats” the
other when this happens. This is equivalent to showing edges
both ways in the margin graph, instead of neither way, as we
do now.
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ized method is not needed. A randomized method is
only appropriate when a tie needs to be broken.

Arbitrary deterministic tie-breaking rules, such as
picking the candidate whose name appears first in al-
phabetical order, are clearly unfair. And, while much
work has gone into devising clever voting systems
that break generalized ties in apparently plausible
but deterministic manners, the result is nonetheless
arguably unfair to some candidates.

The strongest reason for using a randomized tie-
breaking method is that doing so can yield election
outcomes that are liked by more voters on average
than the outcomes of any deterministic voting sys-
tem. This is effectively just a restatement of the
minimax theorem, due to von Neumann, that op-
timal strategies in two-person zero-sum games may
need to be randomized. We discuss this relationship
in more detail below.

It is not a new idea to have a voting system that
uses randomization, either in theory or in practice.
Using a randomized method is in fact a common and
sensible way of “breaking ties.” Within the last year,
several elections used randomized methods to break
ties:

• In June, 2009, the city of Cave Creek, Arizona
had a tie between two candidates for a city coun-
cil seat.3 The two candidates drew cards from a
well-shuffled deck to determine the winner.

• In November, 2009, the office of Mayor of the
town of Wendell, Idaho, was determined by a
coin toss, after the challenger and the incumbent
were tied in the election.

• In February, 2010, in the town of Sealy, Texas,
dice were used to resolve a tied election for city
council membership.

However, academic literature on voting systems
has generally eschewed proposals having a random-
ized component. For example, Myerson [23, p. 15]
says,

3“Election at a Draw, Arizona Town Cuts a Deck,” NY
Times, June 17, 2009.

“Randomization confronts democratic
theory with the same difficulty as multi-
ple equilibria, however. In both cases, the
social choice ultimately depends on factors
that are unrelated to the individual voters’
preferences (private randomizing factors in
one case, public focal factors in the other).
As Riker (1982) has emphasized, such de-
pendence on extraneous factors implies that
the outcome chosen by a democratic process
cannot be characterized as a pure expression
of the voters’ will.”

We would argue that Myerson and Riker have it
backwards, since, as we shall see, voting systems can
do better at implementing the voters’ will if they are
randomized.

Several previous voting system proposals also have
randomized outcomes.

For example, the “Random Dictator” voting sys-
tem [13, 28] picks the winner by picking a random bal-
lot, and using it to name the winner. This somewhat
silly method always uses randomization, not just
for tie-breaking. Gibbard [13] studies the strategy-
proofness of randomized voting systems, and argues
that if a system is strategy-proof (and satisfies cer-
tain other conditions), then it must be the random
dictator method.

Sewell et al. [28] proposes a randomized voting sys-
tem based on maximum entropy considerations; this
is however a “social welfare function” (it produces a
complete ordering, not just a single winner), not a
social choice function.

Other proposed voting systems use randomization
as a final tie-breaker. For example, the Schulze
method [27] uses randomization in this manner.

3.1 Returning to our example

The example given in Section 1.1 is interesting be-
cause even though there is a generalized tie between
A, B, and C, it seems not quite right that they should
all have an equal chance of winning. But perhaps
they should each have some chance of winning.

But how should the probabilities be determined?
The next sections provide an answer, via game the-
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ory. For the example, we shall see that the best prob-
ability vector p∗ turns out to be:

p∗(A) = 0.500000
p∗(B) = 0.250000
p∗(C) = 0.250000
p∗(D) = 0.000000 .

The computation of these values is explained in Sec-
tion 6. Thus, A should win half the time, B and C
should each win 1/4 of the time, and D should never
win. This is easily arranged with a pair of coin flips.

The set of candidates chosen with some nonzero
probability is of interest to us. It is just those candi-
dates in the support of p∗.

Definition 3.1 Let p be an arbitrary probability dis-
tribution over some finite set X. We say that the
support for p is the set

supp(p) = {x | p(x) > 0}

of elements in X that p assigns nonzero probability.
Similarly, if V is a discrete random variable, we let
supp(V ) denote the set of values of V that occur with
nonzero probability.

The next section motivates the computation of
these probabilities.

4 Optimal Voting Systems

How should one compare a voting system P against
another voting system Q? Here P and Q are (perhaps
randomized) social choice functions that each take
a profile C of cast ballots and produce an election
outcome or winner, P (C) or Q(C).

There is a long list of well-studied properties of
voting systems, such as monotonicity, consistency,
strategy-proofness, etc.; such studies exemplify the
“axiomatic” approach to voting systems. One can
certainly ask whether a voting system has these de-
sirable properties or not. The inference is usually
that a system with more desirable properties is the
better system. But this approach tends to give rather
inconclusive and conflicting advice.

Here is a more direct approach:

A
0.500000

B
0.250000

C
0.250000

D
0.000000

20

40

20

100

100 100

Figure 2: The margin graph for our simple example,
with optimal mixed strategy probabilities shown for
each candidate.

A voting system P is said to be better than
a voting system Q if voters tend to prefer
the outcome of P to the outcome of Q.

How can one make this appealing intuition precise?
Let C be an assumed probability distribution on

the profiles of cast ballots. The details of C turn out
not to be that important to us, since the GT method
is optimal on each profile C separately.

Suppose we play a game GC(P,Q) between P and
Q as follows:

• A profile C of cast ballots for the election is cho-
sen, according to the distribution C.

• P and Q compute respective election outcomes
x = P (C) and y = Q(C).

• We score the systems as follows: P wins N(x, y)
points, and Q wins N(y, x) points.

Note that the net number of points gained by P ,
relative to the number of points gained by Q, is just
the margin:

M(x, y) = N(x, y)−N(y, x) .
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More voters prefer P ’s outcome to Q’s outcome than
the reverse if M(x, y) > 0.

Definition 4.1 We say that the advantage of voting
system P over voting system Q, denoted AdvC(P,Q),
with respect to the distribution C on profiles, is

AdvC(P,Q) = EC(M(x, y)) (4)

where x = P (C) and y = Q(C), and where EC de-
notes expectation with respect to choosing profiles C
according to the distribution C and with respect to any
randomization within P and Q. Similarly, we define
the relative advantage of voting system P over vot-
ing system Q, denoted Adv∗C(P,Q), with respect to
the distribution C on profiles,

Adv∗C(P,Q) = EC(M(x, y)/ |C|) (5)

where x = P (C) and y = Q(C), and where EC de-
notes expectation with respect to choosing profiles C
according to the distribution C and with respect to any
randomization within P and Q, and where 0/0 is un-
derstood to equal 0 if |C| = 0. When C has all of its
support on a single profile C, we write AdvC(P,Q)
and Adv∗C(P,Q).

Definition 4.2 We say that voting system P is as
good as or better than voting system Q (with respect
to probability distribution C on profiles), if

AdvC(P,Q) ≥ 0 . (6)

Definition 4.3 We say that voting system P is op-
timal if it is as good as or better than every other
voting system for any distribution C on profiles—
equivalently, if for every profile C and for every vot-
ing system Q

AdvC(P,Q) ≥ 0 , (7)

where EC denotes expectation with respect to any ran-
domization within P and Q.

Intuitively, P will win more points than Q, on the
average, according to the extent that voters prefer
P ’s outcomes to Q’s outcomes. If P ’s outcomes tend
to be preferred, then P should be considered to be the

better voting system. And if P is as good as or better
than any other voting system, for any distribution on
profiles, then P is optimal.

Note that if P is as good as or better than Q on
every distribution C on profiles, then P must be as
good or better than Q on each particular profile C,
and vice versa. Since an optimal voting system P ∗

is not beaten by Q even for any fixed profile C the
distribution C doesn’t matter.

5 Game Theory

We now describe how to construct an optimal voting
systems using standard game theory computations.

In the game GC(P,Q), the value M(x, y) is the
“payoff” received by P from Q when P picks x,
and Q picks y, as the winner for the election with
profile C. The comparison of two voting systems re-
duces to considering them as players in a distribution
on two-person zero-sum games—one such game for
each profile C.

The theory of two-person zero-sum games is long-
studied and well understood, and optimal play is well-
defined. See, for example, the excellent survey article
by Raghavan [24].

The expected payoff for P , when P chooses candi-
date x with probability px and when Q independently
chooses candidate y with probability qy is:∑

x

∑
y

pxqyM(x, y) . (8)

An optimal strategy depends on the margin ma-
trix M . When there is a Condorcet winner, then it
is easy to see that it is optimal to pick the Condorcet
winner as the election winner.

When there is no Condorcet winner, there is a gen-
eralized tie, and the optimal strategy is to play ac-
cording to an optimal mixed strategy. Computing this
optimal mixed strategy is not hard; see Section 6.
Playing this optimal mixed strategy yields an optimal
voting system—no other voting system can produce
election outcomes that are preferred more.

The set of candidates that have nonzero probabil-
ity in the optimal mixed strategy for the game asso-
ciated with profile C is supp(GT (C)). (When there
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is not a unique optimal mixed strategy, we assume
GT uses the most balanced optimal mixed strategy.)
Intuitively, supp(GT (C)) is the set of “potential win-
ners” for the election with profile C for the GT vot-
ing system. When there is a Condorcet winner x,
then supp(GT (C)) = {x}. Otherwise, the GT winner
will be chosen from supp(GT (C)) using a randomized
procedure as described in Section 7.

6 Computing Optimal Mixed
Strategies

How does one solve a two-person zero-sum symmetric
game with m by m payoff matrix M? Raghavan [24]
gives an excellent overview of two-person zero-sum
games and their relationship to linear programming
and duality. One of the simplest reductions to lin-
ear programming is the following (see Raghavan [24,
Problem A, page 740]):

• Increase every entry in M by some constant
value w, where w is chosen so that every entry
in M is now positive. Note that this changes the
value of the game defined by M from 0 to w.

• Solve the following linear programming problem
for the probability vector p of length m:

– Minimize Σxpx

– Subject to

px ≥ 0 for all x , (9)

Mp ≥ e (10)

where e is a column vector of length m con-
taining ones.

• Return the solution vector p∗ = w ·p — that is, p
with every entry multiplied by w.

It is easy to see that this linear programming prob-
lem has a solution.

It may have more than one solution, but each
such solution has the same value w, which, when
translated back to the original game, has a value 0
(as every two-person zero-sum symmetric game has
value 0). Each such solution provides an optimal
mixed strategy for the original game.

Unique optimal mixed strategies When ballots
are full and the number of voters is odd, the optimal
mixed strategy p∗ is uniquely defined. This follows
from a result of Laffond et al. [20]. There are other
situations for which there is a unique optimal mixed
strategy. In practice, with a large number of voters,
one would expect that there would almost always be
a unique optimal mixed strategy.

Appendix B describes how we propose that GT
should handle the situation when there is not a
unique optimal mixed strategy—basically, to pick the
unique optimal mixed strategy that minimizes the
sum of squares

∑
i p

2
i , which can be computed easily

with standard quadratic programming packages.

7 Selecting the winner

As we have seen, the GT voting system comprises the
following steps, given a profile C of cast ballots:

1. [Margins] Compute the margin matrix M .

2. [Optimal mixed strategy] Determine the op-
timal mixed strategy p∗ for the two-person zero-
sum game with payoff matrix M .

3. [Winner selection] Select the election winner
by a randomized method in accordance with the
probability distribution p∗. (If there is a Con-
dorcet winner x, then p∗(x) = 1 and this step is
trivial.)

We now discuss the third step, and a deterministic
variant.

For many, the biggest issue with the GT method
may be its use of randomized methods for tie-
breaking. Yet, as we have argued, randomized tie-
breaking methods are both natural and beneficial.

If there is no Condorcet winner, then GT winner se-
lection should proceed by first computing the cumu-
lative probabilities qi =

∑
j≤i pj . Then a public cer-

emony should be held where a sequence of (say, six)
ten-sided dice are rolled in an indisputably random
and non-manipulable manner. Six dice rolls yield
a six-digit number x = 0.d1d2d3d4d5d6 between 0
and 1. Then the winner is declared to be candidate i
where i is the least integer such that x < qi. This is
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easily seen to elect each candidate i with probability
pi (to within the round-off error).

There are of course details that must be taken care
of properly with using a randomized method to select
a winner when there is a tie; these details are very
similar to those that arise when generating suitable
random numbers of post-election audits; see Cordero
et al. [5].

GTD—A Deterministic Variant of GT We de-
scribe here a deterministic variant of the GT voting
system, which we call GTD. The optimal mixed strat-
egy is computed as with GT, but the winner selection
then proceeds in a deterministic manner.

Instead of randomly picking a candidate according
to this probability distribution, as the GT method
does, GTD just chooses a candidate with the maxi-
mum probability in this optimal mixed strategy. (If
there is more than one candidate with the maximum
probability in the optimal mixed strategy, then the
one with the least name alphabetically is chosen.)

The GTD method doesn’t require any
randomness—it is a deterministic social choice
function. We expect that in practice it would
perform as well as the GT method. However, since
GTD is deterministic, one can not prove that it is
optimal.

8 Properties of the GT voting
system

This section reviews some of the properties of the GT
voting system.

8.1 Optimality

Optimality is perhaps the most important property
of the GT voting system. No other voting system can
produce election outcomes that voters prefer better,
on the average.

8.2 GT method on three-cycles

The simplest generalized tie has a margin graph that
is a three-cycle. See Figure 3

A

B C

MAB = γ

MBC = α

MCA = β

Figure 3: The margin graph for a generic three-cycle.

Theorem 8.1 The optimal mixed strategy probabili-
ties for the three-cycle of Figure 3 are:

p∗A =
α

α+ β + γ
(11)

p∗B =
β

α+ β + γ
(12)

p∗C =
γ

α+ β + γ
(13)

Proof See Kaplansky[17, page 479].

Thus, the probability that the optimal mixed strat-
egy picks a particular vertex in a three-cycle is pro-
portional to the weight of the edge on the opposite
side of the cycle: p∗A is proportional to M(B, C), etc.

Intuitively, as M(B, C) increases, B becomes more
attractive to play, and C becomes less attractive, and
together these make A substantially more attractive
to play, since A beats B and C beats A.

Note that playing any fixed strategy against GT
results in zero net value to either player. For exam-
ple, suppose the opponent picks candidate A and GT
picks x. The net point gain for GT is thus

p∗A · 0 + p∗B · (−γ) + p∗C · β
= (α/δ) · 0 + (β/δ) · (−γ) + (γ/δ) · β
= 0 .

where δ = α+ β + γ.
Perhaps most surprisingly, the probabilities (11)–

(13) remain unchanged if all of the edge directions in
Figure 3 are reversed ! If every voter had submitted
a ballot that is the reverse of his submitted ballot,
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then the GT winning probabilities for each candidate
remain unchanged. (This doesn’t hold in general, but
only for a generalized tie that is a three-cycle.)

8.3 Condorcet winners and losers

Theorem 8.2 The GT voting system will always
pick a Condorcet winner, if one exists. The GT vot-
ing system will never pick a Condorcet loser, if one
exists.

Proof (Details omitted.)

As Schulze [27] notes:

“The Condorcet criterion implies the ma-
jority criterion. Unfortunately, compliance
with the Condorcet criterion implies viola-
tion of other desired criteria like consistency
(Young, 1975) [33], participation (Moulin,
1988) [22], later-no-help, and later-no-harm
(Woodall, 1997) [32].”

8.4 Monotonicity

The notion of monotonicity needs to be redefined for
probabilistic voting systems.

Definition 8.3 We say that a probabilistic voting
system P is monotonic if, if a voter raises x on her
ballot without changing the order of other candidates,
then the probability that P outputs x does not de-
crease.

Theorem 8.4 The GT voting system is not mono-
tonic.

Proof (Proof sketch.) Note that in the example of
Figure 3 and Theorem 8.1, moving A in front of B on
some ballot causes γ to increase, while α and β stay
fixed. Thus, p∗A decreases.

8.5 Reversal Symmetry

The criterion of reversal symmetry (see Saari [26]),
says that a voting system should not be capable of

naming the same candidate as both the best candi-
date and the worst candidate (e.g. if the election were
run over with every ballot reversed in order).

The GT system does not exhibit reversal symme-
try: an election where every possible ballot occurs an
equal number of times gives each candidate an equal
chance of winning. Reversing the ballots doesn’t
change anything.

GT also gives a three-cycle the same outcome
when all ballots are reversed—the probabilities that
each candidate wins are unchanged, as noted in Sec-
tion 8.2.

8.6 Independence of clones

A voting system satisfies the independence of clones
property if replacing an existing candidate B with
a set of k > 1 clones B1, B2, . . . , Bk doesn’t change
the winning probability for candidates other than B.
These new candidates are clones in the sense that
with respect to the other candidates, voters prefer
each Bi to the same extent that they preferred B, and
moreover, the voters are indifferent between any two
of the clones. (Schulze [27, p. 141] notes that there
are some subtleties in the definition of this property,
especially when B is already in some sense tied with
other candidates.)

The GT voting system satisfies the independence
of clones properties in the following sense. If x is an
optimal mixed strategy for the game based on the
margin matrix for the given election, then when B is
replaced by B1, B2, . . . , Bk then in the game for the
new election it is an optimal mixed strategy to di-
vide B’s probability according to x equally among
B1, B2, . . . , Bk. To see this, note that equations (9)
and (10) will continue to hold. However, if the origi-
nal game does not have a unique optimal mixed strat-
egy, then balancing the probabilities in the derived
game may affect probabilities outside of the clones in
a different way than the balancing affects those prob-
abilities in the original game—consider what must
happen with an empty profile, where all candidates
are tied.
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8.7 Pareto

The Pareto property says if there exist two candi-
dates x and y such that no voter prefers candidate y
to x, and at least one voter prefers x to y, then the
voting system should never declare y the winner.

While this property is appealing, when x and y are
in a cycle or generalized tie it may not be optimal to
honor the Pareto property.

It is easy to show that the GT voting system does
not have the Pareto property, by considering a three-
cycle where all voters prefer A to B, a majority prefer
B to C, and a majority prefer C to A. The optimal
mixed strategy given in Theorem 8.1 will give non-
zero probability to each of A, B, and C.

8.8 Strategy-proofness

Our definition allows one to compare two voting sys-
tems based on which voting system produces out-
comes preferred by the voters, measured by voter
preferences as expressed in their ballots. We do not
try to take into consideration whether voters might
be voting “strategically.”

This needs to be studied. We have no reason to be-
lieve that GT is more, or less, vulnerable to strategic
voting than other preferential voting systems.

8.9 Other properties

There are numerous properties that have been de-
fined for voting systems. Many of them need to be
redefined for probabilistic voting systems.

A later version of this paper will include an ex-
panded section here with suitably expanded defini-
tions and results.

9 Empirical comparison with
other voting systems

The approach we are recommending allows one to
compare any two voting systems P , Q on a given
distribution C of profiles, by computing the advantage
AdvC(P,Q) (or relative advantage A∗C(P,Q)) of one
system over the other.

For example, consider the seven voting sys-
tems: plurality, IRV, Borda, minimax, the Schulze
method [27], GTD, and GT. We used the minimax
variant based on margins and the Schulze variant
based on “winning votes.”

We worked with 10,000 profiles generated ran-
domly for m = 5 candidates. Each profile had
n = 100 full ballots, generated as follows. Each can-
didate and each voter was randomly assigned a point
on the unit sphere—think of these points as modeling
candidates’ and voters’ locations on Earth. A voter
then lists candidates in order of increasing distance
from her location. With this choice of parameters,
about 64.3% of the profiles have a Condorcet winner.

The code we used, and detailed output data,
is available at http://people.csail.mit.edu/
rivest/gt .

Figure 4 gives the cumulative net “point advan-
tage” of each of the seven voting systems against each
other in our experiment. For example, the “16380”
entry in row “Schulze,” column “IRV” means that
in an average election, the net number of voters pre-
ferring the Schulze outcome to the IRV outcome is
about 1.6380 voters (i.e., 1.6380% of the electorate).
That is, Adv∗C(Schulze, IRV) ≈ 0.016380.

With this distribution on profiles, there appears
to be a clear improvement in quality of output (as
measured by voter preferences) as one goes from plu-
rality to IRV to Borda to minimax to Schulze. GT
and GTD are perfect by definition in this metric,
but Schulze is amazingly close. Although GTD and
GT are by definition in a dead heat against each
other, GTD appears to be a slightly better competi-
tor against the other systems than GT.

In our experiments about 77.13% of the 10,000 sim-
ulated elections had a unique optimal mixed strategy.

We note that when comparing another voting sys-
tem with GT, that there is no expected net point gain
for GT if the other system picks a candidate that is
in supp(GT (C)), the set of potential winners for GT .
Candidates in supp(GT (C)) have the property that
playing any one of them has an expected payoff equal
to zero (the value of the game) against GT. However,
the other system playing other candidates will nor-
mally result in an expected positive net point gain
for GT, and an expected loss for the other system.
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plurality IRV Borda minimax Schulze GTD GT
plurality 0 -23740 -31058 -32030 -32128 -32390 -29978
IRV 23740 0 -14148 -16296 -16380 -15892 -13872
Borda 31058 14148 0 -4546 -4654 -5324 -2522
minimax 32030 16296 4546 0 -58 -1436 -174
Schulze 32128 16380 4654 58 0 -1402 -76
GTD 32390 15892 5324 1436 1402 0 10
GT 29978 13872 2522 174 76 -10 0

Figure 4: Cumulative margins table for our main experiment. The entry in row X column Y gives the
sum, over 10,000 simulated elections with 100 votes each, of the number of voters preferring X’s outcome
to Y ’s outcome, minus the number of voters preferring Y ’s outcome to X’s outcome. For example, the
entry 13872 in row GT, column IRV means that on average for a random election from our distribution C on
profiles, 1.3872% more of the electorate prefers the GT outcome to the IRV outcome than the reverse; that
is, Adv∗C(GT, IRV ) = 1.3872%.

plurality IRV Borda minimax Schulze GTD GT GTS

plurality 10000 5557 4107 4356 4366 4335 4262 5515

IRV 5557 10000 5584 6047 6048 5999 5802 7299

Borda 4107 5584 10000 7854 7874 7813 7193 8913

minimax 4356 6047 7854 10000 9953 8869 8232 9915

Schulze 4366 6048 7874 9953 10000 8895 8246 9951

GTD 4335 5999 7813 8869 8895 10000 8377 10000

GT 4262 5802 7193 8232 8246 8377 10000 10000

GTS 5515 7299 8913 9915 9951 10000 10000 10000

Figure 5: Agreement between pairs of voting systems. Row X column Y gives the number of times that
method X produced an outcome that agreed with the outcome of method Y, in our 10,000 trials. Here the
“GTS method” refers to the support of GT, and a method “agrees with” GTS if it produces an outcome
that is in the support of GT. In our view, frequency of agreement with GTS (producing outcomes in the
support of GT) is an important measure of the quality of a preferential voting system.
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A B C D E
A 0 18 11 21 21
B 12 0 14 17 19
C 19 16 0 10 10
D 9 13 20 0 30
E 9 11 20 0 0

Figure 6: An example preference matrix provided by
Schulze. For this example the Schulze method does
not select a candidate that is in the support of the
optimal mixed strategy.

Figure 5 illustrates the number of times each pair
of voting systems produced results that “agree with”
each other. The column “GTS” refers to the support
of GT; a method “agrees with” GTS if it produces
an output that is in the support of GT.

In our view, level of agreement with the support
of GT is an interesting measure of the quality of the
results produced by each voting system. Plurality
does quite poorly (only agreeing with GTS 55.15%
of the time, as does IRV (72.99%), but the Schulze
method (99.51%) and minimax (99.15%) have nearly
perfect agreement with the support of GT.

Thus, one can perhaps view the evolution of vot-
ing system proposals as a continuing effort to identify
candidates that are in the support for the optimal
mixed strategy for the associated two-person game,
without quite realizing that this is the natural goal.
That is, voting systems should be (at the minimum)
returning winners that are in supp(GT (C)), the set
of potential winners for the GT voting system. To do
otherwise does not serve the voters as well as can be
done. However, since determining the support for the
optimal mixed strategy intrinsically involves linear
programming, this computation is non-trivial, so we
see a variety of quite complex voting system proposals
in the literature, which are, in this view, just approx-
imate computations for (a member of) supp(GT (C)).

As another example, Schulze gives the following
example [27, Section 3.6.2 p. 78]. Figure 6 gives the
matrix of pairwise preferences. The Schulze method
selects B as the winner. The GT method has the

unique optimal mixed strategy:

p∗(A) = 0.333333
p∗(C) = 0.400000
p∗(D) = 0.266667
p∗(B) = p∗(E) = 0.000000

so that supp(GT (C)) = {A, C, D}. That is, the
Schulze method chooses as a winner a candidate
B that is not even a potential winner for the GT
method; the GT method gives B no support. For this
election, the GT method wins an expected 0.333333∗
(18−12)+0.400000∗(16−14)+0.266667∗(13−17) =
1.733333 points. The GT outcome is preferred by al-
most 2 more voters than the Schulze outcome, on the
average. This is more than 5% of the electorate (30
voters). We also note that the GTD outcome, C, is
preferred by exactly two more voters than the Schulze
outcome. (It was a bit surprising to us to notice this
example in Schulze’s paper, given the impressive ac-
curacy with which the Schulze method generally picks
winners from the support of GT.)

10 Practical considerations

We believe that the GT voting system is suitable for
practical use.

Note that since the GT voting system only depends
on the pairwise preference matrix N , and since the
preference matrix for the combination of two profiles
is just the sum of the preference matrices for the two
profiles, ballot information can be easily aggregated
at the precinct level and the results compactly trans-
mitted to central election headquarters for final tab-
ulation; the number of data items that need to be
transmitted is only O(m2), which is much better than
for, say, IRV.

Perhaps the only negative aspects with respect to
using GT in practice are (1) its game-theoretic ra-
tionale may be confusing to some voters and election
officials, (2) it is a randomized method, and may re-
quire dice-rolling or other randomized devices in the
case of generalized ties, and (3) it isn’t so clear how to
efficiently “audit” a GT election. (The last property
is common to many preferential voting systems).
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11 Variations and Extensions

Working with Truncated Ballots and Write-
ins So far, we have assumed that each ballot lists
all candidates. The GT method works equally well
when ballots may be truncated, or where there are
write-ins. A truncated ballot lists only some of the
candidates, where we assume that the unlisted candi-
dates are assumed to be preferred less than the listed
candidates, but equal to each other. More generally,
voters may be allowed to specify that two candidates
rank equally. For our purposes, the important fact
is that for each pair of distinct candidates, a ballot
expresses a preference one way or the other, or ex-
presses no preference. Write-in candidates are also
handled smoothly within this framework.

Nothing really changes; the margin matrix M is
still the payoff matrix for a two-person zero-sum
game. The computation proceeds as before. Other
properties of the GT method are unaffected.

12 Discussion

Note that the GT voting system is directed towards
preferential voting systems; it is not applicable to
scoring systems (like approval voting or range voting)
where cycles can’t occur. (You can have only simple
ties with equality of total scores, which are easily
handled.)

When a voting system is randomized, the notion
of “margin of victory” needs to be redefined, and
the methods of post-election audits need to be cor-
respondingly adjusted. Further research is needed to
clarify this situation.

13 Related Work

Fishburn [11] gives an excellent overview of voting
systems that satisfy the Condorcet principle.

The idea of using a two-person zero-sum game
based on a payoff matrix derived from a profile of bal-
lots is not new; there are several papers that study
this and related situations.

Laffond et al. [18] introduce the notion of a “bi-
partisan set”, which is the support of a two-person

“tournament game”. A tournament game is based
on an unweighted complete directed graph (a tour-
nament) where each player picks a vertex, and the
player picking x wins one point from the player pick-
ing y if there is an edge from x to y. They show
that any such tournament game has a unique opti-
mal mixed strategy, and study the properties of its
support.

The weighted version of such a tournament game
corresponds to the voting situation we study (assum-
ing no edge weights are zero); the weight of an edge
from x to y corresponds to the margin M(x, y). For
the margin graph to be a tournament, no margin may
be zero.

Laffond et al. [19] explicitly propose the use of two-
party game theory to provide solutions to elections,
including the use of randomized methods. They call
a weighted tournament game a plurality game. How-
ever, their focus is on the way political parties choose
platform issues, whereas our focus is on “competi-
tion” between voting systems rather than between
political parties. Our work should nonetheless be
viewed as further explorations along the directions
they propose.

Le Breton [4, p. 190] proves a general version of
Laffond et al.’s earlier result, showing that if all
edges satisfy certain congruence conditions, then the
weighted tournament game has a unique optimal
mixed strategy.

Duggan and Le Breton [8] study the “minimal cov-
ering set” of a tournament (as proposed by Dutta [9]),
which is the same as Shapley’s notion of a “weak sad-
dle” for the corresponding tournament game.

De Donder et al. [6] consider tournament games
and plurality games and the relationship of the sup-
port of the optimal mixed strategy for a plurality
game (the “weighted bipartisan set”) to various other
set-theoretic notions.

Michael and Quint [21] provide further results on
optimal strategies in tournament games and plurality
games.

Dutta et al. [10] study comparison functions, which
correspond to general skew-symmetric matrices, and
study axiomatic properties associated with such func-
tions.
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14 Conclusions

We have described the GT voting system for the clas-
sic problem of determining the winner of a single-
winner election based on voters preferences expressed
as (full or partial) rank-order listings of candidates.

The GT scheme is arguably “optimal” among pref-
erential voting systems, in the sense that no other
voting system P can produce election outcomes that
on the average are preferred by more voters.

We feel optimality is an important criterion for vot-
ing systems. It would seem hard to argue that some
other property X was sufficiently important that in
return for obtaining property X one should settle for
reducing the average number of voters preferring the
election outcome.

We believe that the GT voting system is suitable
for practical use, when preferential voting is desired.
When there is a clear (Condorcet) winner, it produces
that winner. When there is no Condorcet winner, it
produces a “best” set of probabilities that can be
used in a tie-breaking ceremony. If one is going to
use preferential ballots, the GT system can be rec-
ommended.

Since the GT system does share some potentially
confusing properties, such as non-monotonicity, with
many other preferential voting systems, election au-
thorities might reasonably consider alternatives to
the GT system such as a non-optimal but monotonic
preferential voting system like the Schulze method, or
even non-preferential voting systems such as approval
voting or range voting.

However, we feel that the optimality property of
GT makes it worthy of serious consideration when
preferential balloting is to be used.
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Appendix A. When there is not
a unique optimal mixed strategy

It may happen that there is not a unique optimal
mixed strategy. for the two-person zero-sum sym-
metric game defined by M .

In this case, one might say that “it doesn’t matter”
which optimal strategy is used to break a generalized
tie, since any such optimal mixed strategy maximizes
the number of voters preferring the voting system
outcome.

As a trivial example, if the matrix M of margins is
all zeros, then any probability vector p is an optimal
mixed strategy.

While some might feel that this lack of a unique
optimal mixed strategy is a defect, it is in fact an
opportunity. Given that we have done as well as we
can to follow voter preferences, we can then use the
additional degrees of freedom to treat the candidates
equitably. That is, we can use any additional degrees
of freedom to ensure that ties are broken in a “bal-
anced” manner.

By using a least-squares approach, we can find the
optimal mixed strategy that is also as “balanced” as
possible, where “balanced” now means “minimizing∑

x(p∗x)2 .” Such a minimization will tend to make
the probabilities p∗x as equal as possible, given the
constraint that p∗ be an optimal mixed strategy.

A least-squares approach is very convenient, since
there are excellent software packages available for
quadratic programming with constraints, such as the
MATLAB routine lsqlin)4 or the cvxopt package
for Python.

More precisely, the new optimization method
works as follows, given as input a skew-symmetric
real matrix M .

4See the MATLAB documentation for lsqlin and Gill et
al. [15]. A handful of lines of MATLAB code suffice to produce
the desired optimal mixed strategy. Code is available at http:
//people.csail.mit.edu/rivest/gt/.

• Increase every entry in M by some constant
value w, where w is chosen so that every entry
in M is now positive. Note that this changes the
value of the game defined by M from 0 to w.

• Solve the following quadratic programming
problem for the probability vector p of length
m:

– Minimize Σxp
2
x.

– Subject to

px ≥ 0 for all x , (14)∑
x

px = 1/w (15)

Mp ≥ e (16)

where e is a column vector of length m con-
taining ones.

• Return the solution vector p∗ = w · p — that is,
p with every entry multiplied by w.

Since the feasible region is convex and nonempty,
and the function being optimized is convex, there will
be a unique solution to this quadratic programming
problem. The relationship with the previous opti-
mization problem should be evident, given that the
optimum value for

∑
x px in the previous problem was

known to be 1/w.
The above procedure, together with a randomized

method for picking the winner according to p∗, con-
stitutes the voting system GT.

Maximum entropy variant There are plausible
approaches other than least squares for finding an
optimal mixed strategy that is “balanced.” For
example, one could aim for the maximum entropy
solution that maximizes

∑
x px ln(1/px), instead of

minimizing
∑

x p
2
x. (See Jaynes [16] for an intro-

duction to maximum entropy methods). We sus-
pect that using maximum-entropy methods would
not produce noticeably different results in practice,
and there are practical advantages to working with
least-squares, given the availability of software pack-
ages for quadratic programming.
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Appendix B. More examples

This appendix gives a number of simple examples.
In each diagram, each vertex gives the candidate’s
name above the candidate’s winning probability as
computed by the GT method. The figure name m k
gives the number of candidates m and the number of
edges k.
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