
Consistent Sampling with Replacement

Ronald L. Rivest
MIT CSAIL

rivest@mit.edu

August 31, 2018

Abstract

We describe a very simple method for “consistent sampling” that allows for sampling with
replacement. The method extends previous approaches to consistent sampling, which assign
a pseudorandom real number to each element, and sample those with the smallest associated
numbers. When sampling with replacement, our extension gives the item sampled a new, larger,
associated pseudorandom number, and returns it to the pool of items being sampled.

1 Introduction

We describe a simple method for “consistent sampling” that extends previous methods to handle
sampling with replacement. We describe the method and an open-source implementation.

Notation Let I denote a finite nonempty population I = {1, 2, . . . , n} of n items from which we
wish to draw a sample

S = S(I, u, s)

of size s, where u is a seed drawn at random from some large universe U of seeds. We emphasize
that u is the only source of randomness for the sampling procedure; once u is specified the sampling
process is deterministic.

Sampling may be performed “with replacement” or “without replacement.” When desired to
distinguish these cases we give a superscript “+” or “−” to indicate sampling with or without
replacement, as in

S+(I, u, s)

or
S−(I, u, s) .

If no superscript is given, the sample may be either with replacement or without replacement.

When sampling is done with replacement the result is a multiset (set with multiplicities).

1

ar
X

iv
:1

80
8.

10
01

6v
1

 [
cs

.D
S]

 2
9

A
ug

 2
01

8

rivest@mit.edu

The sampling method should be random in the sense that the result of picking seed u at random
and then drawing the sample

S(I, u, s)
should result in a simple random sample (possibly with replacement) of size s of I. (The literature
generally uses the term simple random sample to refer to the case where sampling is done without
replacement; the term simple random sample with replacement is then used to clarify when sampling
is done with replacement.)

1.1 Consistent Sampling

We say that a sampling method S is “consistent” if it is consistent in two ways:

• It is “consistent with respect to sample size”. That is, for any I and any u, we have that for
any s and s′ with s′ ≥ s:

S(I, u, s) ⊆ S(I, u, s′) ,
so that a larger sample is just an extension of a smaller sample.

That is, consistency with respect to sample size implies that the sampling routine draws ele-
ments one at a time from I in a particular sequence depending on the seed u; the sampling is
finished when a total of s elements have been drawn.

With a slight overload of notation, we let S(I, u) denote the full sequence of outputs produced
by S for a given seed u: these are the elements produced by S as s increases, for s = 1, 2,

If we are sampling without replacement then S−(I, u) is a finite sequence of length n = |I|. If
we are sampling with replacement, then S+(I, u) is an infinite sequence.

• It is “consistent with respect to population”. That is, for any two nonempty sets J and K with
J ⊆ K, we have

S(J , u) = S(K, u) ∩ J
where

S ∩ J
denotes the subsequence of sequence S obtained by retaining only elements in J .

1.2 Proposed Method

We associate with each item i with a pseudorandom “(first) ticket number” τi,1 = f(i, u), where u is a
random seed. These ticket numbers are uniformly and independently distributed in the real interval
(0, 1), for any fixed i, as u varies.

To draw a sample from I without replacement, we draw them in order of increasing ticket number.

See Wikipedia1 for a prior use of this metaphor of “ticket numbers.”

To sample with replacement, when an item i is drawn for the jth time, where j > 1, it receives
a new ticket number τi,j = g(τi,j−1), where g is a pseudorandom function mapping each real number

1https://en.wikipedia.org/wiki/Simple_random_sample

2

https://en.wikipedia.org/wiki/Simple_random_sample

x in (0, 1) to a value g(x) from the interval (x, 1) that (while pseudorandom) appears to have been
drawn at random from (x, 1).

We more generally assume that for any i the sequence

τi,1, τi,2, τi,3, . . .

is indistinguishable from a sequence
x1, x2, x3, . . . (1)

where x1 is chosen uniformly from the real interval (0, 1) and for j > 1, xj is chosen uniformly from
the interval (xj−1, 1).

See Figure 1.

The method works for sampling with replacement, since when a ticket with number τ is drawn
from Q because it has the minimum ticket number, then all of the remaining tickets in Q have ticket
numbers that are uniformly distributed in (τ, 1), conditioned on having just drawn a ticket with
number τ . So adding a replacement ticket with ticket number drawn uniformly from (τ, 1) makes the
new ticket indistinguishable from those already there.

Another useful way of looking what happens with sampling replacement is to view Q as being
initialized with an infinite number of tickets for each item, one for each possible generation. Then
sampling from this Q without replacement is equivalent to sampling from the original Q with re-
placement.

Suitable functions f and g are constructible from, say, the cryptographic hash function SHA256.
(See Section 3 for details.) These functions can be implemented in an efficient manner, with only
one or two calls to the underlying SHA256 hash function required per invocation of f or g. The
function g does not need to take seed u as an input if the ticket numbers are represented in a way
that preserves the full output entropy of the SHA256 hash function.

The consistent sampling method puts the elements of I into a shuffled order. A sample of size s
is then just the length-s prefix of that order.

The sampling method is consistent. Note that if I is a population of items, and if J is a subset
of I, then the order produced for J is a subsequence of the order produced for I.

2 Discussion

The method of assigning a random or pseudorandom number (our “ticket number”) to each element
is not new, nor is the term “consistent sampling.”

The general approach was introduced by Broder et al. [3, 2], who produced sketches of documents
on the web to find similar documents. Similarity was estimated by first computing for each document
a sketch consisting of the set of s features having the smallest hash-value. Similar documents then
have similar sketches. The estimates the Jacquard similarity of the two documents.

Recently, Manasse et al. [6] extended this approach to weighted consistent sampling.

Kutsov et al. [5] extend consistent sampling to the case where features are small sets of elements
rather than individual elements.

3

Consistent Sampling Method

Input: integer n, random seed u, integer s, boolean with replacement.

Output: A random sample S of size s of {1, . . . , n}, drawn with replacement if input
with replacement is True.

Method:

1. Create a “first ticket” (τi,1, i, 1) for each item i, for i = 1, 2, . . . , n where the first
ticket number

τi,1 = f(i, u)

is the result of applying pseudorandom function f to inputs i and u to yield a result
uniformly distributed in the interval (0, 1) (for any fixed i, as u varies).

2. Initialize priority-queue (min-heap) Q with the set of tickets so created, keyed with
their ticket numbers.

3. Initialize the sample S to be the empty set φ.

4. While S has size less than s:

(a) Extract from Q the ticket t with the least ticket number.

(b) Let t = (τi,j, i, j). Place item i into set S.

(c) If we are drawing with replacement (that is, if with replacement is True),
then

• Add ticket t′ to Q, where t′ = (τi,j+1, i, j + 1), where

τi,j+1 = g(τi,j)

for a suitable pseudo-random function g.

5. Return S as the desired sample of size s.

Figure 1: The proposed consistent sampling method, based on pseudorandom functions f and g. The
priority queue Q contains exactly one ticket (τ, i, j) for each item i. The value j is the “generation
number” for the ticket, saying how many tickets have been generated for this item so far. If we
are sampling without replacement, tickets only have generation number 1. Otherwise, tickets with
generation number greater than 1 are replacement tickets.

Kane et al. [4] apply consistent sampling to the problem of counting the number of distinct
elements in a stream.

Bavarian et al. [5, 1] prove the optimality of such approaches for a certain matching game.

2.1 Extension to sampling with replacement

The extension of consistent sampling to handle sampling with replacement (step 5(c) in Fgure 1)
appears to be new.

Although our extension (generating a new larger ticket number for an element when it is sampled
with replacement) is very simple and straightforward, it appears to be irrelevant or unmotivated by
previous applications, and so remained unstudied.

2.2 Generality

It is easy to argue, as follows, that the approach taken here is without loss of generality.

Assume we have some consistent sampling method that works over subsets of some countable
population I. Let the randomness u be fixed and arbitrary.

Consider the set V of pairs (i, j) where i ∈ I and j is a positive integer.

Given u, define a relationship “<” on V so that (i, j) < (i′, j′) if for some J the sampling method
on input J outputs the j-th occurence of i at some time before it outputs the j′-th occurence of i′.

Consistency implies that (for each fixed u) the binary relation “<” is a total order on V , which
implies (Cantor’s Theorem) that (V,<) is isomorphic to a subset of Q (the rationals). Thus, we can
associate a real number τi,j with each pair (i, j) and output pairs in order of increasing value τi,j.
But this is precisely what our proposed method does.

(To be precise, we have just argued that using ticket numbers doesn’t cause us to miss any
opportunities for representing a consistent sampling method.)

2.3 Analysis

It is interesting to ask about the relationship between the number s of items drawn for the sample
and the ticket number (call it τs) of the last ticket drawn. Or similarly, if one draws all items with
ticket number less than a limit λ, one may be interested in the distribution of the number s of items
drawn.

In this direction, we note that if we define

yi = 1− xi (2)

where the xs are as in (1), then yk is distributed as the product of k independent uniform variates
z1, . . . , zk. Since

ln(zi) ∼ −Exp(1),

5

we have
ln(yk) ∼ −Gamma(k, 1),

and
E(ln(yk)) = −k .

Therefore, if the proposed method is to be used for sampling with replacement where a given item
may be selected and replaced many (perhaps hundreds) of times, then the representations of τ(i, j)
should have sufficient precision to handle numbers that are extremely close to 1 (or if the ys are
represented instead of the xs, to handle numbers with large negative exponents). That is to say, the
number of bits needed to represent τ(i, j) grows linearly with j.

3 Implementation

Python 3 code for this method is given in Github:

https://github.com/ron-rivest/consistent_sampler

The representation of ticket numbers in this python code uses variable-length numbers (repre-
sented as decimal strings) with no upper limit on the precision.

We note that for sampling with replacement the implementation picks a pseudorandom y in the
range (x, 1) by:

1. Obtaining x′ by deleting all digits in x after the initial segment of 9’s. For example, x =
0.99995241 becomes x′ = 0.9999. Set counter i to 1.

2. Generating a uniform pseudorandom variate v by hashing x and i. Then increase i by one.
Example: v = 0.77318824.

3. Creating a candidate y by appending the digits of v to the end of x′. Example: y = 0.999977318824.

4. Returning y if it is larger than x. Otherwise return to step 2 and repeat.

This approach is quite portable, and avoids having to do high-precision multiplication. The expected
number of iterations of this loop to obtain a value y that is larger than x depends on x, but is not
more than ten, and has expected value 3.143.

The efficiency of the method is determined by the efficiency of SHA256, which is called once to
compute each initial ticket number, and about 3.14 times for each replacement ticket number. A
typical laptop can compute about one million SHA256 hash values per second.

Acknowledgments

The author gratefully acknowledge support for their work on this project received from the Center
for Science of Information (CSoI), an NSF Science and Technology Center, under grant agreement
CCF-0939370.

6

https://github.com/ron-rivest/consistent_sampler

References

[1] Mohammad Bavarian, Badih Ghazi, Elad Haramaty, Pritish Kamath, Ronald L. Rivest, and
Madhu Sudan. The optimality of correlated sampling. CoRR, abs/1612.01041, 2016.

[2] Andrei Z Broder. On the resemblance and containment of documents. In Compression and
Complexity of Sequences 1997. Proceedings, pages 21–29. IEEE, 1997.

[3] Andrei Z. Broder, Steven C. Glassman, Mark S. Manasse, and Geoffrey Zweig. Syntactic clustering
of the web. In Selected Papers from the Sixth International Conference on World Wide Web, pages
1157–1166, Essex, UK, 1997. Elsevier Science Publishers Ltd.

[4] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. An optimal algorithm for the distinct
elements problem. In Proceedings of the Twenty-Ninth ACM SIGMOD-SIGACT-SIGART Sym-
posium on Principles of Database Systems of Data: PODS ’10, pages 41–52. ACM, June 6-11
2010.

[5] Konstantin Kutzkov and Rasmus Pagh. Consistent subset sampling. CoRR, abs/1404.4693, 2014.

[6] Mark Manasse, Frank McSherry, and Kunal Talwar. Consistent weighted sampling. Microsoft
Research Tech Report MSR-TR-2010-73, June 2010.

7

	1 Introduction
	1.1 Consistent Sampling
	1.2 Proposed Method

	2 Discussion
	2.1 Extension to sampling with replacement
	2.2 Generality
	2.3 Analysis

	3 Implementation

