
Phish and Chips

Traditional and New Recipes for Attacking EMV

Ben Adida, Mike Bond, Jolyon Clulow, Amerson Lin, Steven Murdoch,
Ross Anderson, and Ron Rivest

Computer Laboratory, University of Cambridge

Abstract. This paper surveys existing and new security issues affect-
ing the EMV electronic payments protocol. We first introduce a new
price/effort point for the cost of deploying eavesdropping and relay at-
tacks – a microcontroller-based interceptor costing less than $100. We
look next at EMV protocol failures in the back-end security API, where
we describe two new attacks based on chosen-plaintext CBC weaknesses,
and on key separation failues. We then consider future modes of attack,
specifically looking at combining the phenomenon of phishing (sending
unsolicited messages by email, post or phone to trick users into divulging
their account details) with chip card sabotage. Our proposed attacks ex-
ploit covert channels through the payments network to allow sabotaged
cards to signal back their PINS. We hope these new recipes will enliven
the debate about the pros and cons of Chip and PIN at both technical
and commercial levels.

1 Introduction

The EMV1 protocol suite – the technology underlying “Chip and PIN” – has
now existed in one form or another for over ten years, though it has only been
deployed in Europe for less than two years. Over this period there have been
plenty of hypothetical attacks and fixes to the protocol in turn, yet it is only
since deployment that there has been enough clarity to fully explore possible
weaknesses both at a design and implementation level.

In this paper, we look at the big picture of EMV, exploring the feasability of
attacks exploiting the fundamental shortcoming of smartcard-based systems –
lack of a trusted user interface. We then look at technical errors in the detail,
specifically at how the bank’s security API to receive and process messages
from chip cards implements the required functionality; we show that several
vendors have tripped up here. Finally we consider brand new attack modes that
may become important in the future (once the easier vulnerabilities have been
counteracted), specifically looking at combining technical sabotage attacks with
the ever-problematic phising phenomenon.

We hope that this whistle-stop tour shows that whilst EMV is undeniably
a robust and secure payment protocol at heart, there is so much matter and
1 EMV is named after the original contributing corporations: Europay, Mastercard

and Visa.

B. Christianson et al. (Eds.): Security Protocols 2006, LNCS 5087, pp. 40–48, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Phish and Chips 41

complexity around the edges to get wrong that there will be plenty to keep the
criminals fed and watered in the future; we look forward in particular to phish
and chips !

Section 2 of this paper describes eavesdropping and relay attacks, section 3
describes API attacks at the back end, and section 4 considers phishing attacks.
We conclude in section 5.

2 Eavesdropping and Relay Attacks

While a smartcard is a very convenient form-factor to carry, it lacks a trusted
user interface, unlike for instance a mobile phone. This means the PIN cannot
be provided directly to the card, so there is the possibility of eavesdropping
en-route. Lack of trusted display means there is no way to confirm who you
are doing business with, and what amount is being transacted, so it becomes
possible to relay the entire data stream to another location. Let’s look at these
two well-known drawbacks in more detail.

2.1 Eavesdropping POS Terminals

If account and PIN data can be eavesdropped from an EMV transaction at a
Point-Of-Sale (POS) terminal, it is easy to make a magnetic stripe card contain-
ing that data, for fraudulent use in a foreign country where EMV is not sup-
ported. Eavesdropping equipment is already commonplace for unmanned ATMs,
usually consisting of a overlay for the card slot and a concealed camera. How-
ever there are multiple approaches to eavesdropping POS equipment, each with
advantages and drawbacks:

– Camera and Double-swipe. The most basic approach requires a collusive mer-
chant. The merchant positions a camera with view of the PIN pad, and se-
cretly swipes the card through his own equipment before inserting it into
the genuine device.

– Hacked Terminal. A real POS terminal is opened up and additional cir-
cuitry/probes are added to monitor the keypad, and record the data from
the smartcard.

– Counterfeit Terminal. The shell of a genuine POS terminal is used to make
a counterfeit, which appears to accept card and PIN, but performs no trans-
action. Alternatively the counterfeit may pass on the data stream from the
smartcard to a hidden genuine terminal, but a physical actuator system to
enter the PIN on the real terminal may be required.

– Terminal Skimmer. A miniaturised interceptor device can be overlayed on
top of the smartcard slot on the POS terminal. From this position it can
intercept the smartcard stream (capturing account details), and also the
PIN. The PIN can be captured here because most European systems are
using the cheaper Static Data Authentication EMV cards, which possess no
private key, thus the PIN can only be sent in the clear.

42 B. Adida et al.

The camera and double-swipe approach is definitely workable, but a significant
disadvantage is the level of collusion from the merchant required, in order to
set up the camera and conceal the second magstripe reader. In addition, a hu-
man must go through the video footage study the PINs entered, then correlate
with the captured data, which is time consuming and error-prone. Modifying a
working terminal requires bypassing of the tamper-resistance, and though this is
unlikely to be of a high standard, the attack is still technically very complicated,
and requires considerable manual effort for each terminal sabotaged.

The counterfeit terminal approach is appealing, and scales better than a hacked
terminal. However the effort required to program a brand-new terminal counter-
feit (particularly to drive the receipt printer and LCD display) is substantial. It
works well within the business model of giving the customer a free lunch in return
for his card and PIN data, but ideally the corrupt merchant would like to mix
genuine and counterfeit business over the course of the day. Setting up solenoid
actuators so that the PIN can be forwarded is a further complication.

In all, our preferred approach in terms of cost, development time and con-
venience is to create a skimming device which sits on the smartcard slot, and
captures card and PIN data. We created a prototype device using an EZ-USB
microcontroller and laptop computer, costing in total comfortably under $100,
in development time of approximately one man-month. Our prototype is shown
in figure 1.

It can trivially capture and store account details and PINs for SDA cards in
large quantities. Such devices exist for smartcard and POS development, but cost
more like $2500 per device. A finished device could be slotted onto the terminal
in seconds, and removed equally quickly should there be a problem. It is thus
easier to deploy in environments with only limited collusion from the merchant,
and more deniable than installing complex counterfeit terminal equipment or
hidden cameras.

Fig. 1. Prototype POS skimmer

Phish and Chips 43

2.2 Smartcard Relay Attacks

Eavesdropping attacks collect account and PIN data for use at a later date,
but rely on the magnetic stripe fallback mode of operation, something which
might one day be discountinued (though it is unlikely). However if the attackers
are well-prepared, they can use the access to the customer’s card and PIN in
real-time: this is called a relay attack.

For example, as you pay for a meal in a dodgy restaurant using your chip
card, the waiter’s sabotaged reader could simply forward all the traffic from
your card wirelessly to an accomplice at a jewellers on the other side of town.
The smartcard data stream would go maybe via GPRS to a PDA in the crooks
pocket, then to his fake card, and the captured PIN read out via a headphone in
his ear. You think you’re paying for lunch, but in fact you’re buying the crooks
a diamond!

This sort of relay attack is a variation on the counterfeit terminal eavesdrop-
ping attack, and we imagine the equipment reqired to deploy it would cost less
than $2000, though substantial development and debugging time would be re-
quired. We discuss possible countermeasures to the relay attack problem in a
forthcoming paper [1].

3 Back-End API Attacks

Back at the bank data centre, a rack of Hardware Security Modules (HSMs)
are tasked with providing the back-end support for EMV cards in the field.
There are two major roles: processing authorisation requests and responses, and
sending secure messages. An authorisation request or response is simply a MAC
over specific transaction data fields, constructed using a specially derived 3DES
key shared between HSM and smartcard. A secure message can be thought of as
an authenticated script command sent to a card, which usually acts to update
some internal variable in the smartcard’s non-volatile memory. Secure messages
can have encrypted fields, for instance so that a new PIN can be securely sent
to the card.

3.1 EMV Secure Messaging in the IBM CCA

IBM’s Common Cryptographic Architecture is a popular security API imple-
mented by IBM mainframes and in the 4758. As part of our study of EMV, we
looked at the recently-added support for EMV transactions in both the CCA
API and the Thales RG7000 series API. We found several vulnerabilities in the
support for secure messaging, which are described in detail in a forthcoming pa-
per [2]. These attacks are significant because they show that the EMV protocol
has not mitigated the risks of abuse by bank programmers at operations centres,
and insider attack there can rapidly undermine the system.

We now briefly describe the attack on the Secure Messaging For Keys com-
mand of the CCA, which allows us to extract secret keys (and PIN updates)

44 B. Adida et al.

being sent to a smartcard, and inject our own keys and messages without autho-
risation. The CCA command Secure Messaging For Keys is basically a special
kind of key export. It takes a key stored locally on an HSM, decrypts it, then
formats it up as part of a secure message. This secure message format is spec-
ified by template input arguments to the command – consisting of a template
and and offset at which to insert the encrypted data. The command then re-
encrypts the message under a specially derived key shared between the HSM
and the destination smartcard. Finally, a separate command MAC_Generate
is used to create an authentication code over the whole message. Here is the
Secure Messaging For Keys call in detail:

template, offset , {K1}KM/T , {K2}KM/SMSG −→ {template[K1 : offset]}K2

– template: the message template, a byte-string to be used in preparing the
plaintext.

– offset : the offset within template where the key material should be placed.
– {K1}KM/T : K1 is the payload – a key to export to the smartcard. KM/T

represents an encryption key used to store the payload key locally.
– {K2}KM/SMSG : K2 is the key shared between HSM and EMV smartcard.

This is used to encrypt the confidential data within the secure message.
– template[K1 : offset]: represents the template plaintext template interpo-

lated with key material K1 at offset offset .
– {template[K1 : offset]}K2

: the finished result – an encrypted secure mes-
sage consisting of template with K1 interpolated, all encrypted under K2.

3.2 Construction of an Encryption Oracle

Our injection and extraction attacks work by gaining access to an encryption
oracle. We first note that the CBC mode used in Secure Messaging For Keys
has an unfortunate malleability property: a ciphertext can be truncated to create
a ciphertext of an identically truncated plaintext – so long as the truncation is
block-aligned. Thus, we can thus construct an encryption oracle for an arbitrary
input message m as follows:

EncryptionOracle
(
plaintext , {K2}KM/SMSG

)
:

1. create a template template by extending plaintext by a single block, e.g. the
0-block.

2. set the offset to |plaintext |, which is effectively the beginning of the
0-block just added.

3. perform the call to Secure Messaging For Keys using any available ex-
portable key {K1}KM/T :

plaintext ||“00000000”, |plaintext |, {K1}KM/T , {K2}KM/SMSG −→ c

the HSM will fill in the last block template (as indicated by offset) with
K1, leaving the entire plaintext component of template untouched.

Phish and Chips 45

4. consider the first |plaintext | blocks of c, effectively discarding the last block.
This truncated value is simply {plaintext}K2

, our desired result.

This very straightforward observation undermines any security merits of the
template-fill-in operation of the HSM – the programmer might as well be able
to use the special wrapping key shared between HSM and card in a conventional
Data_Encrypt command.

3.3 Extracting Keys

Such message injection can compromise the operation of particular cards actively,
for instance by constructing a message containing a known PIN for the card.
However active attacks at a bank data centre carry a significant risk of revealing
the attacker’s location, so retrieval of communications keys or PINs without
affecting card state is far more dangerous.

We now show how to expand the above oracle into a partial-key dictionary
attack mechanism: using this approach, we can rapidly extract the key from any
encrypted data field in a secure message, one byte at a time. In our explanation,
we use [...] to denote hex notation of a single 8 byte block. Here is the
algorithm:

ExtractKey
(
{K1}KM/T

)
:

1. prepare 256 plaintext blocks of the form [0000 0000 0000 00yy] where 00
≤ yy ≤ ff.

2. use EncryptionOracle on all of 256 plaintext blocks to generate a dictionary
of 256 ciphertexts indexed by the ciphertext: {∀yy, 00 ≤ yy ≤ ff : (c, yy)}.

3. given any secure messaging key {K2}KM/SMSG , make an API call as follows:

[0000 0000 0000 0000], offset = 7, {K1}KM/T , {K2}KM/SMSG −→ c

4. compare c against the dictionary of ciphertext-indexed bytes. The match
yields the first byte of the key, call it aa.

5. in order to discover the next byte of the key, repeat the process with a
dictionary built from 256 plaintext blocks of the form 0x000000000000aayy,
with an offset of 6. This will yield the 2nd byte bb of K1. By continually
shifting the key over by one block, we can extract the entire key, one byte
at a time.

For a k-byte key, it takes 257k queries to extract the whole key: 256 to build
up each dictionary, and one more query to identify the specific key byte. Thus
a DES key can be extracted in 2056 queries, while a two-key 3DES key can be
extracted in 5112 queries. With such an attack, a key update message between
bank and card could be eavesdropped, and then a cloned chip card produced,
or PINs could be discovered at will. It is interesting to see that while there is
nothing wrong with the concept of a secure message in the EMV standard, the
flexibility and extensibility requirements of the protocl have made it difficult
to implement in an API. It seems IBM chose to make a general-purpose API
command, which supported arbitrary secure messages, but unfortunately was
also open to abuse.

46 B. Adida et al.

00000000

00000001

000000fe

000000ff

.

.

.

00000000

Encryption
Oracle

e(00)

e(01)

e(fe)

e(ff)

.

.

.

e(k1)

offset

K

Fig. 2. In the key-shifting attack, a 256-element dictionary is built up for each byte of
the key that we want to check

4 Phishing with Chips

Sections 2 and 3 show that EMV users must brace themselves for live deploy-
ment of upgraded skimming attacks, as well as inevitable implementation issues
with the protocols coming out of the woodwork. But what of blue-sky future
attacks, assuming practical measures are found to ameliorate the problems of
eavesdropping and back-end attack?

The term phishing may have arisen in an internet context, particularly to
capture online banking details, but conventional payment systems have been
subject to exactly the same social-engineering tricks for some time – by both post
and telephone. These include postal redirection scams, unauthorised re-sale (and
re-pricing) of another’s service, brazenly phoning up and asking for the customer
PIN or CVV, and extension of fraud opportunity by faking card cancellation or
fraud prevention calls to a customer. But now consider the introduction of chip
cards, which has primed the customer to be receptive to new technology and
banking requirements with little explanation. Here is an example scam:

1. Open a dummy bank acount in the name of Bob, stick 100 quid in it. Set
the PIN to 0000.

2. Set up a skimming scam and get some account numbers, or buy simply some
account numbers wholesale. Assume you now have the card number of the
victim, Alice.

3. Prepare a counterfeit card from a fictional credit card company bearing
Alice’s name, but containing Bob’s card details.

4. Send the card to Alice, purporting to be a free offer “GBP2000 of credit,
and 100 quid pre-charged. Your initial PIN is 0000. Be sure to change it to
a memorable number as soon as possible.”

Phish and Chips 47

5. Wait for Alice to use her free card. Now phone up and request PIN re-advice.
6. When PIN re-advice arrives, it will come to an address under your control,

you now have both Alice’s PIN (step 5) and her card number (step 2).

The advantage of this scam is that it requires no ability to counterfeit cards,
however if opening an account with false name and address is possible the crim-
inal might be better off simply abusing this card straight away. But it highlights
the receptiveness of customers to being sent fresh instructions. Consider now
how this scam could be improved if the card sent to a customer was sabotaged:

1. Open several bank accounts in false names, F1...Fn. Stick a small float in
each (£50–£100 quid). Alternatively apply for several credit cards.

2. Select a target individual Alice, whose address you know.
3. Create a counterfeit card bearing Alice’s name, but with an evil smartcard

chip on board running your custom firmware. Tell alice that this card replaces
her existing one, which she should cut up.

4. When Alice first uses this card, the evil chip will receive her true PIN from
the POS terminal in the clear. It now must signal this back to the bad guys
using a covert channel through the POS network.

5. Basically, over the next seven days or so, whenever the evil chip detects it
is being used for a low value transaction, it switches its identity to assume
one of the false identities F1...Fn.

6. The 14 or so bits of information in the PIN are transmitted through this
covert chanel of the choice of false identity, and the timing information about
which day and hour the identity is switched to. The card has a rough im-
pression of the passage of time from logging the transaction details.

7. The bad guys use internet banking to watch the transaction logs of accounts
F1...Fn and from this receive Alice’s PIN. They now make up a magstripe
of Alice’s card and start raiding her account.

Banks have gone to great effort and expense to prevent chip sabotage during the
personalisation process, yet a phishing attack provides a perfect solution and
bypass of this security – send the customer a sabotaged card and tell her to
throw away her old one. Should the fraudsters desire that Alice’s card remains
fully operational, they need only acquire a legitimate chip through fraudulent
means, and embed it in the smartcard in addition to the sabotaged chip. This
real chip can then periodically be called upon, for instance if the sabotaged chip
wishes for an expensive purchase to succeed.

The key benefit of this scam over brazen solicitation of a PIN (for instance
by phone) is that it uses a route through the valid and existing bank network
to add the appearance of validity to the scam. The advantage of using choice
of account to charge to as a covert channel is that the criminals can collect the
resulting PIN data remotely via the internet. A less intricate approach could be
to encode the PIN in transaction data which is written onto the paper receipt
upon payment (for instance into the application preferred label field, or trans-
action certificate). The fraudsters then simply raid the garbage of their target
customer, or discarded receipts from a local store in the target area of the scam.

48 B. Adida et al.

Given the transaction data could be routed anywhere, the card could in fact
contact a foreign mafia-controlled bank, where an insider simply reads out the
PIN chosen.

5 Conclusions

EMV is a massive and complex protocol suite. To get a proper understanding of
where the real security threats are, we must consider all the protocols together.
Some of these protocols are conventional cryptographic protocols, such as the
secure messaging standard; some are Security APIs, such as the interface to the
EMV-compliant HSM, and the API to the smartcard itself. Thirdly, some are
human protocols, rules and procedures for authenticating, and communicating
secrets to humans. Finally there is the economic aspect, where there are not
protocols as such, but there are conscious design decisions which manipulate the
threat surface by affecting the cost of attack.

This paper has shown that every aspect of EMV needs to have attention paid
to it if the system is going to have the desired security properties. It can hopefully
encourage other designers and analysts to look at the big picture and the context
of a specific protocol before making a crucial decision. The European banks have
a very tough goal if they are trying to wipe out banking fraud; if they are willing
to accept some failure modes, it is just as important that when these cracks
do appear, they appear in the right places. The specific examples detailed here
indicate that the system may already have unexpected failure modes: maybe
controlling breakdown of a complex system is an even harder challenge than
making one that is totally secure!

Acknowledgements

The author would like to thank George Danezis for useful ideas and discussion in
relation to phish and chip scams; the suggestion to encode PIN data in receipts
from transactions is due to him.

References

1. Anderson, R., Bond, M.: The Man-in-the-Middle Defence. In: Christianson, B., et al.
(eds.) Security Protocols 2006. LNCS, vol. 5087, pp. 149–152. Springer, Heidelberg
(2006)

2. Adida, B., Bond, M., Clulow, J., Lin, A., Anderson, R., Rivest, R.: On the Security
of the EMV Secure Messaging API. To appear in Security Protocols Workshop
(2007)

	Phish and Chips
	Introduction
	Eavesdropping and Relay Attacks
	Eavesdropping POS Terminals
	Smartcard Relay Attacks

	Back-End API Attacks
	EMV Secure Messaging in the IBM CCA
	Construction of an Encryption Oracle
	Extracting Keys

	Phishing with Chips
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

