
Piecemeal Graph Exploration by a Mobile Robot

(Extended Abstract) *

Baruch Awerbucht Margrit Betke Ronald L. Rivest Mona Singb

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

Abstract

V1’e study how a mobile robot can piecemeal

learn an unknown environment. The robot’s

goal is to learn a complete map of its envi-

ronment, while satisfying the constraint that

it must return every so often to its starting

position (for refueling, say). The environment

is modelled as an arbitrary, undirected graph,

which is initially unknown to the robot. We

assume that the robot can distinguish vertices

and edges that it has already explored.

JVe present a surprisingly efficient algorithm

for piecemeal learning an unknown undirected

graph G = (V, E) in which the robot explores

every vertex and edge in the graph by travers-

ing at most O(E + Vlt”( 1) ) edges. This nearly

linear algorithm improves on the best previ-

ous algorithln, in which the robot traverses at

most O(E + V-2) edges.

JVe also give an application of piecemeal learn-

ing to the problem of searching a graph for a

“treasure”.

*We gratefully acknowledge support from NSF grant

CCR-9310888, ARO grant DAAL03-86-K0171, NSF grant
9z171)41.ASC, Air Force Contract TN DGAFOSR.86.0078,

ARPA/Army contract DABT63-93-C-0038, NSF con-
tract 9114440 -CCR, DARPA contract NOOO14-J-9Z.1799,

ARPA/ONR contract Nooo I4-92-J-131o, the Siemens Cor-
poration, and a special grant from IBM. The au-
thors can be reached at barucht!blaze. cs. jhu. ectu,
margrit@lcs .mit. edu, rivest@theory. lcs .mit. edu, and
monat?theory. lcs .mit . edu.

t Also at Johns Hopkins University, Baltimore, MD 21218.

1 Introduction

Environment learning and algorithmic motion planning

for robots have recently become active research areas.

The goal is to find efficient algorithms for a robot to

learn about or navigate in its environment. Such al-

gorithms are now useful in practice: there are working

meal delivery robots in hospitals [15], and vehicles that

navigate autonomously on highways [4]. h~ore formal

theoretical approaches to these problems have also been

studied extensively (e.g., [20, 10, 22, 5]).

lVe study the problem of piecemeal learn~ng of an un-

known environment [8]. The robot’s goal is to learn

a complete map of its environment while satisfying the

p2ecemeal constratnf that learning must be clone “a piece

at a time)” with the robot returning to the starting

point s after each learning phase. Why might mobile

robot exploration be done piecemeal? Robots may ex-

plore environments that are too risky or costly for hu-

mans: the inside of a volcano (e.g., CMU’S Dante II

robot) or the surface of Mars. The robot’s hardware

may be too expensive or fragile to stay long in danger-

ous conditions. Thus, it may be best to organize the

learning into phases, allowing the robot, to return to s

before it breaks down or runs out of power. At the start

position s, the robot can cool off, recharge, or drop off

samples collected.

Approaches to modelling a robot’s environment come

from graph theory, computational geometry, omline al-

gorithms, and the theory of finite automata. The model

used here was introduced by Betke, Rivest, and Singh [8].

The robot’s task is to learn an unknown environment

rnodelled as an undirected graph G = ( l’, E) in a piece-

meal manner. The robot’s efficiency (or running time)

is measured in terms of the number of edges traversed,

The main difficulty in our work lies in designing efficient,,

but analyzable} robot exploration al~orithms. \\Te first

give a simple algorithm tila,t runs in ‘0( E + 1“15 ) time.
Permission to make digital/lltrd copies of all or pzrt of this material with- We then improve this algorithm and give an almost lin-
mt fee is granted provided tlxit the copies are not m~de or distributed

ear time algorithm: it achieves O(E + 1’1+0( L) ) running
‘or pro tit or commercial advantage, the ACM copyright/sewer
]otice, the title of the publication and its date appear, and notice is given time. The most efficient previously known algorithm

hat copyright is by permission of the Association] for Comt~uting Machinery, has O(E + I’z) running time.
nc. (ACM). To copy otherwise, to republis]l ,to post on servers or to
edistribute to lists, requires specific permission red/or fee. A robot can explore grid-graphs with rectangular obsta-

;OLT’ ’95 Santa Cmz, CA USA(Q 1995 ACM 0-89723-5/95/0007. .$3.50 cles in a piecemeal manner in linear time, if the robot IS

321



given a bound on the number of edges it may traverse in

each learning phase (Betke, Rivest, and Singh [8]). We

extend these results to show that the robot can learn

any undirected graph piecemeal in almost linear time.

It is open whether arbitrary, undirected graphs can be

learned piecemeal in linear time.

The piecemeal constraint is most naturally satisfied by

requiring the robot to explore in a near breadth-first

manner, so that it is never much further away from

the start vertex s than necessary to visit any unex-

plored vertex. In this manner, returns to s are efficient.

Breadth-first search (BFS) on unknown graphs is also

an important problem in its own right, with many ap-

plications. We consider one such application, treasure

hunting, where the goal is to find a treasure (or a lost

child, or a particular landmark) that is believed to be

near s. If the robot knows that the treasure is close

to its goal location, it should explore in a breadth-first

manner from its current position.

BFS is a classic technique for searching graphs [19, 18,

11]. However, standard BFS is efficient only when the

robot can efficiently switch or “teleport” from expand-

ing one vertex to expanding another. In contrast, our

model assumes a more natural scenario where the robot

must phys~cally move from one vertex to the next. We

change the classical BFS model to a more difficult tele-

port-free exploration model, and give efficient approxt-

mat e BFS algorithms where the robot does not move

much further away from s than the distance from s to

the unvisited vertex nearest to s.

The teleport-free BFS algorithms we first present never

visit a vertex more than twice as far from s as the near-

est unvisited vertex is from s. Our final teleport-free

BFS algorithm satisfies the stronger condition that if

the closest unvisited vertex to s is distance 6 away, the

robot is never more than 6 + o(6) away from s.

For the treasure hunting problem, if the treasure is at a

vertex that has shortest path distance &T away from s,

then the robot traverses at most O(E + VI+”(l)) edges,

where E and V are the number of edges and vertices

within radius A = &’ + U(6T ) from s. In contrast, we

give an example to show that if the robot exactly satis-

fies the traditional BFS constraint (i.e., it cannot move

further away from s than the unvisited vertex nearest

to s), then it may traverse up to 0(E’2) edges. Our fi-

nal treasure hunting algorithm is also a solution to the

piecemeal learning problem.

Previous work

Many researchers have studied problems in environment

learning and robot motion planning. Papadimitriou and

Yanakakis [20] developed one of the first models for ex-

ploring unknown environments. They show how to find

a shortest path in an unknown, undirected graph. Deng

and Papadimitriou [13] and Betke [6] address the prob-

lem of learning an unknown directed graph. Bender

and Slonim [5] show how two cooperating robots can

learn a directed graph. Rivest and Schapire [22] model

the robot’s unknown environment by a deterministic

finite automaton. They describe algorithms that effi-

ciently infer the structure of the automaton through ex-

perimentation. Deng, Kameda, and Papadimitriou [12]

consider how to learn the interior of a two-dimensional

room. Blum, Raghavan, and Schieber [10] consider a

robot navigating in an unknown two-dimensional geo-

metric terrain with convex obstacles. Bar-Eli, Berman,

Fiat, and Yan [3] give an efficient algorithm for reach-

ing the center of a two-dimensional room with obstacles.

Betke [7] and Kleinberg [17] address the problem of lo-

calizing a mobile robot in its environment. Blum and

Chalasani [9] consider the problem of finding a “k-trip”

shortest path in the environment. There are many other

related papers in the literature (e.g., [16, 14]), Rae,

Kareti, Shi, and Iyengar [21] give a survey of work on

“robot navigation in unknown terrains. ”

Our techniques are inspired by the work of Awerbuch

and Gallager [1, 2]. We observe that our learning model

bears some similarity to the as~nchronous distributed

model. This similarity is surprmng and has not been

explored in the past.

2 Model and statement of main results

We model the robot’s environment as a finite undirected

graph G = (V, E) with a distinguished start vertex s.

The graph is initially unknown to the robot. Each ver-

tex in the graph represents an accessible location, and

each edge represents a connection between adj scent lo-

cations. During each step of exploration, the robot

moves from its current location to an adj scent location;

it is not allowed to “teleport” from one vertex to another

distant vertex. The robot can recognize previously vis-

ited vertices. The robot can distinguish the edges inci-

dent to its current vertex and it knows which edges it

has traversed already, but it has no vision or long-range

sensors. The robot incurs a cost only for traversing

an edge; thinking and path planning (cornputatlon) are

free.

We consider two closely related constraints on the ex-

ploration: the “piecemeal constraint” to model learning

unknown environments in phases, and the “approximate

BFS constraint” to model exploring an unknown graph

in order to find a treasure.

PIECEMEAL LEARNING: The robot’s goal in piecemeal

learning is to explore its entire (unknown) environment,

while satisfying the piecemeal constraint that it must

return every so often to its starting point. To assure

that the learner can reach any vertex in the graph, do

some exploration, and then get back to the start vertex,

we assume the robot may traverse (2 + a)r edges in one

exploration phase, where a > 0 is some constant and r

is the radrus of the graph. The radius of the graph is

the maximum of all shortest path distances between s

and any vertex in G. We assume that the radius of the

graph is known to the robot.

322



We say an exploration is eficxently interruptible if the

robot always knows a path of explored edges of length

at most R hack to s.

Theorem 1 An efficiently interruptible algorithm for

explortng an unknown graph G = (V, E) wath n ver-

tzces and m edges that takes tzme T(n, m) can be trans-

formed tnto a ptecemeal learning algorithm that takes

ttme O(T(n, m)).

The proof of this theorem is similar to one shown by

Betke, Rivest, and Singh in a previous paper [8].

All the algorithms we present in this paper are efficiently

interruptible, and thus give efficient piecemeal learning

algorithms for undirected graphs. Our main theorem is:

Theorem 2 Paecemeal learntng of an arbitrary undi-

rected graph G = (V, E) can be done tn time O(E +
Vl+u(l)

)

Proof sketch: Following the RECURSIVE STRIP algo-

rithm, given in Section 5, the robot always knows a

path from its current location back to the start vertex

of length at most the radius of the graph. The running

time of this algorithm is 0(11+ I~2°t~10g v 10glOg~’J) =

O(E + Vl+O(lJ ). By Theorem 1, this algorithm can be

interrupted efficiently to give a piecemeal learning algo-

rithm. ❑

TREASURE HLTNTING: If the robot’s goal is to explore

an unknown environment in order to find a treasure that

is believed to be near s, then the robot should explore

in a breadth-first manner.

In traditional BFS, the robot may not move further

away from the source than the unvisited vertex nearest

to the source. At any given time in the algorithm, let A

denote the shortest-path distance from s to the vertex

the robot is visiting, and let d denote the shortest-path

distance from s to the vertex nearest to s that is as yet

unvisited. With traditional breadth-first search we have

A <6 at all times. With teleport-free exploration, it is

generally impossible to maintain A <6 without a great

loss of efficiency:

Lemma 3 A robot which matnta~ns A ~ 6 (such as a

traditional BFS) may traverse Cl(Ez) edges.

Proofi Consider a graph with vertices {–n, –n + 1, . . ..

–l,O,l, 2,. ..,l, n},}, where s=O and edges connect

consecutive integers, To achieve A < 6, a teleport-free

BFS algorithm would run in quadratic time, traveling

hack and forth from 1 to –1 to –2 to 2 to 3 . . . . ❑

Sections 3, 4, and 5, maintain this constraint. Our final

algorithm TREASURE-SEARCH, given in Section 6, sat-

isfies the stronger condition A = &+ o(i). Note that this

algorithm is also efficiently interruptible and thus can

also be used to solve the piecemeal learning problem;

however, it is more complicated. Our main theorem

about treasure hunting is:

Theorem 4 Given an unknown graph wtth a treasure

at distance bT from s, a robot can jind the treasure whtle

getttng at most dwtance A = 6T + o(6T) away from the

start vertex, with an algortthm of running tame O(E +

v~~”~~~), where E and V are the total number of dtsttnct

edges and vertzces within radzus A from the start vertex.

Proof sketch: Algorithm TREASURE-SEARCH given in

Section 6 satisfies the theorem. We discuss the proper-

ties of this algorithm in Section 6. ❑

3 An exploration algorithm:

STRIP-EXPLORE

This section describes an efficiently interruptible algo-

rithm for undirected graphs with running time O(E +

Vl 5). It is based on breadth-first search.

A layer in a BFS tree consists of vertices that have the

same shortest path distance to the start vertex. A fron-

tzer uertez is a vertex that is incident to unexplored

edges. A frontier vertex is ezpan ded when the robot, has

traversed all the unexplored edges incident to it.

The traditional BFS algorithm expands frontier vertices

layer by layer. In the teleport-free model, this algorithm

runs in time O(E + rV), since expanding all the vertices

takes time O(E), and visiting all the frontier vertices

on layer i can be performed with a depth-first search

of layers 1 . . . i in time O(V), and there are at most r

layers. The procedure LocAL-BFS describes a version

of the traditional BFS procedure that has been nlod-

ified for our teleport-free BFS model in two respects.

First, the robot does not relocate to frontier vertices

that have no unexplored edges. Second, it only explores

vertices within a given distance-bound L of the given

start vertex s. (The first modification, while seemingly

straightforward, is essential for our aualysls of our more

complex algorithms that use LocAL-BFS as a subrow

tine at various source vertices). A procedure call of the

form LocAL-BFS(S, r), where s is the start vertex of

the graph and r is its radius, would cause the robot to

explore the entire graph.

Awerbuch and Gallager [1, 2] give a distributed BFS

algorithm which partitions the network in strips, where

Given this lower bound, we solve the treasure hunting
each strip is a group of L consecutive layers. (Here L is

problem efficiently while maintaining the approxnnate
a parameter to be chosen. ) All vertices in strip i — 1 are

BFS constraint that the robot is never more than twice
expanded before any vertices in strip i are expanded.

Their algorithms use as a subroutine breadth-first type
as far from s as is the nearest unvisited vertex from s

(i.e.. A < 26). Our initial ahzorithms STRIP-EXPLORE.
searches with distance L.

ITERATI;E-STRIP, and REC;RSIVE-STRIP, described in Our algorithm, STRIP-EXPLORE, searches in strips in a

323



LocAL-BFS(S, L)

1. fori=Oto L–ldo

2. let verts = all vertices at distance i from s

3. for each u E verts do

4. if u has any incident unexplored edges

5. then

6. relocate to u

7. traverse each unexplored edge

8. incident to u

9. relocate to s

new way. See Figure 1. The robot explores the graph

in strips of width L. First the robot does LOCAL-

BFS(S, L) to explore the first strip. It then explores

the second strip as follows. Suppose there are k frontier

vertices VI, Vz, . . . . v~ in layer L; each such vertex is a

source vertex for exploring the second strip. A naive

way for exploring the second strip is for the robot for

each i, to relocate to vi, and then find all vertices that

are within distance L of v; by doing a BFS of distance-

bound L from v, within the s~cond s~rip. The robot thus

traverses a forest of k BFS trees of depth L, completely

exploring the second strip. The robot then has a map

of the BFS tree of depth L for the first strip and a map

of the BFS forest for the second strip, enabling it to cre-

ate a BFS tree of depth 2L for the first two strips. The

robot continues, strip by strip, until the entire graph is

explored.

frontier depth r

source
verflces

=.,.............”””!

s

strip of depth L

Figure 1: In the naive algorithm, the shaded areas are

retraversed completely. In STRIP-EXPLORE, the shaded

areas are passed through more than once only if neces-

sary to get to frontier vertices.

The naive algorithm described above is inefficient, due

to the overlap between the trees in the forest at a given

level, causing portions of each strip to be repeatedly

re-explored. The algorithm STRIP-EXPLORE presented

below solves this problem by using the LocAL-BFS pro-

cedure as the basic subroutine, instead of using a naive

BFS. (See Figure 2.)

In STRIP-EXPLORE, the robot searches in a breadth-

first manner, but ignores previously explored territory.

The only time the robot traverses edges that have been

previously explored is when moving to a frontier vertex

it is about to expand. This results in retraversal of some

edges in previously explored territory, but not as many

STRIP-EXPLORE(S, L, r)

1. numstrzps = [r/Ll

2. sources = {s}

3. for i = 1 to numstrtps do

4. for each u Esources do

5. relocate to u

6. LocAL-BFS(U, L)

7. sources = all frontier vertices

as in the naive algorithm,

b

%!%

c:. ,0

d ‘ ““’ “:::;. - .0

‘2 e-.-- .f* . . . .. ..* . . . . . . . . ..-.” -. . . ...-...*

Figure 2: Contrasting BFS and Local-BFS: Consider a

BFS of depth 5 from SI, followed by a BFS of depth 5

from Sz. (The depth of the strip is L = 5.) The BFS

from Sz revisits vertices a, b, c, d, e. On the other hand,

if the BFS from S1 is followed by a LocAL-BFS from

S2, then it only revisits d, c, e. After edge (~, d) is found,

vertex e is a frontier vertex that needs to be expanded,

Theorem 5 STRIP-EXPLORE runs tn O(E+T’l 5, time,

Proofi First we count edge traversals for relocating

between source vertices for a given strip. For these relo-

cations, the robot can mentally construct a tree in the

known graph connecting these vertices, and then move

between source vertices by doing a depth-first traversal

of this tree. Thus the number of edge traversals due to

relocations between source vertices for this strip is at

most 2V. Since there are [r/Ll strips, the total num-

ber of edge traversals due to relocations between source

vertices is at most 2rV/L + 2V.

Now we count edge traversals for repeatedly executing

the LocAL-BFS al~orithm. First. for the robot to ex-

pand all vertices an”d explore all edges, it traverses 2E

edges. Next, each time line 9 of procedure LocAL-BFS

is called, at most L edges are traversed. To account for

relocations in line 6 of procedure LocAL-BFS, we use

the following scheme for “charging” edge traversals. Say

the robot is within a call of the LocAL-BFS algorithm

It has just expanded a vertex u and will now relocate to

a vertex v to expand it. Vertex v is charged for the edges

traversed to relocate from u to v. (We are only consider-

ing relocations within the same call of the LocAL-BFS

algorithm; relocations between calls of the LO CAL-B FS

al~orithm were considered above. ) Source vertices are

not charged anything. Moreover, the robot can always

relocate from u to v by going from u to the source vertex

324



ITERATIVE-STRIP(S, r)

1. fori=ltofido

2. for each source vertex u in strip i do

3. relocate to u

4. BFS from u to depth @, but do not enter previously explored territory

5. while there are any active connected components iterate

6. for each active connected component c do

7. repeat

8. let VI, UZ, r13, . . . be active frontier vertices exclusively in c

9. with smallest depth among active frontier vertices in c

10. relocate to each of VI, U2, v3, . . .. and expand

11. until no more active frontier vertices exclusively in c

12. determine new and active connected components

of the current local BFS, and then to v, traversing at

most 2L edges. Thus, each vertex is charged at most 2L

when it, is expanded. LocAL-BFS never relocates to a

vertex v unless it can expand vertex v (i. e., unless v is

aclj scent to unexplored edges). Thus, all relocations are

charged to the expansion of some vertex, and the total

number of edge traversals due to relocation is at most

2LV.

Thus the total number of edge traversals is at most

2rV/.L + 2V + 3LV + 2E, which is O(rV/L + LV + E).

When L is chosen to be X, this gives O(E + V15) edge

traversals. ❑

Procedure STRIP-EXPLORE) and the generalizations of

it given in later sections, maintain that A < 26 at all

times; the worst case is while exploring the second strip.

4 Iterative strip algorithm

We now describe ITERATIVE-STRIP, an algorithm sim-

ilar to the STRIP-EXPLORE algorithm. It is an effi-

ciently interruptible algorithm for undirected graphs in-

spired by Awerbuch and Gallager’s [1] distributed it-

erative BFS algorithm. Although its running time of

0(( Vl 5 + E) log V) is worse than the running time of

STRIP-EXPLORE, its recursive version (described in Sec-

tion 5) is more efficient. (It is not clear how to recur-

sively implement STRIP-EXPLORE as efficiently, because

the trees in a strip are not disjoint.)

With ITERATIVE-STRIP, the robot grows a global BFS

tree with root s strip by strip, in a manner similar to

STRIP-EXPLORE. Unlike STRIP-EXPLORE, here each

strip is processed several times before it has correctly

deepened the BFS tree by X. We next explain the

algorithm’s behavior on a typical strip by describing

how a strip is processed for the first time, and then for

the remaining iterations.

In the first iteration, a strip is explored much as in

STMP-EXPLORE. The robot explores a tree of depth V

from each source vertex, by exploring in breadth-first

manner from each source vertex, without re-exploring

previous trees. Whenever the robot finds a collision

s

depth D

Figure 3: The iterative strip algorithm after the first it-

eration on the fourth strip. Two connected components

c1, C2 have been explored. The collision edges el and

ez connect the first three approximate BFS trees. The

dashed line shows how source vertices SI, Sz, S3 connect

within the strip. There are three active frontier vertices

with depth less than D + fi.

edge connecting the current tree to another tree in the

same strip, it does not enter the other tree. Unlike

STRIP-EXPLORE, the robot does not traverse explored

edges to get to the active frontier vertices on other trees.

Therefore, after the first iteration, the trees explored are

approximate BFS trees that may have frontier vertices

with depth less than W from some source vertex. These

vertices become active frontier vertices for the next it-

eration. Thus, the current strip may not yet extend the

global BFS tree by depth fi, so more iterations are

needed until all frontier vertices are inactive and the

global BFS tree is extended by depth @ (see Figure 3).

In the second iteration (see Figure 4), the robot uses the

property that two trees connected by a collision edge

form a connected component within the strip. (The

graph to be explored is connected, and thus forms one

connected component; but we refer to connected conl-

ponents of the explored portion of the graph contained

within the strip. ) The robot need not traverse any edges

outside the current strip to relocate between these ac-

tive frontier vertices in the same connected component.

In the second and later iterations, the robot works on

one connected component at a time.

The robot explores active frontier vertices in one con-

nected component as follows. It computes (mentally) a

325



flnlshed strl

s

depth D

depth D +fi

Figure 4: The iterative strip algorithm after the sec-

ond iteration Now the circled vertices which were ac-

tive frontier vertices at the beginning of the iteration

are expanded. One of the expansions resulted in a colli-

sion edge. Now the strip consists of only one connected

coinponent (shaded area). There are six frontier ver-

tices which become source vertices of the next strip. All

frontier vertices have depth D + @.

spanning tree of the vertices in the current strip. This

spanning tree lies within the strip. Let d be the least

depth of any active frontier vertex in the component

from a source vertex. It visits the vertices in the strip

in an order determined by a DFS of the spanning tree.

As it visits active frontier vertices of depth d, it expands

them. It then recomputes the spanning tree (since the

component may now have new vertices) and again tra-

verses the tree, expanding vertices of the appropriate

next depth d’. Traversing a collision edge does not add

the new vertex to the tree, since this vertex has been

explored before. This process continues (at most W

times) until no active frontier vertex in the connected

component has distance less than ~ from some source

vertex in the component.

The robot handles each connected component in turn,

as described above. In the next iteration it combines

the components now connected by collision edges, and

explores the new active frontier vertices in these com-

bined components. Lemma 6 states that at most log V

iterations cause all frontier vertices to not be active any

more; then the only active frontier vertices are the new

sources of the next strip. The proofs of Lemma 6 and

Theorem 7 are omitted here for lack of space.

Lemma 6 At most log V iterat~ons per strip are need-

ed to erplore a sfnp and extend the global BFS tree by

depth p. ❑

Theorem 7 ITERATIVE-STRIP runs zn tzme O((E +

VI S)log v). ❑

5 The recursive strip algorithm

This section describes an efficiently interruptible algo-

rithm RECURSIVE-STRIP, which gives a piecemeal learn-

ing algorithm with running time O(E + VI+”(l)). R~-

CURSIVE-STRIP is the recursive version of ITERATIVE-

STRIP; it provides a recursive structure that coordinates

the exploration of strips, of approximate BFS trees, and

of connected components in a different manner. The

robot still, however, builds a (global) BFS tree frolm

start vertex s strip by strip. The robot expands ver-

tices at the bottom level of recursion.

depth r

depth Y ........ -“-’i

4“””””~
sttip of depth L ““’’”’””’’’’-.....j

Figure 5: The recursive strip algorithm processing

an approximate BFS tree from source vertex S? to

depth ‘d~ -1 = L. Recursive calls within the tree” are

of depth dh–2 = L’.

In RECURSIVE-STRIP, the depth of each strip depends

on the level of recursion (see Figure 5). If there are k lev-

els of recursion, then the algorithm starts at the top level

by splitting the exploration of G into V/dk _ ~ strips of

depth dk-l. Each of these strips is split into dk_l/dk_~

searches of strips of depth dk _ ~, etc. We have V = dk >

dk-~>... >dl>do=l.

Each recursive call of the algorithm is passed a set of

source vertices sources, the depth to which it must ex-

plore, and a set T of all vertices in the strip already

known to be less than distance depth from one of the

sources. The robot traverses all edges and visits all ver-

tices within distance depth of the sources that have not

yet been processed by other recursive calls at this le~-el.

RECURSIVE-STRIP( {S}, r=, {s}) is called to explore the

entire graph.

At recursion level i, the algorithm divides the explo-

ration into strips and processes each strip in turn, as fol-

lows. Suppose the strip has 1 source vertices VI, ., ., Z1.

The strip is processed in at most log 1 = O(log V) it-

erations, In each iteration, the algorithm partitions T

into maximal sets 7’1, T2, . . . . Tk such that each set is

known to be connected within the strip. Let SC denote

the source vertices in T,. A DFS of the spanning tree

of the vertices T gives an order for the source vertices

in S’l , S2, ., S~; this spanning tree is used for efficient

relocations between these source vertices. Note that all

source vertices are known to be connected through the

spanning tree of the vertices in T, but they might not

be connected within the substrips. Since relocations

between the vertices in S. in the next level of recursion

use a spanning tree of T., for efficiency the vertices of TC

must be connected within the strip. After partitioning

the vertices into connected components within the strip,

for each connected component TC, the robot relocates

(along a spanning tree) to some arbitrary source vertex

in SC. It then calls the algorithm recursively with SC,

326



RECURSIVE-STRIP (sources, depth, T)

1. ifdepth = 1

2. then let VI, V2, . . . . v~ be the depth-first ordering of sources in spanning tree

3. fori=ltokdo

4. relocate to vi

5. if vi has adjacent unexplored edges then traverse v~’s incident edges

6. T = T U {newly discovered vertices}

7. ret urn

8. else determine next depth

9. number-of-strips h depthjnext-depth

10. for i = 1 to number-of-strips do

11. determine set of source vertices

12. for j = 1 to number-of-iterations do

13. partition vertices in T into maximal sets TI, T2, . . . . Tk such that

14. vertices in each TC are known to be connected within strip i

15, for each Tc in suitable order do

16. let SC be the source vertices in TC

17. relocate to some source s E S.

18. RECURSIVE-STRIP( SC, nezt-depth, T,)

19. T= TuTC

20. relocate to some s E sources

21. return

the depth of the strip, and the vertices T= which are

connected to the sources S= within the strip.

The remaining iterations in the strip combine the con-

nected components until the strip is finished. Then the

robot continues with the next strip in the same level of

recursion. Or, if it finished the last strip, it relocates

to its starting position and returns to the next higher

level of recursion. The proof of the following theorem is

omitted for lack of space.

Theorem 8 RECURSIVE-STRIP runs in time O(E +

Vl+o(l )). •1

6 Treasure Hunting

We now consider an application of the piecemeal learn-

ing problem where our goal is to find a treasure in an

unknown, potentially infinite graph G = (V, E). We

give the procedure TREASURE-SEARCH, which uses the

RECURSIVE-STRIP algorithm as a subroutine. If the

treasure is at a location which is distance ($T away from

the source vertex, this algorithm maintains the con-

dition that the robot is never further from the source

than A, where A < 6T + o(dT ). Procedure TREASURE-

SEARCH traverses O(E+V1+”(lI) edges, where E and V

are the tot al number of distinct edges and vertices within

radius A from the source.

The robot explores the graph for the treasure in phases.

In each phase i, the robot calls RECURSIVE-STRIP to ex-

plore a strip in the graph. The size of the strips changes

over time. The change at phase i depends on Ci = 11~.

Initially, the robot explores the graph out to distance

TREASURE-SEARCH(S)

1. i=o
2. 7-0=1

3. Do until treasure is found:

4. i=i+l

5. f~ = l/~

6. r~ =7-–1 .(l+e~)

7. let S be the set of source vertices distance

8. ri– 1 away from s

9. RECURSIVE-STRIP (S, r, – ri_l, S)

rl = 1 + c1. Next, the robot extends its exploration by

a factor of 1 + C2. That is, the size of the next strip is

(1 +Cl)(l +62) – (1 +El), and the robot has learned the

graph out to distance r2 = (1+ Cl)(l + C2). After ex-

tending the next strip, the robot has learned the graph

out to distance r3 = (1 + Cl)(l + C2)(1 +C3), and so on.

The proof of correctness of this procedure is omitted

due to space constraints.

7 Open problems

We have presented an efficient O(E+ Vlt”[ll) algorithm

for piecemeal learning of arbitrary, undirected graphs.

The only lower bound known for this problem is the

trivial linear bound f2(E+V). It is open whether there is

a linear-time algorithm for piecemeal learning of general

graphs.

327



References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

Baruch Awerbuch and Robert G. Gallager. Dis-

tributed BFS algorithms. The 26th Syrnposmm on

Found at~ons of Computer Sctence, pages 250-256,

October 1985.

Baruch Awerbuch and Robert G. Gallager. A new

distributed algorithm to find breadth first search

trees. IEEE Transacitons on Information Theory,

IT-33(3):315-322, 1987.

E. Bar-Eli, P. Berman, A. Fiat, and P. Yan. On-line

navigation in a room. In Symposium on Discrete

Algorithms, pages 237-249, 1992.

R. Behringer and S. Hotzel. Simultaneous estima-

tion of pitch angle and lane width from the video

image of a marked road. In IEEE/RSJ/GI Inter-

national Conference on Intelligent Robots and Sys-

tems, September 1994.

h!ichael A. Bender and Donna K. Slonirn. The

power of team exploration: two robots can learn

unlabeled directed graphs. In Proceedings of the

Thirty- Ftflh Annual Symposium on Foundations of

Computer Sczence, pages 75-85, November 1994.

Margrit Betke. Algorithms for exploring an un-

known graph. Master’s thesis, MIT Depart-

ment of Electrical Engineering and Computer Sci-

ence] February 1992. (Published as MIT Lab-

oratory for Computer Science Technical Report

iMIT/LCS/TR-536, March, 1992).

Margrit Betke and Leonid Gurvits. Mobile robot

localization using landmarks. IEEE/RSJ/GI Inter-

national Conference on Intelligent Robots and Sys-

tems, September 1994. To appear in IEEE Trans-

actions on Robotics and Automation.

Margrit Betke, Ronald Rivest, and Mona Singh.

Piecemeal learning of an unknown environment.

Machtne Learn.mg, 18(2/3):231-254, March 1995.

Avrim Blurn and P. Chalasani. An on-line algo-

rithm for improving performance in navigation. In

Proceedings of the Thtrty-Fourth Annual Sympo-

sium on Foundations of Computer Scaenee, pages

2-11, November 1993.

Avrim Blurn, Prabhakar Raghavan, and Baruch

Schieber. Navigating in unfamiliar geometric ter-

rain, In Proceedings of Twenty- Third ACM Sym-

postum 071 Theory of Computing, pages 494-504.

ACM, 1991.

Thomas H. Cormen, Charles E. Leiserson, and

Ronald L. Rivest. Introduction to Algordhms. MIT

Press/McGraw-Hill, 1990.

iYiaotie Deng, Tiko Kameda, and Christos H. Pa-

padimitriou. How to learn an unknown environ-

ment. In Proceedings of the <32nd Sympostum on

Foundations of Computer Sczence, pages 2!38-303.

IEEE, 1991.

~iaotie Deng and Christos H. Papadimitriou. Ex-

ploring an unknown graph. In Proceedings of the

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

31si Symposzum on Found at~ons of Computer Sct -

ence, volume I, pages 355–361, 1990.

Gregory Dudek, Michael Jenkin, Evangelos Milios,

and David Wilkes. Using multiple markers in graph

exploration. In SPIE Vol. 1195 Mobtle Robots II’,

pages 77-87, 1989.

John Evans. HelpMate~M: An autonomous mo-

bile robot courier for hospitals. In IEEE\RS1/Gl

International Conference on Intelligent Robots and

Systems, September 1994.

Rolf Klein. Walking an unknown street with

bounded detour. Computational geometry: theory

and applications, 1(6):325–351, June 1992. Also

published in The 32nd Symposium on Foundations

of Computer Science, 1991.

Jon M. Kleinberg. The localization problem for

mobile robots. In Proceedings of the Thiriy-Faflh

Annual ,$ymposzum on Foundations of conlpute~

Sctence, pages 521-531, May 1994.

C. Y. Lee. An algorithm for path connection and

its applications. IRE Transactions on Electronic

Computers, EC-10(3):346-365, 1961.

Edward F. Moore. The shortest path through a

maze. In Proceedings of the International Sy171po-

stum on the Theory of Swztchzng, pages 285–292

Harvard ~Jniversity Press, 1959.

Christos H. Papadimitriou and Mihalis Yanakakis.

Shortest paths without a map. Theoret~cal Conl-

puter Sctence, 84:127-150, 1991.

Nagewara S. V. Rae, Srikumar Kareti, Weimin

Shi, and S. Sitharama Iyengar. Robot naviga-

tion in unknown terrains: Introductory survey

of non-heuristic algorithms. Technical Report

0RNL/TM-12410, Oak Ridge National Labora-

tory, July 1993.

Ronald L. Rivest and Robert E. Schapire. Infer-

ence of finite automata using homing sequences. ln-

formatzon and Computation, 103(2):299-347, April

1993.


