
Information and Computation 152, 155�172 (1999)

Piecemeal Graph Exploration by a Mobile Robot*

Baruch Awerbuch

Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218

Margrit Betke

Computer Science Department, Boston College, Chestnut Hill, Massachusetts 02167

Ronald L. Rivest

Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

and

Mona Singh

Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142

We study how a mobile robot can learn an unknown environment in
a piecemeal manner. The robot's goal is to learn a complete map of its
environment, while satisfying the constraint that it must return every so
often to its starting position (for refueling, say). The environment is
modeled as an arbitrary, undirected graph, which is initially unknown to
the robot. We assume that the robot can distinguish vertices and edges
that it has already explored. We present a surprisingly efficient algorithm
for piecemeal learning an unknown undirected graph G=(V, E) in which
the robot explores every vertex and edge in the graph by traversing at
most O(E+V 1+o(1)) edges. This nearly linear algorithm improves on the
best previous algorithm, in which the robot traverses at most O(E+V 2)
edges. We also give an application of piecemeal learning to the problem
of searching a graph for a ``treasure.''] 1999 Academic Press

Article ID inco.1999.2795, available online at http:��www.idealibrary.com on

155 0890-5401�99 �30.00
Copyright � 1999 by Academic Press

All rights of reproduction in any form reserved.

* Most of this work was done while all authors were affiliated with the laboratory of Computer
Science at the Massachusetts Institute of technology. We gratefully acknowledge support from NSF
Grant CCR-9310888, ARO Grant DAAL03-86-K-0171, NSF Grant 9217041-ASC, Air Force Contract
TNDGAFOSR-86-0078, ARPA�Army Contract DABT63-93-C-0038, NSF Contract 9114440-CCR,
DARPA Contract N00014-J-92-1799, ARPA�ONR Contract N00014-92-J-1310, the Siemens Corpora-
tion and a special grant from IBM. E-mail: baruch�blaze.cs.jhu.edu, betke�cs.bc.edu, rivest�theory.
lcs.mit.edu, and mona�wi.mit.edu.

1. INTRODUCTION

We address the situation where a robot must explore an unknown environment.
The robot's goal is to learn a complete map of this environment while satisfying
the piecemeal constraint that the exploration must be done in phases of limited
duration.

Why might mobile robot exploration be done piecemeal? Robots have limited
power, and after some exploration, they may need to recharge or refuel. In addition,
robots are useful for exploring environments that are too risky or costly for humans
to explore, such as the inside of a volcano (e.g., as attempted by CMU's Dante II
robot), or a chemical waste site, or the surface of Mars. In these cases, the robot's
hardware may be too expensive or fragile to stay long in dangerous conditions.
Thus, it may be best to organize the learning into phases, allowing the robot to
return to a start position for refueling and maintenance.

The piecemeal learning problem and the formal model used here were introduced
by Betke, Rivest, and Singh [8]. The robot's environment is modeled as an
unknown graph. The piecemeal constraint is a bound on the number of edges the
robot is allowed to traverse in each exploration phase. In order to assure that the
robot can reach any vertex in the graph and do some exploration, this bound must
allow at least one round trip from the start vertex s to any vertex in the graph. The
robot's efficiency (or running time) is measured in terms of the number of edges
traversed. Betke, Rivest, and Singh [8] show that a robot can explore grid-graphs
with rectangular obstacles in a piecemeal manner in linear time. In this paper, we
extend these results to show that the robot can learn any undirected graph G=
(V, E) piecemeal in almost linear time. We first give a simple algorithm that runs
in O(E+V 1.5) time. We then improve this algorithm and give an almost linear time
algorithm that achieves O(E+V 1+o(1)) running time. The most efficient previously
known algorithm has O(E+V 2) running time. It is open whether arbitrary,
undirected graphs can be learned piecemeal in linear time.

The piecemeal constraint is most naturally satisfied by requiring the robot to
explore in a near breadth-first manner, so that it is never much further away from
the start vertex s than necessary to visit any unexplored vertex. In this manner,
returns to s are efficient. Breadth-first search (BFS) on unknown graphs is also an
important problem in its own right, with many applications. We consider one such
application, treasure hunting, where the goal is to find a treasure (or a lost child,
or a particular landmark) that is believed to be near s. If the robot knows that the
treasure is close to its current location, it should explore in a breadth-first manner
from its current location.

BFS is a classic technique for searching graphs [11, 17, 18]. However, standard
BFS is efficient for exploring unknown graphs only when the robot can efficiently
switch or ``teleport'' from expanding one vertex to expanding another. In contrast,
our model assumes a more natural scenario where the robot must physically move
from one vertex to the next. In this case, if the robot exactly satisfies the tradi-
tional BFS constraint (i.e., it cannot move further away from s than the unvisited
vertex nearest to s), then it may traverse up to O(E 2) edges. Thus, for efficiency
reasons, in the more difficult teleport-free exploration model, our algorithms for the

156 AWERBUCH ET AL.

piecemeal learning problem give approximate BFS algorithms, where the robot does
not move much further away from s than the shortest path distance from s to the
unvisited vertex nearest to s.

In the teleport-free BFS algorithms we first present, the robot never visits a
vertex more than twice as far from s as the nearest unvisited vertex is from s. Our
final teleport-free BFS algorithm, for the treasure hunting problem, satisfies the
stronger condition that if the closest unvisited vertex to s is distance $ away, the
robot is never more than $+o($) away from s. This algorithm is also efficient: if
the treasure is at a vertex that has shortest path distance $T away from s, then the
robot traverses at most O(E+V 1+o(1)) edges, where E and V are the number of
edges and vertices within radius 2=$T+o($T) from s. Our final treasure hunting
algorithm is also a solution to the piecemeal learning problem.

Related Work

Many researchers have studied problems in environment learning and robot
motion planning. Papadimitriou and Yanakakis [19] developed one of the first
formal models for exploring unknown environments. They show how to find a
shortest path in an unknown, undirected graph. Deng and Papadimitriou [13] and
Betke [6] address the problem of learning an unknown directed graph. Bender and
Slonim [5] show how two cooperating robots can learn a directed graphs. Rivest
and Schapire [21] model the robot's unknown environment by a deterministic
finite automaton. They describe algorithms that efficiently infer the structure of
the automaton through experimentation. Deng, Kameda, and Papadimitriou
[12] consider how to learn the interior of a two-dimensional room. Blum,
Raghavan, and Schieber [10] consider a robot navigating in an unknown two-
dimensional geometric terrain with convex obstacles. Bar-Eli, Berman, Fiat,
and Yan [4] give an efficient algorithm for reaching the center of a two-
dimensional room with obstacles. Betke and Gurvits [7], Kleinberg [16], and
Romanik and Schuierer [22] address the problem of localizing a mobile robot
in its environment. Blum and Chalasani [9] consider the problem of finding
a ``k-trip'' shortest path in the environment. There are many other related papers
in the literature (e.g., [14, 15, 20]).

Our techniques are inspired by the work of Awerbuch and Gallager [2, 3]. We
observe that our learning model bears some similarity to the asynchronous distri-
buted message passing model. This similarity is surprising and has not been explored
in the past.

Model and Definitions

This section reviews the piecemeal exploration model introduced by Betke,
Rivest, and Singh [8]. The robot's environment is modeled as a finite connected
undirected graph G=(V, E) with a distinguished start vertex s. Vertices represent
accessible locations. Edges represent accessibility: if [x, y] # E then the robot can
move from x to y, or back, in a single step.

157PIECEMEAL GRAPH EXPLORATION BY A ROBOT

The robot can always recognize a previously visited vertex; it never confuses
distinct locations. At any vertex the robot can sense only the edges incident to it;
it has no vision or other long-range sensors. The robot can distinguish between
incident edges at any vertex. Each edge has a label that distinguishes it from any
other edge. Without loss of generality, we can assume that the edges are ordered.
At a vertex, the robot knows which edges it has traversed already. The robot only
incurs a cost for traversing edges; the time the robot speeds ``thinking and path
planning'' is free (although for all the algorithms in this paper, this planning can be
done in time polynomial in the size of the graph). We also assume a uniform cost
for an edge traversal. We measure the running time of a piecemeal exploration
algorithm in terms of the number of edges traversals made by the robot.

The robot's goal in piecemeal exploration is to explore its entire unknown
environment while satisfying the piecemeal constraint that it must return every so
often to its starting point. The robot is given an upper bound B on the number of
steps it can make (edges it can traverse) in one exploration phase. In order to
assure that the robot can reach any vertex in the graph, do some exploration, and
then get back to the start vertex, we assume B allows for at least one round trip
between s and any other single vertex in G, as well as for some number of explora-
tion steps. More precisely, we assume B=(2+:) r, where :>0 is some constant
and r is the radius of the graph (i.e., the maximum of all shortest-path distances
between s and any vertex in G). Note that our definition of the radius of the graph
is relative to the start vertex s.

Initially all the robot knows is its starting vertex s, the bound B, and the radius
r of the graph. The robot's goal is to explore the entire graph: to visit every vertex
and traverse every edge, minimizing the total number of edges traversed.

We say an exploration is efficiently interruptible if the robot always knows a path
of explored edges of length at most r back to s. All the algorithms presented in this
paper are efficiently interruptible and, using the following theorem, give efficient
piecemeal learning algorithms for undirected graphs.

Theorem 1. An efficiently interruptible algorithm A for exploring an unknown
graph G=(V, E) with n vertices and m edges that takes time T(n, m) can be transformed
into a piecemeal learning algorithm that takes time O(T(n, m)).

Proof. Assume that the radius of the graph is r and that the number of edges
the robot is allowed to traverse in each phase of exploration is B=(2+:) r for
some constant : such that :r is a positive integer. In each exploration phase, the
robot executes :r steps of the original search algorithm A, interrupts its search, and
returns to the start vertex s. At the beginning of the next phase, the robot returns
from s to the appropriate vertex to resume exploration. Then, the robot traverses
again :r edges as determined by the original search algorithm A and returns to s.
Since the search algorithm A is efficiently interruptible, the robot knows a path of
length at most r from s to any vertex in the graph. Thus during any exploration
phase, the robot traverses at most 2r edges for relocation to s and back and :r edges
for new exploration. The total number of edges traversed in each phase is at most

158 AWERBUCH ET AL.

2r+:r=B. Since there are WT(n, m)�(:r)X segments, there are WT(n, m)�(:r)X&1
interruptions, and the number of edges traversals due to interruptions is

\�T(n, m)
:r |&1+ 2r�

T(n, m)
:r

2r

�
2T(n, m)

:
.

Since : is a constant, the total number of edge traversals is still O(T(n, m)). K

BFS is an efficiently interruptible algorithm, where the robot may not move
further away from the source than the unvisited vertex nearest to the source. At any
given time in the algorithm, let 2 denote the shortest-path distance from s to the
vertex the robot is visiting, and let $ denote the shortest-path distance from s to the
vertex nearest to s that is as yet unvisited. With traditional breadth-first search we
have 2�$ at all times. With teleport-free exploration, it is generally impossible to
maintain 2�$ without a great loss of efficiency.

Lemma 1. A robot that maintains 2�$ (such as one using a traditional BFS)
may traverse 0(E2) edges.

Proof. Consider a graph with vertices [&n, &n+1, ..., &1, 0, 1, 2, ..., n&1, n],
where s=0 and edges connect consecutive integers. To achieve 2�$, a teleport-free
BFS algorithm would run in quadratic time, traveling back and forth from 1 to &1
to &2 to 2 to 3 K

Given this lower bound, we solve the piecemeal learning problem and the
treasure hunting problem efficiently while maintaining the approximate BFS
constraint that the robot is never more than twice as far from s as is the nearest
unvisited vertex from s (i.e., 2�2$). Our final algorithm Treasure-Search satisfies
the stronger condition 2=$+o($). Note that this algorithm is also efficiently inter-
ruptible and thus can also be used to solve the piecemeal learning problem.

In the remainder of this paper, we give three algorithms for piecemeal learning
undirected graphs. In Section 2, we first give a simple algorithm that runs in
O(E+V 1.5) time. In Section 3, we then give a modification of this algorithm that
runs in O((E+V 1.5) log V) time. Although this algorithm has a slightly slower
running time, we are able to make it recursive, and in Section 4, we describe this
recursive algorithm which has a nearly linear running time: it achieves O(E+V 1+o(1))
running time. Finally, in Section 5, we give our algorithm for treasure hunting.

2. ALGORITHM STRIP-EXPLORE

This section describes an efficiently interruptible algorithm for undirected graphs
with running time O(E+V 1.5). It is based on breadth-first search. A layer in a BFS
tree consists of vertices that have the same shortest path distance to the start vertex.
A frontier vertex is a vertex that is incident to unexplored edges. A frontier vertex
is expanded when the robot has traversed all the unexplored edges incident to it.

159PIECEMEAL GRAPH EXPLORATION BY A ROBOT

The traditional BFS algorithm expands frontier vertices layer by layer. In the
teleport-free model, this algorithm runs in time O(E+rV), since expanding all the
vertices takes time O(E) and visiting all the frontier vertices on layer i can be
performed with a depth-first search of layers 1 } } } i in time O(V), and there are at
most r layers. Since r can be O(V), this can result in an O(E+V 2) algorithm.

The procedure Local-BFS describes a version of the traditional BFS procedure
that has been modified for our teleport-free BFS model in two respects. First, when
expanding vertices on layer i, the robot does not relocate to any vertices in that
layer that no longer have any unexplored edges. Second, it only explores vertices
within a given distance-bound L of the given start vertex s. (The first modification,
while seemingly straightforward, is essential for our analysis of Strip-Explore
which uses Local-BFS as a subroutine.) A procedure call of the form Local-BFS(s, r),
where s is the start vertex of the graph and r is its radius, would cause the robot
to explore the entire graph.

Local-BFS(s, L)

1. For i=0 To L&1 Do
2. let verts=all vertices at shortest path distance i from s
3. For each u # verts Do
4. If u has any incident unexplored edges
5. Then
6. relocate to u
7. traverse each unexplored edge incident to u
8. relocate to s

Awerbuch and Gallager [2, 3] give a distributed BFS algorithm which partitions
the network (i.e., graph) into strips, where each strip is a group of L consecutive
layers. (Here L is a parameter to be chosen.) All vertices in strip i&1 are expanded
before any vertices in strip i are expanded. Their algorithms use as a subroutine
breadth-first type searches with distance L.

Our algorithm, Strip-Explore, searches in strips in a new way (see Fig. 1). The
robot explores the graph in strips of width L. First the robot follows Local-BFS(s, L)
to explore the first strip. It then explores the second strip as follows. Suppose there
are k frontier vertices v1 , v2 , ..., vk in layer L; each such vertex is a source vertex for
exploring the second strip. A naive way for exploring the second strip is for the robot
for each i, to relocate to vi , and then to find all vertices that are within distance L of
vi by doing a BFS of distance-bound L from vi within the second strip.

The robot thus traverses a forest of k BFS trees of depth L, completely exploring
the second strip. The robot then has a map of the BFS tree of depth L for the first
strip and a map of the BFS forest for the second strip, enabling it to create a BFS
tree of depth 2L for the first two strips. The robot continues, strip by strip, until
the entire graph is explored.

The naive algorithm described above is inefficient, due to the overlap between the
trees in the forest at a given level, causing portions of each strip to be repeatedly
re-explored (see Fig. 2). The algorithm Strip-Explore presented below solves this
problem by using the Local-BFS procedure as the basic subroutine, instead of
using a naive BFS.

160 AWERBUCH ET AL.

FIG. 1. In Strip-Explore, the shaded areas are passed through more than once only if necessary
to get to frontier vertices. In the naive algorithm, the shaded areas are retraversed completely.

In Strip-Explore, the robot searches in a breadth-first manner, but ignores
previously explored territory. The only time the robot traverses edges that have
been previously explored is when moving to a frontier vertex it is about to expand.
This results in retraversal of some edges in previously explored territory, but not as
many as in the naive algorithm.

Strip-Explore(s, L, r)

1. numstrips=Wr�LX
2. sources=[s]
3. For i=1 To numstrips Do
4. For each u # sources Do
5. relocate to u
6. Local-BFS(u, L)
7. sources=all frontier vertices

Theorem 2. Strip-Explore runs in O(E+V 1.5) time.

FIG. 2. Contrasting BFS and Local-BFS: Consider a BFS of depth 5 from s1 , followed by a BFS
of depth 5 from s2 . (The depth of the strip is L=5.) The BFS from s2 revisits vertices a, b, c, d, e. On
the other hand, if the BFS from s1 is followed by a Local-BFS from s2 , then the Local-BFS only
revisits d, c, e. After edge (f, d) is found, vertex e is a frontier vertex that is expanded by Local-BFS(s2 , 5).

161PIECEMEAL GRAPH EXPLORATION BY A ROBOT

Proof. First we count edge traversals for relocating between source vertices for
a given strip. For these relocations, the robot can mentally construct a tree in the
known graph connecting these vertices and then move between source vertices by
doing a depth-first traversal of this tree. Thus the number of edge traversals due to
relocations between source vertices for this strip is at most 2V. Since there are
Wr�LX strips, the total number of edges traversals due to relocations between source
vertices is at most Wr�LX 2V�(r�L+1) 2V=2rV�L+2V.

Now we count edge traversals for repeatedly executing the Local-BFS algo-
rithm. First, for the robot to expand all vertices and explore all edges, it traverses
2E edges. Next, each time the relocate in line 8 of procedure Local-BFS is called,
at most L edges are traversed, thus resulting in at most LV edge traversals. To
account for relocations in line 6 of procedure Local-BFS, we use the following
scheme for ``charging'' edge traversals. Say the robot is within a call of the Local-BFS
algorithm. It has just expanded a vertex u and will now relocate to a vertex v to
expand it. Vertex v is charged for the edges traversed to relocate from u to v. (We
are only considering relocations within the same call of the Local-BFS algorithm;
relocations between calls of the Local-BFS algorithm were considered above.)
Source vertices are not charged anything. Moreover, the robot can always relocate
from u to v by going from u to the source vertex of the current local BFS, and then
to v, traversing at most 2L edges. Thus, each vertex is charged at most 2L when
it is expanded. Local-BFS never relocates to a vertex v unless it can expand vertex
v (i.e., unless v is adjacent to unexplored edges). Thus, all relocations are charged
to the expansion of some vertex, and the total number of edge traversals due to
relocation is at most 2LV.

Thus, the total number of edge traversals is at most 2rV�L+2V+3LV+2E,
which is O(rV�L+LV+E). When L is chosen to be - r, this gives O(E+V 1.5)
edge traversals. K

Procedure Strip-Explore and the generalizations of it given in later sections
maintain that 2�2$ at all times��the robot never visits a vertex more than twice
as far from s as the nearest unvisited vertex is from s. The worst case is while
exploring the second strip.

3. ALGORITHM ITERATIVE-STRIP

We now describe Iterative-Strip, an algorithm similar to the Strip-Explore
algorithm. It is an efficiently interruptible algorithm for undirected graphs inspired
by Awerbuch and Gallager's [2] distributed iterative BFS algorithm. Although its
running time of O((V 1.5+E) log V) is worse than the running time of Strip-Explore,
its recursive version (described in Section 4) is more efficient. (It is not clear how
to recursively implement Strip-Explore as efficiently, because the trees in a strip
are not disjoint.)

With Iterative-Strip, the robot grows a global BFS tree with root s, strip by
strip, in a manner similar to Strip-Explore. Unlike Strip-Explore, here each strip
is processed several times before it has correctly deepened the BFS tree by - r. We
next explain the algorithm's behavior on a typical strip by describing how a strip
is processed for the first time and then for the remaining iterations.

162 AWERBUCH ET AL.

FIG. 3. The iterative strip algorithm after the first iteration on the fourth strip. Two connected
components c1 , c2 have been explored. The collision edges e1 and e2 connect the first three approximate
BFS trees. The dashed line shows how source vertices s1 , s2 , s3 connect within the strip. There are three
active frontier vertices with depth less than D+- r.

In the first iteration, a strip is explored much as in Strip-Explore. The robot
explores a tree of depth - r from each source vertex, by exploring in breadth-first
manner from each source vertex, without re-exploring previous trees. Whenever the
robot finds a collision edge connecting the current tree to another tree in the same
strip, it does not enter the other tree. Unlike Strip-Explore, the robot does not
traverse explored edges to get to the frontier vertices on other trees. Therefore, after
the first iteration, the trees explored are approximate BFS trees that may have
frontier vertices with path length less than - r from some source vertex. We call
these vertices active frontier vertices for the next iteration. A connected component
within a strip is an active connected component if it contains active frontier vertices.
After the first iteration, the current strip may not yet extend the global BFS tree by
depth - r, so more iterations are needed until all frontier vertices are inactive and
the global BFS tree is extended by depth - r (see Fig. 3).

In the second iteration (see Fig. 4), the robot uses the property that two tree
connected by a collision edge form a connected component within the strip. (The
graph to be explored is connected and, thus, forms one connected component; but

FIG. 4. The iterative strip algorithm after the second iteration. Now the circled vertices which were
active frontier vertices at the beginning of the iteration are expanded. One of the expansions resulted in
a collision edge. Now the strip consists of only one connected component (shaded area). There are six
frontier vertices which become source vertices of the next strip. All frontier vertices have depth D+- r.

163PIECEMEAL GRAPH EXPLORATION BY A ROBOT

we refer to connected components of the explored portion of the graph contained
within the strip.) The robot need not traverse any edges outside the current strip
to relocate between these active frontier vertices in the same connected component.
In the second and later iterations, the robot works on one connected component
at a time.

The robot explores active frontier vertices in one connected component as
follows. It computes (mentally) a spanning tree of the vertices in the current com-
ponent. This spanning tree lies within the strip. Let d be the shortest known path
length from any active frontier vertex in the component to any source vertex in the
component. The robot visits the vertices in the strip in an order determined by a
DFS of the spanning tree. As it visits active frontier vertices of depth d, it expands
them. It then recomputes the spanning tree (since the component may now have
new vertices) and again traverses the tree, expanding vertices of the appropriate
next depth d $. Traversing a collision edge does not add the new vertex to the tree,
since this vertex has been explored before. This process continues (at most - r
times) until no active frontier vertex in the connected component has known path
length less than - r from some source vertex in the component.

The robot handles each connected component in turn, as described above. In the
next iteration it combines the components now connected by collision edges and
explores the new active frontier vertices in these combined components. Lemma 2
states that at most log V iterations cause all frontier vertices to become inactive.
That is, all frontier vertices are depth - r from the source vertices of this strip.
These frontier vertices are the new sources for the next strip.

Iterative-Strip(s, r)

1. For i=1 To - r Do
2. For each source vertex u in strip i Do
3. relocate to u
4. BFS from u to depth - r, but do not enter previously

explored territory
5. While there are any active connected components Iterate
6. For each active connected component c Do
7. Repeat
8. let v1 , v2 , v3 , ... be active frontier vertices exclusively in c

with smallest depth among active frontier vertices in c
9. relocate to each of v1 , v2 , v3 , ..., and expand

10. Until no more active frontier vertices exclusively in c
11. determine new and active connected components

Lemma 2. At most log V iterations per strip are needed to explore a strip and
extend the global BFS tree by depth - r.

Proof. If there are initially l source vertices, then after the first iteration there
are at most l connected components. If a component does not collide with another
active component, then it will have no active frontier vertices for the next iteration.

164 AWERBUCH ET AL.

The only active components in the next iteration are those that have collided with
other components, and thus, each iteration halves the number of components with
active frontier vertices. After at most log V iterations there is no connected compo-
nent with active frontier vertices left. The robot then has a complete map of the
current strip and of the global BFS tree built in previous strips, so it can combine
this information and extend the global BFS tree by depth - r. K

Theorem 3. Iterative-Strip runs in time O((E+V 1.5) log V).

Proof. We first count the number of edge traversals within a strip. Let Vi and
Ei be the number of vertices and edges explored in strip i. For each component, the
robot computes a spanning tree of the component, does a DFS of the spanning
tree, and expands all vertices that have known shortest path length t from some
source vertex (line 9). At each iteration (line 5), components are disjoint, so relocat-
ing to all these vertices takes at most O(Vi) edge traversals. Thus, in one iteration,
relocating to all vertices in the strip within distance - r takes at most O(- r Vi)
edge traversals. Moreover, note that in order for the robot to expand each vertex,
it traverses at most O(Ei) edges. Thus, the total number of edge traversals for strip
i in one iteration is O(Ei+- r Vi). Combining this with Lemma 2, the total number
of edge traversals within strip i to completely explore strip i takes O((Ei+- r Vi) log V)
edge traversals.

Now we count edge traversals for relocating between source vertices in strip i. As
in the proof of Theorem 2, in each iteration the robot traverses at most 2V edges
to relocate between source vertices. Since there are at most log V iterations, this
results in 2V log V edge traversals between source vertices to explore strip i. Thus,
the total number of edge traversals to explore strip i is O((Ei+- r Vi) log V+
2V log V). Summing over the - r disjoint strips gives O((E+- r V) log V+
2V - r log V)=O((E+- r V) log V)=O((E+V 1.5) log V). K

4. A NEARLY LINEAR TIME ALGORITHM FOR
EXPLORING UNDIRECTED GRAPHS

This section describes an efficiently interruptible algorithm Recursive-Strip,
which gives a piecemeal exploration algorithm with running time O(E+V 1+o(1)).
Recursive-Strip is the recursive version of Iterative-Strip; it provides a recursive
structure that coordinates the exploration of strips, of approximate BFS trees, and
of connected components in a different manner. The robot still, however, builds a
global BFS tree from start vertex s, strip by strip. The robot expands vertices at the
bottom level of recursion.

In Recursive-Strip, the depth of each strip depends on the level of recursion (see
Fig. 5). If there are k levels of recursion, then the algorithm starts at the top level
by splitting the exploration of G into r�dk&1 strips of depth dk&1 . Each of these
strips is split into dk&1 �dk&2 searches of strips of depth dk&2 , etc. We have
r=dk>dk&1> } } } >d1>d0=1.

Each recursive call of the algorithm is passed a set of source vertices sources, the
depth to which it must explore, and a set T of all vertices in the strip already known
to have path length less than depth from one of the sources. The set of vertices T

165PIECEMEAL GRAPH EXPLORATION BY A ROBOT

FIG. 5. The recursive strip algorithm processing an approximate BFS tree from source vertex s2 to
depth dk&1=L. Recursive calls within the tree are of depth dk&2=L$.

are known to be connected within the strip being explored. The robot traverses all
edges and visits all vertices within depth of the sources that have not yet been
processed by other recursive calls at this level. Recursive-Strip([s], r, [s]) is
called to explore the entire graph.

At recursion level i, the algorithm divides the exploration into strips and pro-
cesses each strip in turn, as follows. Suppose the strip has l source vertices v1 , ..., vl .
Then the strip is processed in at most log l=O(log V) iterations. In each iteration,
the algorithm partitions T into maximal sets T1 , T2 , ..., Tk such that each set is
known to be connected within the strip. Let Sc denote the set of source vertices in
Tc . A DFS of the spanning tree of the vertices T gives an order for the source
vertices in S1 , S2 , ..., Sk ; this spanning tree is used for efficient relocations between
these source vertices. Note that all source vertices are known to be connected
through the spanning tree of the vertices in T, but they might not be connected
within the substrips. Since relocations between the vertices in Sc in the next level
of recursion use a spanning tree of Tc , for efficiency the vertices of Tc must be
connected within the substrip. After partitioning the vertices into connected com-
ponents within the strip, for each connected component Tc the robot relocates
(along a spanning tree) to some arbitrary source vertex in Sc . It then calls the
algorithm recursively with Sc , the depth of the substrip, and the vertices Tc which
are connected to the sources Sc within the substrip.

The remaining iterations in the strip combine the connected components until the
strip is finished. Then the robot continues with the next strip in the same level of
recursion. Or, if it finished the last strip, it relocated to its starting position and
returns to the next higher level of recursion.

Recursive-Strip(sources, depth, T)

1. If depth=1
2. Then
3. let v1 , v2 , ..., vk be the depth-first ordering of sources

in spanning tree

166 AWERBUCH ET AL.

4. For i=1 To k Do
5. relocate to vi

6. If vi has adjacent unexplored edges
7. Then traverse vi 's incident edges
8. T=T _ [newly discovered vertices]
9. Return

10. Else
11. determine next depth as in proof of Theorem 4
12. number-of-strips � depth�next-depth
13. For i=1 To number-of-strips Do
14. determine set of source vertices
15. For j=1 To number-of-iterations Do
16. partition vertices in T into maximal sets T1 , T2 , ..., Tk

such that vertices in each Tc are known to be connected
within strip i

17. For each Tc in suitable order Do
18. let Sc be the source vertices in Tc

19. relocate to some source s # Sc

20. Recursive-Strip(Sc , next-depth, Tc)
21. T=T _ Tc

22. relocate to some s # sources
23. Return

Theorem 4. Recursive-Strip runs in time O(E+V 1+o(1)).

Proof. At a particular call of Recursive-Strip, there are four situations in
which the robot traverses edges:

1. expansion of vertices in line 7

2. relocating to sources in lines 5 and 19

3. relocations due to recursive calls in line 20

4. relocation back to a beginning source vertex in line 22.

We count edge traversals for each of these cases. First we give some notation. We
consider the top level of recursion to be a level-k recursive call, and the bottom
level of recursion to be a level-0 recursive call. For a particular level-i call of
Recursive-Strip, let Ci denote the number of edge traversals due to relocations,
and let Ei denote the number of distinct edges that are traversed due to relocation.
Let Vi denote the number of vertices incident to these edges and whose incident
edges are all known at the end of this call. Let \ i be a uniform upper bound on
Ci �Vi . Thus, if the depth of recursion is k then the total number of edge traversals
is bounded by O(V\k).

First we observe that each vertex is expanded at most once, so there are at
most O(E+V) edge traversals due to exploration at line 7 in the bottom level of
recursion.

Second, for a level-i call, we count the number of edge traversals for relocation
between source vertices. Since all the source vertices in the call are connected by a

167PIECEMEAL GRAPH EXPLORATION BY A ROBOT

tree of size O(Vi), relocating to all source vertices at the start of one strip takes
O(Vi) edge traversals. With di �d i&1 strips and log V iterations per strip, there are
Vi log V(di �di&1) edge traversals for relocations between source vertices.

Third, we now count traversals for recursive calls within a level-i call. Note that
our algorithm avoids re-exploring previously explored edges. Thus, for a level-i call,
when working on a particular strip l, for each iteration within this strip, the sets of
vertices whose edges are explored in each recursive call are disjoint. Suppose that,
in this strip, in one iteration the procedure makes k recursive calls, each at level
i&1. Then let C (j)

i&1 , 1� j�k, denote the number of edge traversals due to reloca-
tions resulting from the j th recursive call, and let V (j)

i&1 denote the number of
vertices adjacent to these edges. Furthermore, let Vl, i denote the number of vertices
which are in strip l of this procedure call at recursion level i. Then we would like
first to calculate

:
k

j=1

C (j)
i&1 ,

which is the number of edge traversals due to relocation in recursive calls in one
iteration within this strip. This is at most

:
k

j=1

\i&1V (j)
i&1=\ i&1 :

k

j=1

V (j)
i&1 .

Since the recursive calls are disjoint, �k
j=1 V (j)

i&1=V l, i , and thus, the number of
edge traversals due to relocations in recursive calls in one iteration within this strip
is at most \i&1 Vl, i . Finally, since there are log V iterations in each strip, and all
strips are disjoint from each other, the number of edge traversals due to recursive
calls is at most \i&1Vi log V.

Fourth, note that we relocate once at the end of each procedure call of
Recursive-Strip (see line 22). This results in at most Vi edge traversals.

Thus, the number of edge traversals due to relocation (not including relocations
for expanding vertices) is described by the recurrence Ci�Vi log V(di �di&1)+
\i&1 Vi log V+V i . Normalizing by Vi , we get the recurrence

\i=\ d i

di&1

+\i&1+ log V+O(1).

Solving the recurrence for \k gives

\k �\ dk

dk&1+ log V+\dk&1

dk&2+ log2 V+ } } } +\d1

d0+ logk V+\0 logk V+ :
k&1

i=0

log i V

�\ dk

dk&1+ log V+\dk&1

dk&2+ log2 V+ } } } +\d1

d0+ logk V+O(logk V)

� :
k

i=1
\dk+1&i

dk&i + logi V+O(logk V).

168 AWERBUCH ET AL.

We note that \0=O(1), since at the bottom level, if there are V$ vertices expanded,
then the number of edge traversals due to relocation is O(V$). The product of the
first k terms in the recurrence is

`
k

i=1

logi V \dk+1&i

dk&i +=
dk

d0

(log V) (k+1) k�2=r(log V) (k+1) k�2.

We choose dk&1 , dk&2 , ... by setting each of the first k terms equal to the kth root
of this product. (Note that this also specifies how to calculate depth di&1 from
depth di in line 11.) Substituting, we get

\k �kr1�k(log V) (k+1)�2+O(logk V)

�2log k } 2(log r)�k } 2(k+1)�2 log log V+O(2k log log V).

Choosing k=(log V�log log V)1�2 gives us

\k �2log - log V&log - log log V+(- log log V�- log V) log V+(- log V�- log log V+1) 1�2 log log V

+O(2(- log V�- log log V) log log V)

�2log log V&(1�2) log log log V+(3�2) - log V log log V+O(2- log V log log V)

=2O(- log V log log V)

and thus,

Ck=V2O(- log V log log V)

which is V 1+o(1). Adding the edge traversals for relocation to the edge traversals for
exploration gives us O(E+V 1+o(1)) edge traversals total. K

5. TREASURE HUNTING

We now consider an application of our algorithms to the problem of finding a
treasure (or a lost child, or a particular landmark) in an unknown, potentially
infinite graph G=(V, E). If the robot searching for the treasure knows that the
treasure is close to its start location, it should explore in a manner such that it does
not get too far away from this location.

We give the procedure Treasure-Search, which uses the Recursive-Strip algo-
rithm as a subroutine. If the treasure is shortest path distance $T away from the
source vertex, this algorithm maintains the condition that the robot is never further
from the source than 2, where 2�$T+o($T). Following procedure Treasure-Search,
the robot traverses O(E+V 1+o(1)) edges, where E and V are the total number of
distinct edges and vertices within radius 2 from the source.

The robot explores the graph for the treasure in phases. In each phase, the size
of the strip to be explored changes. The change at phase i depends on = i=1�- i.
Initially, the robot explores the graph out to distance r1=1+=1 . Next, the robot
extends its exploration by a factor of 1+=2 . That is, the size of the next strip is

169PIECEMEAL GRAPH EXPLORATION BY A ROBOT

(1+=1)(1+=2)&(1+=1), and at the end of the second phase, the robot has learned
the graph out to distance r2=(1+=1)(1+=2). After extending the next strip, the
robot has learned the graph out to distance r3=(1+=1)(1+=2)(1+=3), and so on.
In each phase i, the robot initially calls Recursive-Strip from the set of source
vertices (vertices at distance ri&1). When the robot finds collisions edges, it does not
re-explore edges. Thus, within each phase, it may take up to log V iterations (as in
Iterative-Strip and Recursive-Strip) before it has explored the entire strip.

Lemmas 3 and 4 bound the number of phases in the Treasure-Search proce-
dure. Using Lemma 3, Theorem 5 shows that the robot does not get too far away
from the source vertex, and using Lemma 4, Theorem 6 bounds the number of
edges the robot traverses.

Treasure-Search(s)

1. i=0
2. r0=1
3. Do until treasure is found
4. i=i+1
5. =i=1�- i
6. ri=ri&1 } (1+=i)
7. If i=1
8. Then
9. Recursive-Strip([s], r1 , [s])

10. Else
11. let T be the set of source vertices distance ri&1 away from s
12. For j=1 To number-of-iterations Do
13. partition vertices in T into maximal sets T1 , ..., Tk such that

vertices in each Tc are known to be connected within strip i
14. For each Tc in suitable order Do
15. let Sc be the source vertices in Tc

16. relocate to some source s # Sc

17. Recursive-Strip(Sc , ri&ri&1 , Tc)
18. T=T _ Tc

Lemma 3. The number of phases in Treasure-Search is at least log $T .

Proof. Since =1>=2>=3 } } } , we know that, for any j, (1+=1)(1+=2) } } } (1+=j)
�(1+=1) j. Thus, if we let j be the smallest number such that (1+=1) j�$T , then
we know that the number of phases i to reach the treasure at $T is at least j. Since
=1=1, we have 2 j�$T , or j�log $T . K

Lemma 4. The number of phases in Treasure-Search is at most 4 ln2 $T+1.

Proof. A treasure at depth $T=1 is found in the first phase, so we consider
only $T>1. We know that for any j, (1+=j)

j�(1+=1)(1+=2) } } } (1+=j). Thus,
if (1+=j)

j�$T , we know that the number of phases i is at most j. So we
prove the lemma by showing that (1+=4 ln 2 $T

)4 ln2 $T�$T , or equivalently, that
4 ln2 $T ln(1+=4 ln2 $T

)=4 ln2 $T ln(1+1�(2 ln $T))�ln $T .

170 AWERBUCH ET AL.

For |x|<1, using a Taylor expansion, we have ln(1+x)=x&x2�2+x3�3&x4�4
+ } } } . For 0<x<1, we have ln(1+x)>x&x2�2. So 4 ln2 $T ln(1+1�(2 ln $T))>
(4 ln2 $T)(1�(2 ln $T)&1�(8 ln2 $T))=2 ln $T&1�2, which is at least ln $T for
$T�2. K

Theorem 5. The robot is never further than $T+$T �- log $T from the source
vertex.

Proof. Let 2 be the furthest distance the robot gets from the source vertex. Let
i be the number of phases that need to be explored to get out to depth $T . Then,
2&$T is at most the depth of the strip in the i th phase. That is, 2&$T�(1+=1)
(1+=2) } } } (1+=i)&(1+=1)(1+=2) } } } (1+=i&1)=(1+=1)(1+=2) } } } (1+=i&1) =i<
$T=i . Lemma 3 shows that the total number of strips explored is at least log $T .
Thus, =i is at most 1�- log $T , and 2�$T+$T �- log $T =$T+o($T). K

Theorem 6. Given a treasure at distance $T from the source, procedure Treasure-
Search traverses at most O(E+V 1+o(1)) edges, where E and V are the total number
of distinct edges and vertices within radius 2�$T+o($T) from the source.

Proof. Since the edges traversed in the different phases are disjoint, the number
of edges traversed, ignoring relocations between source vertices in line 16, is at most
O(E+V 1+o(1)). To get between source vertices in line 16, a spanning tree of the
known vertices can be used. (Note that for recursive calls of Recursive-Strip, the
algorithm relocates between source vertices using the vertices connected within the
appropriate strip.) By Lemma 4, we know the number of phases is at most 4 ln2 $T ,
and in each phase it may take up to log V iterations to explore the entire strip.
Thus there are an additional 4V ln2 $T log V edge traversals due to relocations
between source vertices, and this gives a total of O(E+V 1+o(1)) edge traversals for
the entire Treasure-Search procedure. K

6. CONCLUDING REMARKS

We have presented an efficient O(E+V 1+o(1)) algorithm for piecemeal learning
of arbitrary, undirected graphs. The only lower bound known for this problem is
the trivial bound 0(E+V), and it is not known whether a linear-time algorithm
exists.

We have also given an algorithm for the application of treasure hunting on
potentially infinite graphs. Is it possible (we conjecture not) to find a treasure in
time nearly linear in the number of those vertices and edges whose distance to the
source is less than or equal to that of the treasure?

Received January 16, 1997; final manuscript received June 27, 1998

REFERENCES

1. Awerbuch, B., Berger, B., Cohen, L., and Peleg, D. (1998), Near-linear time construction of sparse
neighborhood covers, SIAM J. Comput. 28(1), 254�262.

2. Awerbuch, B., and Gallager, R. G. (1985), Distributed BFS algorithm, in ``Proceedings of the 26th
Symposium on Foundations of Computer Science,'' pp. 250�256.

171PIECEMEAL GRAPH EXPLORATION BY A ROBOT

3. Awerbuch, B., and Gallager, R. G. (1987), A new distributed algorithm to find breadth first search
trees, IEEE Trans. Inform. Theory IT-33(3), 315�332.

4. Bar-Eli, E., Berman, P., Fiat, A., and Yan, P. (1994), On-line navigation in a room, J. Algorithms
17, 319�341.

5. Bender, M. A., and Slonim, D. K. (1994) The power of team exploration: two robots can learn
unlabeled directed graphs, in ``Proceedings of the Thirty-Fifth Annual Symposium on Foundations
of Computer Science,'' pp. 75�85.

6. Betke, M. (1992), ``Algorithms for Exploring an Unknown Graph,'' Master's thesis, MIT Depart-
ment of Electrical Engineering and Computer Science, Published as MIT laboratory for Computer
Science Technical Report MIT�LCS�TR-536, March 1992.

7. Betke, M., and Gurvits, L. (April 1997), Mobile robot localization using landmarks, IEEE Trans.
Robot. Automat. 13(2), 251�263.

8. Betke, M., Rivest, R. L., and Singh, M. (1995), Piecemeal learning of an unknown environment,
Mach. Learning 18(2�3), 231�254.

9. Blum, A., and Chalasani, P. (1993), An on-line algorithm for improving performance in navigation,
in ``Proceedings of the Thirty-Fourth Annual Symposium on Foundations of Computer Science,''
pp. 2�11.

10. Blum, A., Raghavan, P., and Schieber, B. (1997), Navigating in unfamiliar geometric terrain, SIAM
J. Comput. 26(1), 110�137.

11. Cormen, T. H., Leiserson, C. E., and Rivest, R. L. (1990), ``Introduction to Algorithms,'' MIT Press,
Cambridge, MA, McGraw-Hill, New York.

12. Deng, X., Kameda, T., and Papadimitriou, C. H. (1998), How to learn an unknown environment
I: The rectilinear case, J. Assoc. Comput. Mach. 45(2), 215�245.

13. Deng, X., and Papadimitriou, C. H. (1990), Exploring an unknown graph, in ``Proceedings of the
31st Symposium on Foundations of Computer Science,'' Vol. I, pp. 355�361.

14. Dudek, G., Jenkin, M., Milios, E., and Wilkes, D. (1989), Using multiple markers in graph explora-
tion, in ``SPIE Vol. 1195 Mobile Robots IV,'' pp. 77�87.

15. Klein, R. (June 1992), Walking an unknown street with bounded detour, Comput. Geom. Theory
Appl. 1(6), 325�351.

16. Kleinberg, J. M. (1994), The localization problem for mobile robots, in ``Proceedings of the 35st
Annual Symposium on Foundations of Computer Science,'' pp. 521�531.

17. Lee, C. Y. (1961), An algorithm for path connection and its applications, IRE Transactions on
Electronic Computers EC-10(3), 346�365.

18. Moore, E. F. (1959), The shortest path through a maze, in ``Proceedings of the International
Symposium on the Theory of Switching,'' pp. 285�292.

19. Papadimitriou, C. H., and Yanakakis, M. (1991), Shortest paths without a map, Theor. Comput. Sci.
84, 127�150.

20. Rao, N. S. V., Kareti, S., Shi, W., and Iyengar, S. (1993), ``Robot Navigation in Unknown Terrains:
Introductory Survey of Non-heuristic Algorithms,'' Technical Report, ORNL�TM-12410 Oak Ridge
National Laboratory.

21. Rivest, R. L., and Schapire, R. E. (April 1993), Inference of finite automata using homing sequences,
Inform. and Comput. 103(2), 299�347.

22. Romanik, K., and Schuierer, S. (1996) Optimal robot localization in trees, in ``Proceedings of the
12th Symposium on Foundations of Computational Geometry.''

172 AWERBUCH ET AL.

	1. INTRODUCTION
	2. ALGORITHM STRIP-EXPLORE
	FIG. 1
	FIG. 2

	3. ALGORITHM ITERATIVE-STRIP
	FIG. 3
	FIG. 4

	4. A NEARLY LINEAR TIME ALGORITHM FOR EXPLORING UNDIRECTED GRAPHS
	FIG. 5

	5. TREASURE HUNTING
	6. CONCLUDING REMARKS
	REFERENCES

