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Domain Keys and Identified Mail (DKIM) is a promising proposal for providing a
cryptographic foundation to solve the phishing problem: domains are made cryptograph-
ically responsible for the email they send. Roughly, bob@fdo. com sends emails via
outgoing.foo.com, which properly identifies Bob and signs the email content. The
public key is distributed via a DNS TXT record for .domainkeys.foo.com. The details
of how DKIM should handle mailing lists, message canonicalization, message forward-
ing, and other thorny issues, are being resolved in the context of a recently-formed IETF
Working Group [66].

We propose Lightweight Email Signatures, abbreviated LES, as an extension to DKIM.
We envision LES as being fully compatible with DKIM, in that it should be supportable in
principle within the flexible parameterized framework we forsee DKIM implementing and
supporting. LES offers three significant improvements:

|. Automatic Intra-Domain Authentication: DKIM assumes that the domain
outgoing.foo.com can tell its users bob@foo.com and carol®@foo.com apart,
which is not a safe assumption in a number of settings—e.g., university campuses or
ISPs that authenticate only the sending IP address. (In Section 10.6.5, figure 10.20
highlights the concern.) By contrast, LES authenticates individual users within a
domain without requiring additional authentication infrastructure within foo. com.

2. Flexible Use of Email (Better End-to-End): LES allows Bob to send email via
any outgoing mail server, not just the official outgoing.foo.com mandated by
DKIM. This is particularly important when supporting existing use cases. Bob may
want to alternate between using bob@foo.com and bob@bar .com, while his ISP
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such that the secret key for one credential leaks the private key associated with another. and
demonstrate how one party can prove this linkage of credentials.
For the particular case of identifier trees, we can employ a verifiable unpredictable

function (VUF) [102] as described by Micali, Rabin, and Vadhan. This is a function !

with a corresponding secret s such that fs(m) is efficiently computable for any message
m; additionally, knowledge of s permits construction of an efficiently checkable proof:)r
the correctness of fs(m). Knowledge of the value of Js at any number of points does not
permit prediction of f; onanew point. Micali et al. demonstrate an RSA-based construction,
Briefly stated, for RSA modulus N (with some short, additional public information), the
value fs(m) = r'/P» mod N, where Pm 18 a unique prime corresponding to message i
according to a public mapping; no additional information is needed for verification.

Given this use of a VUF, a user can verify that the path corresponding to its identifier
is consistent with an identifier-tree linked to the SSL certificate of a given server. If many
users—or auditors—perform such verification, then it is possible to achieve good assu rance
of server compliance with the scheme.

Of course, it is feasible for a server to circumvent disclosure of its private SSL key by
transmitting portions of its identifier tree. For example, with a tree of depth 80, 1024-
bit digital signatures, and a base of 1,000,000 users, the size df the associated tree data
would be slightly more than 10 GB. Thus, even without sharing its private key, a server
can plausibly share its set of user identifiers. The more important aspect of our scheme s
that, without sharing its private key, a server must share updates to the identifier tree when
new users join. The resulting requirements for data coordination are a substantial technical
encumbrance and disincentive in our view. Additionally, the ongoing relationship required
for such updates would expose more evidence of collusion to potential auditors,

Remark VUFs have a property that is not essential for proprietary identifier-trees: The
function f is deterministic, and thus the value fs(m) is unique. Without this property,
a simpler scheme is possible. A random value 7 is assigned to the root node. Now, for
any a child in position 4, the associated value is computed as a digital signature on the
value of the parent concatenated with i (suitably formatted). Digital signatures take the
form of RSA signatures, with the SSL certificate defining the public key. Provided that the
signature scheme carries the right security properties, an adversary cannot guess the value
of unrevealed secrets in the identifier tree. This is true, for instance, for signature schemes
that are existentially unforgeable under chosen-message attacks. Given this property, the
ability to construct any unrevealed portion of the identifier (ree implies knowledge of the
private key for the SSL certificate. A simple signature-based scheme, however, lacks the
crisp security properties of one based on VUFs. For example, the signer, that is, the creator
of the identifier tree, can embed side-information in its signatures, perhaps undermining its
security guarantees,

10.5.12 Implementation

A write to a user’s browser cache works by having a user visit a page that injects a series
of URLs in the browser cache of the user. This is achieved by redirecting the user through
a corresponding series of URLS, all displayed in a hidden iframe. There are two methods
for this redirection: A server-side redirect and a client-side redirect. A server-side redirect
means that the browser receives an HTTP 302 message, which forces a redirection before
anything is displayed. This then redirects the browser to a second URL, etc. Each redirect
inserts a URL in the history. The second approach involves use of client-side pull, and
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uses the meta-refresh approach to cause redirection. This second approach can manipulate
either history or cache—the latter by downloading content.

We note that different browsers allow a different number of redirects per iframe. For
Safari, this is 16, for other browsers, it is 20. Of course, with several iframes, any number
of redirects can be achieved.

We performed a number of write experiments using MAC OS X clients, with a Gentoo
Linux server and a LAN connection with download speed of 10 Mbits/s. For Mozilla, we
observed a write speed of about 20 bits in 3 seconds; for Safari, 16 bits in 2 seconds. Using
multiple iframes, however, the number of redirects can be increased and writes performed
in parallel, so that considerably greater throughput is possible, as we have determined in
preliminary experiments.

A read from a user’s browser cache may be accomplished using a CSS approach that
detects contents of the history file. Researchers have recently posted an example online to
illustrate browser-sniffing attacks [73]. If we wish to read the cache instead of the history,
we can do this using the above-mentioned meta-refresh technique on the client side, in
which the tags corresponding to both (or all) edges from a node are listed. The one that is
already downloaded and resides in the cache will not be requested. Note that no URLs will
be served: This could cause either a 200 or 401 error, but neither will be displayed in the
hidden frame, and thus the operation will be invisible to the user. The server side, however,
learns the desired contents of the cache. Experiments yielded read speeds comparable to
the write speeds cited.
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Figure 10.17 LES: (1) The domain keyservers for Alice and Bob publish their MPKs in the DNS.
(2) Alice’s domain sends Alice her secret key S K 4, via email. (3) Alice obtains the M PK for Bob’s
domain, foo.com. (4) Alice computes Bob’s public key PKp. (5) Alice signs her email with a ring
signature and sends it to Bob. (6) Bob obtains the M PK for Alice’s domain, from the DNS. (7) Bob
extracts the From: field value, alice@wonderland. com, from the email. (8) Bob computes Alice’s
public key PK 4, using the claimed identity string “alice@wonderland.com”. (9) Bob verifies the
signature against the message and P 4.

mightonly allow SMTP connections to its outgoing mail server outgoing.isp.com.
Bob may also use his university’s alumni forwarding services to send email from
bob@alum.univ.edu, though his university might not provide outgoing mail service.

3. APrivacy Option: LES enables the use of repudiable signatures to help protect users’
privacy. Bellovin [18] and other security experts [114, 24] warn that digitally signed
emails entail serious privacy consequences. We believe the option for repudiable
signatures can alleviate these concerns.

In a nutshell, LES provides more implementation flexibility for each participating do-
main — in particular, flexibility that addresses existing legitimate uses of email — without
complicating the domain’s public interface. A LES domain exposes a single public key
in the DNS, just like DKIM. Among its users, a LES domain can implement DKIM-style,
server-based signatures and verifications, or user-based signatures and verifications where
each user has her own signing key.

The LES Architecture We now describe the LES architecture as diagrammed in Figure
10.17.

£ BT |




LIGHTWEIGHT EMAIL SIGNATURES 437

The DKIM Baseline A LES-signed email contains an extra SMTP header, called
X-LES-Signature, which encodes a signature of a canonicalized version of the message.
We leave to the DKIM Working Group the details of this canonicalization—which includes
the From: field, the subject and body of the message, and a timestamp—, as they do not
impact the specifics of LES. Verification of a LES-signed email is similar to the DKIM
solution: The recipient retrieves the sender domain’s public key from a specially crafted
DNS record, and uses it to verify the claimed signature on the canonicalized message.

Limitations of DKIM  In its basic form, a DKIM domain uses a single key to sign all of
its emails. This simple architecture is what makes DKIM so appealing and easy to deploy.
Not surprisingly, it is also the source of DKIM’s limitations: Users must send email via
their approved outgoing mail server, and this outgoing mail server must have some internal
method of robustly distinguishing one user from another to prevent bob@foo . com from
spoofing carol@foo. com.

In fairness, we observe that DKIM can support multiple domain keys or user-level keys
by placing each public key in the DNS. However, this approach places a strain on DNS
administrators, who would need to repeatedly change a large amount of data in the DNS.
For example, keeping short expiration dates on user-level keys would be difficult.

LES aims to overcome these limitations while retaining DKIM’s simplicity.

User Secret Keys with Identity-Based Signatures 1LES assigns an individual secret
key to each user, so that bob@foo. com can sign his own emails. This means Bob can use
any outgoing server he chooses, and outgoing.foo.com does not need to authenticate
individual users (though it may, of course, continue to use any mechanism it chooses to
curb abusive mail relaying.)

To maintain a single domain-level key in the DNS, LES uses identity-based signatures,
a type of scheme first conceptualized and implemented in 1984 by Shamir [134]. A LES
domain publishes (in the DNS) a master public key M PK and retains the counterpart
master secret key M/ .SK. Bob’s public key, P Kgqy, can be computed using M PK and an
identification string for Bob, usually his email address “bob@foo . com”. The corresponding
secret key, S Kpop, is computed by Bob’s domain using M SK and the same identification
string. Note that, contrary to certain widespread misconceptions, identity-based signatures
are well tested and efficient. Shamir and Guillou—Quisquater signatures, for example, rely
on the widely used RSA assumption and are roughly as efficient as normal RSA signatures.

One might argue that a typical hierarchical certificate mechanism, where the domain
certifies user-generated keypairs, would be just as appropriate here. There are some prob-
lems with this approach. First, a user’s public-key certificate would need to be sent along
with every signed message and would require verifying a chain of two signatures, where the
identity-based solution requires only one signature and one verification operation. Second,
Wwith user-generated keypairs, it is much more difficult to use ring signatures (or any of the
known deniable authentication methods) between a sender and a receiver who has not yet
generated his public key. The identity-based solution ensures the availability of any user’s
public key.

Distributing User Secret Keys via Email LES delivers the secret key S Koy by sending
it via email to bob@foo. com [50], using SMTP/TLS [65] where available. Thus, quite
Naturally, only someone with the credentials to read Bob’s email can send signed emails
With bob@f oo . com as From address. Most importantly, as every domain already has some

-
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mechanism for authenticating access to incoming email inboxes, this secret-key deliye
mechanism requires no additional infrastructure or protocol. R
Privacy with Deniable Signatures Privacy advocates have long noted that digita] Sig-
natures present a double-edged sword [18, 114, 24]: signatures may make a private conver

sation publicly verifiable. The LES framework supports many forms of deniable mtth
tication [30] through its use of identity-based keys: Alice can create a deniable signature
using her secret key SK 5., and Bob’s public key P Kzq,. Only Bob can meaningful]y
verify such a signature. We note that this approach does not provide anonymity beyond thy
of a normal, unsigned email. However, unlike DKIM and other signature proposals, [ E§
does not make the signature publicly verifiable: only the email recipient will be convingeq,

A Prototype Implementation To determine the practical feasibility of deploying LES;
we built a basic prototype, including a key server and a plugin to the Apple Mail clien.
We deployed areal M PK in the DNS for csail.mit.edu, using the Gui]lou—Quigqumc,
identity-based scheme [59] for its simplicity and using ring signatures for deniability. We
then conducted a small test with nine users. Though our test was too small to provide
complete, statistically significant usability results, we note that most participants were able
to quickly install and use the plugin with no user-noticeable effect on performance.

Detailed performance numbers, in Section 10.6.5, show that basic ring signature and
verification operations perform well within acceptable limits—under 40 ms on an average
desktop computer—even before serious cryptographic optimizations. A small keyserver
can easily compute and distribute keys for more than 50,000 users, even when configured
to renew keys on a daily basis.

Previous and Related Work The email authentication problem has motivated a large
number of proposed solutions.

End-to-end digital signatures for email have repeatedly been proposed [10, 146] as a
mechanism for making email more trustworthy and thereby preventing spoofing attacks
such as phishing. One proposal suggests labeling email content and digitally signing the
label [64]. Apart from DKIM, all of these past proposals require some form of Public-Key
Infrastructure, e.g., X.509 [46]. Alternatively, path-based verification has been proposed in
a plethora of initiatives. Those which rely on DNS-based verification of host IP addresses
were reviewed by the IETF MARID working group [67, 91, 90]. The latest proposal in this
line of work is SIDF [104].

A number of spam-related solutions have been suggested to fight phishing. Blacklists of
phishing mail servers are sometimes used [142, 95], as is content filtering, where statistical
machine learning methods are used to detect likely attacks [128, 99, 101]. Collaborative
methods [39] that enable users to help one another have also been proposed. LES can help
cormplement these approaches.

10.6.1 Cryptographic and System Preliminaries

We now review the cryptographic and system building blocks involved in LES.

Identity-Based Signatures In 1984, Shamir proposed the concept of identity-based sig-
natures (IBS) [134]. Since then over a dozen schemes have been realized based on factoring,
RSA, discrete logarithm, and pairings. (See [17] for an overview, plus a few more in [8].)
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Most IBS signatures can be computed roughly as fast as RSA signatures, and those based
on pairings can be 200 bits long for the equivalent security of a 1024 bit RSA signature.

IBS schemes were introduced to help simplify the key management problem. Here, a
single master authority publishes a master public key M PK and stores the corresponding
master secret key M SK. Users are identified by a character string id_string, which is
typically the user’s email address. A user’s public key P/ can be publicly computed from
MPK and id_string, while a user’s secret key S/ is computed by the master authority
using M SK and the same id_string, then delivered to the user.

Ring Signatures from Any Keypairs Ring signatures [37, 125] allow an individual
to sign on behalf of a group of individuals without requiring any prior group setup or
coordination. Although rings can be of any size, consider the two party case. Suppose
Alice and Bob have keypairs ( PKp1ice, SKpiice) and (P Kpop, S Kpon) respectively. Alice
can sign on behalf of the group “Alice or Bob” using her secret key SKj1ice and Bob’s
public key PKpop. Anyone can verify this signature using both of their public keys. We
require the property of signer-ambiguity [8]; that is, even if Alice and Bob reveal their secret
keys, no one can distinguish the actual signer.

There exist compilers for creating signer-ambiguous ring signatures using keypairs of
almost any type [8]. That is, Alice may have a PGP RSA-based keypair and Bob may have
a pairing-based identity-based keypair, yet Alice can still create a ring signature from these
keys! For our purposes here, it does not matter iow this compiler works. It is enough to
know that: (1) the security of the resulting ring signature is equivalent to the security of
the weakest scheme involved, and (2) the time to sign (or verify) a ring signature produced
by our compiler is roughly the sum of the time to sign (or verify) individually for each key
involved, plus an additional hash.

Using ring signatures for deniable authentication is not a new concept [125, 24]. The
idea is that, if Bob receives an email signed by “Alice or Bob,” he knows Alice must have
created it. However, Bob cannot prove this fact to anyone, since he could have created the
signature himself. In Section 10.6.2, we describe how ring signatures are used to protect a
user’s privacy in LES.

Email Secret-Key Distribution Web password reminders, mailing list subscription con-
firmations, and e-commerce notifications all use email as a semi-trusted messaging mecha-
nism. This approach, called Email-Based Identity and Authentication [50], delivers semi-
sensitive data to a user by simply sending the user an email. The user gains access to this
data by authenticating to his incoming mail server in the usual way, via account login to an
access-controlled filesystem, webmail, POP3 [113], or IMAP4 [38]. For added security,
one can use SMTP/TLS [65] for the transmission.

10.6.2 Lightweight Email Signatures

We now present the complete design of LES, as previously illustrated in Figure 10.17.
Email Domain Setup Eachemail domain is responsible for establishing the cryptographic

keys to authenticate the email of its users. The setup procedure for that master authority
"un by wonderland. com is defined as follows:
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1. Select one of the identity-based signatures (IBS) discussed in Section 10.6.1. (For our
Section 10.6.5 experiment, we chose the RSA-based Guillou-Quisquater IBS [59]
because of its speed and simplicity.)

2. Generate a master keypair (M P K onderianas M S Kyonder1ana) for this scheme.

3. Define key issuance policy Policy, which defines if and how emails from this domaip
should be signed. (Details of this policy are defined in Section 10.6.3.)

4. Publish M P K onger1ana and Policy in the DNS as defined by the DKIM specifica-
tions.

User Identities Per the identity-based construction, a user’s public key PK can be
derived from any character string id_séring that represents the user’s identity. We propose
a standard format for id_string.

Master Domain In most cases, bob@foo . com obtains a secret key derived from a master
keypair whose public component is found in the DNS record for the expected domain,
foo.com. However, in cases related to bootstrapping (see Section 10.6.3), Bob might
obtain a secret key from a domain other than foo. com.

For this purpose, we build a issuing_domain parameter into the user identity character
string. Note that foo.com should always refuse to issue secret keys for identity strings
whose issuing_domain is not foo.com. However, foo.com may choose to issue a key
for alice@wonderland.com, as long as the issuing_domain within the identity string is
foo.com. We provide a clarifying example shortly.

Key Types The LES infrastructure may be expanded to other applications in the future,
such as encryption. To ensure thatakey is used only forits intended purpose, we include type
information in id_string. Consider type, a character string composed only of lowercase
ASCII characters. This type becomes part of the overall identity string. For the purposes
of our application, we define a single type: 1lightsig.

Key Expiration 1In order to provide key revocation capabilities, the user identity string
includes expiration information. Specifically, id_string includes the last date on which
the key is valid: expiration_date, a character string formatted according to 1SO-8601,
which include an indication for the timezone. For now, we default to UTC for timezone
disambiguation.

Constructing Identity Character Strings An id_string is thus constructed as
(issuing_domain}, (email), (expiration_date), (type)
For example, a 2006 LES identity string for email address bob@foo . com would be
foo.com,bob@foo.com,2006-12-31,lightsig

If Bob obtains his secret key from a master authority different than his domain, e.g.,
lightsig.org, his public key would necessarily be derived from a different id_string:

lightsig.org,bob@foo.com,2006-12-31,lightsig

Notice that 1ightsig.org will happily issue a secret key for that identity string, even
though the email address is not within the lightsig.org domain. This is legitimate, as
long as the issuing_domain portion of the id_string matches the issuing keyserver.
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pelivering User Secret Keys Each domain keyserver will choose its own interval for
regular user secret key issuance, possibly daily, weekly or monthly. These secret keys
are delivered by email, with a well-defined format—e.g., XML with base64-encoded key,
including a special mail header—that the mail client will recognize. The most recent key-
delivery email is kept in the user’s inbox for all mail clients to access, in case the user checks
his email from different computers. The mail client may check the correctness of the secret
key it receives against its domain’s master public key, either using a specific algorithm
inherent to most IBS schemes, or by attempting to sign a few messages with the new key
and then verifying those results. (For more details, see Section 10.6.1.)

The Repudiability Option The downside of signing email is that it makes a large portion
of digital communication undeniable [18, 114, 24]. An off-the-record opinion confided
over email to a once-trusted friend may turn into a publicly verifiable message on a blog!
We believe that repudiable signatures should be the default to protect a user’s privacy as
much as possible and that non-repudiable signatures should be an option for the user to
choose.

Numerous approaches exist for realizing repudiable authentication: designated-verifier
signatures [75], chameleon signatures [86] , ring signatures [125] , and more (see [30] for
an overview of deniable authentication with RSA). In theory, any of these approaches can
be used. We chose the ring signature approach for two reasons: (1) it fits seamlessly into
our identity-based framework without creating new key management problems, and (2) our
ring signature compiler can create ring signatures using keys from different schemes, as
discussed in Section 10.6.1. Thus, no domain is obligated to use a single (perhaps patented)
IBS.

Let us explore why ring signatures are an ideal choice for adding repudiability to LES.
Most repudiation options require the sender to know something about the recipient; in ring
signatures, the sender need only know the receiver’s public key. In an identity-based setting,
the sender Alice can easily derive Bob’s public key using the M P K¢oo.com for foo.com
in the DNS and Bob’s id_string. Setting the issuing-domain to foo.com, the type to
lightsig, and the email field to bob@foo . com for Bob’s id _siring is straightforward. For
expiration_date, Alige simply selects the current date. We then require that domains be
willing to distribute back-dated secret keys (to match the incoming public key) on request
to any of their members. Few users will take this opportunity, but the fact that they could
yields repudiability. Such requests for back-dated keys can simply be handled by signed
email to the keyserver.

This “Alice or Bob” authentication is valid: if Bob is confident that ke did not create
it, then Alice must have. However, this signature is also repudiable, because Bob cannot
convince a third party that he did not, in fact, create it. In Section 10.6.3, we discuss what
Alice should do if foo.com does not yet support LES, and in Section 10.6.3, we discuss
methods for achieving more repudiability.

Signing and Verifying Messages Consider Alice, alice@uonderland.com, and Bob,
bob@foo.com. On date 2008-07-04, Alice wants to send an email to Bob with subject
{subject) and body (body). When Alice clicks “send,” her email client performs the fol-
lowing actions:’

I. Prepare a message M to sign, using the DKIM canonicalization (which includes the
From:, To:, and Subject: fields, as well as a timestamp and the message body).

2. If Alice desires repudiability, she needs to obtain Bob’s public key:



442 BIOMETRICS AND AUTHENTICATION

(a) Obtain M PKsoo.com, the master public key for Bob’s domain foo. com, y
DNS lookup.

sing

(b) Assemble id_stringgy,, an identity string for Bob using 2006-07-04 g the
expiration_date: foo.com,bob@foo.com,2006-07-04, lightsig

(c) Compute PKgep, from M P Koo con and id_stringg.,. (We assume that p K
contains a cryptosystem identifier, which determines which IBS algorithm j

used here.)

3. Sign the message M using SKyiice, M P Kyonderiand.con: Optionally, for repygj.
ability, also use PKgop and M PK:oe.com With the Section 10.6.1 compiler. The
computed signature is o.

4. Using the DKIM format for SMTP header signatures, add the X-LES-Signature
containing o, id_string,, ;.. and id_stringg,,.

Upon receipt, Bob needs to verify the signature:

1. Obtain the sender’s email address, alice@wonderland. com, and the corresponding
domain name, wonderland. com, from the email’s From field.

2. Obtain M P K onderiand.con, Using DNS lookup (as specified by DKIM).

3. Ensure that PKjice is correctly computed from the claimed id_string atice and
corresponding issuing domain
M P K yonaeriand.con and that this id _string is properly formed (includes Alice’s email
address exactly as indicated in the From field, a valid expiration date, a valid type).

4. Recreate the canonical message M that was signed, using the declared From, To. and
Subject fields, the email body, and the timestamp.

5. If Alice applied an ordinary, non-repudiable signature, verify M, o, PKjjice.
M P K yongeriana.con to check that Alice’s signature is valid.

6. If Alice applied a repudiable signature, Bob must check that this signature verifies
against both Alice’s and his own public key following the proper ring verification
algorithm [8]:

(a) Ensure that PKpq, is correctly computed from the claimed id_strings,, and
the DNS-advertised M P K¢oq.con, and that this id_string is properly formed
(includes Bob’s email address, a valid expiration date, a valid type).

(b) Verify M, 0, PKj1ices M P K yongeriand.con» PEKpobs M P Ksoo.com to check that
this is a valid ring signature for “Alice or Bob™.

If all verifications succeed, Bob can be certain that this message came from someone
who is authorized to use the address alice@wonderland.com. If the wonderland.com
keyserver is behaving correctly, that person is Alice.
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LES vs. Other Approaches The LES architecture provides a number of benefits over
alternative approaches to email authentication. We consider three main competitors: SIDF
[104] and similar path-based verification mechanisms, S/MIME [155] and similar certificate-
based signature schemes, and DKIM, the system upon which LES improves. A comparison
chart is provided in table 10.6.2, with detailed explanations as follows:

1. Logistical Scalability: When a large organization deploys and maintains an archi-
tecture for signing emails, it must consider the logistics of such a deployment, in
particular how well the plan scales. With SIDF or DKIM, domain administrators
must maintain an inventory of outgoing mail servers and ensure that each is prop-
erly configured. This includes having outgoing mail servers properly authenticate
individual users to prevent intra-domain spoofing. Meanwhile, with certificate-based
signature schemes, domain administrators must provide a mechanism to issue user
certificates. By contrast, LES does not require any management of outgoing mail
servers or any additional authentication mechanism. LES only requires domains to
keep track of which internal email addresses are legitimate, a task that each domain
already performs when a user’s inbox is created.

Thus, LES imposes only a small incremental logistical burden, while DKIM, SIDF,
and S/MIME all require some new logistical tasks and potentially new authentication
mechanisms. Note that it is technically possible to use PGP in a way similar to LES,
with email-delivered certificates, though the PGP keyserver then needs to keep track
of individual user keys where LES does not.

2. Deployment Flexibility: SIDF and DKIM can only be deployed via server-side
upgrades, which means individual users must wait for their domain to adopt the
technology before their emails become authentic. PGP can only be deployed via
client-side upgrades, though one should note that many clients already have PGP or

S/MIME support built in. LES can be implemented either at the server, like DKIM,
or at the client, like PGP.

3. Support for Third-Party SMTP Servers: SIDF and DKIM mandate the use of pre-
defined outgoing mail servers. A user connected via a strict ISP may not be able to
use all of his email personalities. Incoming-mail forwarding services—e.g., alumni

Table 10.2 LES Compared to Other Approaches for Authenticating Email. “: PGP and
S/MIME can be adjusted to issue keys from the server, somewhat improving the scalability. B
DKIM can support user-level keys by placing each user’s public key in the DNS.

Property SIDF S/MIME  DKIM LES
Logistical scalability No No* No Yes
Deployable with client update only No Yes No® Yes
Deployable with server update only Yes No® Yes Yes
Supports third-party SMTP servers No Yes No Yes
Supports user privacy Yes No No Yes
Supports email alias forwarding No Yes Yes Yes
Supports mailing lists Good Poor Acceptable Acceptable




444 BIOMETRICS AND AUTHENTICATION

address forwarding—may not be usable if they do'not also provide outgoing mail
service. PGP and LES, on the other hand, provide true end-to-end functionality for
the sender: each user has a signing key and can send email via any outgoing mail
server it chooses, regardless of the From email address.

4. Privacy: LES takes special care to enable deniable authentication for privacy pur-
poses. SIDF, since it does not provide a cryptographic signature, is also privacy-
preserving. However, DKIM and S/MIME provide non-repudiable signatures which
may greatly affect the nature of privacy in email conversations. Even a hypotheti-
cal LES-S/MIME hybrid, which might use certificates in the place of identity-based
signatures, would not provide adequate privacy, as the recipient’s current public key
would often not be available to the sender without a PKI.

5. Various Features of Email: SIDF does not support simple email alias forwarding,
while S/MIME, DKIM, and LES all support it easily. SIDF supports mailing lists
and other mechanisms that modify the email body, as long as mailing list servers
support SIDF, too. On the other hand, S/MIME, DKIM, and LES must specify
precise behavior for mailing lists: if the core content or From address changes,
then the mailing list must re-sign the email, and the recipient must trust the mailing -
list authority to properly identify the original author of the message. An alternate
suggestion for these latter schemes is that the mailing list would append changes to
the end of the message, and then clients would discard these changes when verifying
signatures and displaying content to the users.

LES provides a combination of advantages that is difficult to obtain from other ap-
proaches. Of course, these features come at a certain price: LES suffers from specific
vulnerabilities that other systems do not have. We explore these vulnerabilities in Section
10.6.4.

10.6.3 Technology Adoption

The most challenging aspect of cryptographic solutions is their path to adoption and de-
ployment. The deployment features of LES resembles those of DKIM: each domain can
adopt it independently, and those who have not yet implemented it will simply not notice
the additional header information. However, in LES, individual users can turn to alternate
authorities to help sign emails before their own domain has adopted LES.

Alternate Domain Authorities Alice wishes to send an email to Bob. If both domains
are LES-enabled, they can proceed as described in Section 10.6.2. What happens, however,
if one of these elements is not yet in place?

Getting an Alternate Secret Key Alice may want to sign emails before her domain
wonderland.com supports it. LES allows Alice to select an alternate master authority
domain created specifically for this purpose; e.g., lightsig.org. lightsig.org must
explicitly support the issuance of external keys, i.e., keys corresponding to email addresses
at a different domain than that of the issuing keyserver. To obtain such a key, Alice will have
to explicitly sign up with lightsig.org, most likely via a web interface. Her 1d_string
will read:

lightsig.org,alice@uonderland.com,2006-12-31,lightsig




£
{
!
3
§

LIGHTWEIGHT EMAIL SIGNATURES 445

Note that we do not expect lightsig.org to perform any identity verification beyond
email-based authentication: the requested secret key is simply emailed to the appropriate
address. _

A recognized, noncommercial organization would run lightsig.org, much like MIT
runs the MIT PGP Keyserver: anyone can freely use the service. Alternatively, existing
identity services—e.g., Microsoft Passport [103] or Ping Identity [120]—might issue LES
keys for a small fee. Where PGP requires large, mostly centralized services like the MIT
PGP Keyserver, LES users may choose from any number of keyservers.

Of course, when Bob receives a LES email, he must consider his level of trust in the
issuing keyserver, especially when it is does not match the From: address domain. Most
importantly, certain domains—e.g., those of financial institutions—should be able to prevent
the issuance of keys for its users by alternate domains altogether. We return to this point
shortly.

Bootstrapping Repudiability “When Alice wishes to send an email to Bob, she may notice
that Bob’s domain f oo . com does not support LES. In order to obtain repudiability, however,
she needs to compute a public key for which Bob has at least the capability of obtaining the
secret key counterpart. For this purpose, Alice can use the same lightsig.org service,

with Bob’s id_string as follows:

lightsig.org,bob@foo.com,2006-07-04,1lightsig

Note that Bob need not ever actually retrieve a secret key from the lightsig.org
service. The mere fact that he could potentially retrieve a secret key at any time is enough
to guarantee repudiability for Alice. Note also that, somewhat unintuitively, it makes sense
to have Alice select the LES service to generate Bob’s public key: in our setting, Bob’s
public key serves Alice, not Bob, as it is an avenue for sender repudiability.

Announcing Participation: Domain Policies In an early (April 2005) draft of the LES
system, we considered how a domain would announce its use of LES. Since then, DKIM
has begun to consider this very same issue [66]. We defer to the DKIM effort for the exact
DNS-based pelicy architecture, and focus on the specific policy parameters that apply to
the unique features of LES.

Once an email domain decides to deploy LES, it needs to consider two aspects of its
deployment: InternalPolicy and ExternalPolicy. InternalPolicy defines how users of
wonderland.com should behave, in particular whether they are expected to sign their
emails, and whether they can use keys issued by other domains. It can also contain in-
formation on whether users are permitted to issue repudiable signatures. EzternalPolicy
defines what services wonderland.com offers to users outside the domain, specifically
Whether that domain is willing to issue keys to external users.

Thus, one would expect bigbank. com to issue strict policies on both fronts: Users of
bigbank. com must non-repudiably sign all of their emails, and no external authorities are
permitted, On the other hand, 1ightsig.org would offer a more relaxed ExternalPolicy,
offering to issue keys for external users, and a small ISP without the immediate resources
to deploy LES may offer an InternalPolicy, allowing its users to obtain keys from other
services, like 1ightsig. org, and certainly allowing its users to issue repudiable signatures.

Using Domain Policies to Automatically Detect Spoofing When Bob receives an
email from Alice, he may be faced with two possibly confounding situations: the message
bears no signature, or the message bears a signature signed with a PK for Alice derived
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from a different master authority than that of Alice’s email address. This is where the use
of LES domain policies comes into play: Bob must check the policy advertised by Alice’s
domain wonderland. com.

If the message bears no signature, but wonderland . com advertises an // InternalPolic Y
that requires signatures, Bob can safely consider the message a spoof and discard it. Simi-
larly, if the message bears a signature authorized by another domain, but wonderland. com
advertises an ExternalPolicy that bans the use of other authorities for its users, Bob can
again safely discard the message.

In other cases where the policies are not so strict, there remains a grey area where Bob
will have to make a judgment call on whether to trust an unsigned email, or whether to trust
the alternate issuing domain. These cases may be solved by reputation systems and personal
user preferences, though, of course, one shouldn’t expect every case to be decidable with
full certainty.

LES at the Server LES can be deployed entirely at the client, as described in the past
few pages. Alternatively, LES can be deployed partially or entirely at the server level,
mimicking DKIM, if the deploying domain so desires.

DNS MPK Lookups An incoming mail server can easily look up the M PK records of
senders when emails are received. This M PK can be easily included in additional SMTP
headers before delivering the emails to the user’s mailbox. This is particularly useful for
mail clients that may be offline when they finally process the downloaded emails.

Signature Verification The incoming mail server can even perform the signature verifi-
cation, indicating the result by yet another additional SMTP header. The client would be
saved the effort of performing the cryptographic operations. This is particularly useful for
low-resource clients, like cell phones or PDAs. In cases where the incoming email clashes
with the sending domain’s Policy, as illustrated in Section 10.6.3, the incoming mail server
can confidently discard the fraudulent email before the user even downloads it!

Signature Creation If a user sends email through his regular outgoing mail server, the
signature can be applied by that server. This optimization is also particularly useful for
inexperienced users and low-resource clients. This server-applied signature certifies the
specific From: address, not just the email domain.

Transparent LES  Internet Service Providers (ISPs) can combine the previous optimiza-
tions to provide all functionality at the server, as in DKIM. Home users can get all the
benefits of LES without upgrading their mail client or taking any action. This approach is
even more appealing—and necessary—for web-based email, particularly web-only email
providers like Hotmail, Yahoo, and Gmail. A web client may not provide the necessary
framework to perform public-key cryptography. (This is changing rapidly with advanced
Javascript capabilities, but it is not yet guaranteed in every browser.) In these cases, the
web server is the only system component which can provide signing and verification func-
tionality.

Forwarding, Multiple Recipients, and Mailing Lists Just like DKIM, LES provides
end-to-end signatures, which means that whenever the From and To addresses and other
message components are preserved, the signature remains valid. Thus, email alias for-
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warding is automatically supported by LES, like DKIM. Also like DKIM, a LES email to
multiple recipients is signed individually to each recipient.

The handling of signatures for mailing lists is currently under consideration by the DKIM
working group: should mailing list servers resign messages, or should signatures attempt
{0 survive mailing lists modifications? We defer to their approach for LES signatures, t00.
In this work, we only need to consider the case of repudiable LES signatures in the context
of mailing lists, which we address in the next Section.

Advanced Repudiation via Evaporating Keys LES offers repudiability because some-
one in possession of a secret key other than the message author’s might have signed the
message. When the recipient doesn’t present a proper avenue for repudiation, an alternate
approach is to setup an evaporating key. Perrigetal. [118], followed by Borisov et al. [24],
proposed evaporating keys in a MAC setting. The same trick can be done in the public key
setting.

Evaporating keys in LES are implemented by special keyservers that declare, in their
ExternalPolicy, whether they issue keys with a special type in their id_string: ltaevap.
At regular intervals—e.g., at the end of each day—these servers publish on a website the
secret-key component of the evaporating public key. If Alice wishes to use an evaporating
key, she does not need to notify the server: she simply computes the appropriate public key
against the server’s DNS-announced M P K, trusting that the server will evaporate the key
at the next given interval.

Even when Alice knows Bob’s public key, she can generate a three-party ring signature
“Alice or Bob or Evaporating Key,” where the key comes from a server that Alice trusts.
This provides Alice with total repudiability after the evaporation period. Of course, Bob
may always refuse to accept such signatures.

Repudiability for Mailing Lists Evaporating keys can provide repudiation for messages
sent to mailing lists. When Alice sends an email to a mailing list, she may not know the
eventual recipients of the email. If she signs with her secret key and an evaporating public
key, recipients can trust Alice’s authorship as much as they trust the evaporating domain,
and Alice gains repudiability as soon as the evaporation interval comes to an end. Because
email clients are not always aware of the fact that the recipient is a mailing list, one possible
option is to always create a three-way repudiable signature using Alice’s secret key, the
recipient’s public key, and an evaporating public key.

10.6.4 Vulnerabilities

LES shares enough in architectural design with DKIM that both systems face a number of
common vulnerabilities. At the same time, LES is different enough that we must examine
* the unique vulnerabilities it faces, too.

Vulnerabilities of DKIM and LES Both DKIM and LES distribute a single domain-
level key via the DNS. Thus, they share potential vulnerabilities surrounding this particular
operation.

1. DNS Spoofing: Since DNS is used to distribute domain-level public keys, it may
come under increased attack. An attacker might compromise DNS at any number of
levels: hijacking the canonical DNS record, all the way down to redirecting a single
user’s DNS queries. Fortunately, high-level compromises will be quickly noticed
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and remedied, though, if an attacker sets a long-enough time-to-live on the hijackeq
record, the corrupt DNS data may survive on downstream hosts for a few hours or
even days. During this period of time, spoofed emails would fool mail clients anqd
servers alike.

Spoofing DNS at a more local level, affecting only a handful of users, is particular]y
worrisome as it may go undetected for quite some time.

If these types of DNS attacks become more popular, it will become imperative to
implement more secure DNS options, such DNSSEC [45], or, as a stop-gap solution
before a secure DNS alternative is deployed, to provide certified keys in the DNS
TXT records.

Domain Key Compromise: An attacker might compromise the domain’s secret key
and then successfully sign emails from any address in that domain. If the attacker
is careful to use this compromised key with moderation, he may go unnoticed for
quite some time. Once such a compromise is discovered, of course, the remedy is
relatively simple: Generate a new key and update the DNS record.

¢

As phishing attacks become more targeted and sophisticated, it will become important
to strongly secure the secret domain key and possibly to renew it fairly regularly.

Zombie User Machine: an attacker might gain control of a user’s machine via
one of the numerous security exploits that turn broadband-connected machines into
“zombies”. In this scenario, the attacker can clearly send signed email exactly like
the legitimate user. If an attacker makes moderate use of this ability, it may take quite
some time to detect the problem.

There is, of course, no complete solution against zombie user machines given that
they can act exactly like legitimate users. However, with DKIM or LES signatures,
illegitimate behavior can eventually be detected and traced to a single user account.
Once this abuse has been detected, DKIM and LES domain servers can take rapid
action to shut down that user’s ability to send emails.

User Confusion: When a user receives a validly signed email, the email may still
be a phishing attack. A valid signature should not be interpreted as a complete
reason to trust the sender, though of course it should provide greater accountability
for criminal actions. One notes that, as of August 2005, 83 percent of all domains
with SIDF records were spammers [89].

DKIM Vulnerabilities Minimized by LES With LES, the threat of a domain key com-
promise can be significantly reduced compared to DKIM. In particular, whereas DKIM’s
domain secret key must be available to an online server—the outgoing mail server—the
generation of individual LES user keys can be performed by an offline machine that only
acts as a mail client. Even in the LES setting, where all cryptographic operations are done at
the server level, the domain could give the outgoing mailserver only user-level secret keys
with short expiration dates, instead of the master secret key. In that case, a compromise
of the outgoing mail server would only yield the ability to forge for a very short period of
time, and the domain could recover from this compromise without needing to update its
DNS entry. For other benefits of LES over DKIM, see Section 10.6.2.
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From: Key Server <ben@csail.mitedus> 13
Lightweight Signature Key Delivery
January 26, 2006 6:43:14 PM EST

- Ben Adida <ben@mit.edu>

This message contains your Lightweight Signature Secret Key.
By the time you read this message, your mail client should have
already saved the key. Thus, you can delete this email.

==BEGIN LTA SECRET KEY ==
44950159184415311184726098125024570371887960966796
281696907032344001203605999067377372263513286831708
30026164065864480009956243366604424919134980761677 f
33430045490344760022706569880241382872854771961459 JU\
77731868060318031830122557994707386234773013955083

395818544926689583231699335821557155651337 725676240 A
70298570 N

== END LTA SECRET KEY ==

Figure 10.18 A screenshot of the secret key delivery email that was automatically processed by
the LES extension in the user’s AppleMail client.

extensions are related to the underlying cryptography, we believe they will not impact
performance and usability.

We set up the client-side software to check every domain for a M PK, and to default
to csail.mit.edu when one wasn’t found. Emails from domains that do distribute a
MPEK were expected to be signed by default (i.e., for our test, the presence of a M PK
was interpreted as a strict /nternalPolicy.) Thus, an email from alice@wonderland.com
was not expected to be signed, though any signature on it was obviously checked. On the
other hand, emails from csail.mit.edu were expected to be signed at all times, and a
lack of signature was actively signalled to the recipient.

User Testing of Prototype A group of nine users was assembled to test our prototype
during a one week period from January 20 to 27, 2006. Each participant used a Mac running
OS X 10.4 and AppleMail 2.0. After reading a statement on the purpose of the test, users
were asked to sign an electronic consent form, double-click on an automatic installation,
and then go to a website to do a one-time key request for their email address. This request
took the place of a domain automatically sending the user a key by email. Requests were
automatically processed and, usually within one minute, a user received a secret key via
email, as shown in Figure 10.18. The secret key was automatically processed by the user’s
mail client running our LES extension.

A user’s client then began automatically signing all outgoing messages and checking all
incoming messages for valid signatures using LES. The two-party repudiability option was
turned permanently on for all users. A display at the top of each message let the user know
whether a message was properly signed or not; we provide examples in Figures 10.19 and
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Good Signature from srhohen@csail.mit.edu, as certified by csail.mit.edu, expires 2006-02-01.
Repudiated Against sweis@csail. mit.edu, as certified by ¢sail.mit.edu, expires 2006-01-22

m: Susan Hohenberger <srhohen@csail.mitedu>
ect: Re:LTA Running?

January 22, 2006 11:08:32 PM EST

Stephen Weis <sweis@csail. mit.edu=

Cc: Ben Adida <ben@mit.edu>

Hi Steve,
Figure 10.19 An example of a well-si gned email.
806 Don't Forge E-mail — Users O
- B;?ua 7}uﬁc- 7Rep|y Reiv?\lln ;M;d P_rs;t

‘E Emails from Dick.Cheney@csail.mit.edu should be signed, according to the DNS. |

Vice President Dick Cheney <Dick.Cheney@csail. mitedu=
Subject: Don't Forge E-mail
Date: January 26, 2006 11:38:52 AM EST
To: Ben Adida <ben@csail.mitedu=

Hi Ben. Just a friendly reminder not to forge e-mail.

- Dick |

Figure 10.20 An example of a forged intra-domain email from a domain with a strict
InternalPolicy, where, for the purposes of our test, all emails should be signed.

10.20. Users were asked to use their mail clients as normal and to report any feedback. At
the week’s end, they were asked to uninstall the software.

Apart from one user whose client-side configuration triggered an installer bug, users
managed to install, use, and uninstall LES without difficulty and reported no noticeable
performance difference. Though our group was not large enough to provide statistically
significant usability results, our experiment leads us to believe that this approach is, at the
very least, practical enough to pursue further.

User Feedback We learned from our user test that our unoptimized signature headers
of approximately 1500 bytes triggered errors with certain mail servers. A future version of
LES will remedy this situation by splitting the signature into multiple headers. Other users
noticed that signatures on emails with attachments and multiple recipients were not handled
appropriately, though we knew this in advance. Overall, users did notice when their client
warned them that an email from csail.mit.edu should be signed but wasn’t.
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Results In addition to user tests, we measured the cryptographic performance of the
System.

Experimental Setup We ran server benchmarks on a single-processor, 3.2 Ghz Intel
Pentium 4 with 2 Gigs of RAM and 512 MB of L2 cache, running Fedora Core Linux
with kernel v2.6.9. We used Python v2.3.3. We instrumented the Python code using the
standard, built-in timeit module, running each operation 1000 times to obtain an average
performance rating. We did not make any overzealous attempt to cut down the number of
normally-running background processes.

We ran client benchmarks on a 1.5 Ghz Apple Powerbook G4 with 1.5 Gigs of RAM,
running Mac OS X 10.4.4. We instrumented the Objective C code using the built-in Cocoa
call to Microseconds (), which returns the number of microseconds since CPU boot.
We ran each operation 1000 times to obtain an average running time. Though we were not
actively using other applications on the Powerbook during the test, we also made no attempt
to reduce the typically running background processes and other applications running in a
normal Mac OS X session.

Cryptographic Benchmarks We obtained the following performance numbers in Ta-
ble 10.6.5 on raw cryptographic operations for either 1024 or 2048-bit RSA moduli with a
public exponent size of 160 bits (Guillou-Quisquater exponents cannot be small).

Optimizations ~ As this was a proof-of-concept, our implementation omitted a number of
optimizations that a real deployment would surely include:

1. User secret key generation involves an effective RSA exponentiation by the private
exponent d. This can usually be sped up by a factor of 4 using the standard Chinesc
Remainder Theorem optimization.

2. In our prototype, Guillou—-Quisquater signatures are represented as a triple (¢, ¢, s),
though technically only (c, s) is required, as ¢ can be recomputed from ¢ and s. This
optimization would shorten the signature by about 40%, without altering performance
(as is, we verify that ¢ is correct by recomputing it from ¢ and s).

Table 10.3  Performance Estimates for an Average of 1000 Runs in milliseconds. The sizes
in bytes do not include encoding overhead. The symbol * indicates the number includes an
estimated 50 bytes for the identity string of the user.

1024-bit 2048-bit

modulus modulus
Operation Machine Time Size Time Size
Master Keypair Generation server 143 200 1440 300
User Secret Key Computation server 167 178* 1209 316*
User Public Key Computation client 0.03 178" 0.03 316*
Ring Signature of 100K message client 37 575* 210 1134*

Ring Verification of 100K message client 37 N/A 211 N/A
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3. All of our user secret keys were encoded in decimal during the email distribution
step (which meant they were roughly 1380 bytes) rather than alphanumeric encoding
(which could have compacted them to roughly 750 bytes).

Next Steps  The results of our experiment show that LES is practical enough to compete
with existing signature schemes in a realistic user setting, even when the two-party ring
signature is used. However, as our user base was small further investigation is needed.
An in-depth user study could help define exactly how repudiable signatures fit into the
picture, how users interpret signature notifications in their email client, and whether using
LES actually does, in practice, reduce the probability that a user will fall victim to an
email-based phishing attack.

Summary

The plethora of proposed solutions to the email spoofing problem reveals a clear demand
for trustworthy email. DKIM is one of the most promising approaches yet, with a simple
deployment plan, and reasonable end-to-end support via the use of cryptographic signatures.

We have proposed Lightweight Email Signatures (LES), an extension to DKIM which
conserves its deployment properties while addressing a number of its limitations. LES
allows users to sign their own emails and, thus, to use any outgoing mail server they choose.
This helps to preserve a number of current uses of email that DKIM would jeopardize:
choosing from multiple email personalities with a single outgoing mail server because of
ISP restrictions, or using special mail forwarding services (e.g., university alumni email
forwarding) that do not provide an outgoing mail server.

LES also offers better privacy protection for users. Each individual email address is
associated with a public key, which anyone can compute using only the domain’s master
public key available via DNS. With the recipient’s public key available, any number of
deniable authentication mechanisms can be used, in particular the ring signature scheme
WE Propose.

Our prototype implementation shows that LES is practical. It can be quickly imple-
mented using well-understood cryptographic algorithms that rely on the same hardness
assumptions as typical RSA signatures.

We are hopeful that proposals like DKIM and LES can provide the basic authentication
foundation for email that is so sorely lacking today. These cryptographic proposals are not
complete solutions, however, much like viewing an SSL-enabled website is not a reason o
fully trust the site. Reputation systems and “smart” user interfaces will likely be built on the
foundation that DKIM and LES provide. Without DKIM or LES, however, such reputation
systems would be nearly impossible.
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