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Abstract
We consider the problem of statistical sampling for au-
diting elections, and we develop a remarkably simple
and easily-calculated upper bound for the sample size
necessary for determining with probability at least c if
a given set of n objects contains fewer than b “bad” ob-
jects. While the size of the optimal sample drawn with-
out replacement can be determined with a computer pro-
gram, our goal is to derive a highly accurate and simple
formula that can be used by election officials equipped
with only a hand-held calculator. We actually develop
several formulae, but the one we recommend for use in
practice is:

U3(n, b, c)

=
⌈(

n− (b− 1)
2

)
·
(
1− (1− c)1/b

)⌉
=

⌈(
n− (b− 1)

2

)
·
(
1− exp(ln(1− c)/b)

)⌉
As a practical matter, this formula is essentially exact:
we prove that it is never too small, and empirical testing
for many representative values of n ≤ 10, 000, and b ≤
n/2, and c ≤ 0.99 never finds it more than one too large.
Theoretically, we show that for all n and b this formula
never exceeds the optimal sample size by more than 3
for c ≤ 0.9975, and by more than (− ln(1 − c))/2 for
general c.

1 Introduction

Given the increased popularity of voting systems with
voter-verified paper ballots, there is increased need for
effective audits to confirm that those paper ballots agree
with their electronic counterparts (which might be the re-
sult of scanning those ballots). Since auditing is expen-
sive (it is typically done by hand), it is important to mini-
mize the expense by choosing a sample size for the audit
that is as small as possible, while guaranteeing a desired

level of statistical confidence. This paper addresses the
question of determining the appropriate sample size and
develops nearly exact approximations that can be eval-
uated easily on a hand-held calculator. We believe that
these formulae will turn out to be useful in practice.

Given a universe of n objects, how large a sample
should be tested to determine with high confidence if
fewer than a given number b of them are bad? (In the vot-
ing context, these objects are typically voting precincts.)

As noted, our goal is to develop approximations that
are both accurate and simple enough to be usable, if not
by hand, then at least with the use of only a calculator,
with no computer needed. (Your calculator must be a
“scientific” one, though, so that you can compute arbi-
trary powers.1)

We first present a simple approximate “rule of thumb”
(the “Rule of Three”) for estimating how big such a sta-
tistical sample should be, when using sampling with re-
placement.

This “Rule of Three” is simple and known, although
perhaps not particularly well-known. Jovanovic and
Levy [15] discuss the Rule of Three, its derivation, and
its application to clinical studies. See also van Belle [24].

We then address the question of sampling without re-
placement, which is the desired procedure for an election
audit, of course, and provide improved formulae for sam-
ple size when sampling without replacement.

This paper justifies and improves approximations orig-
inally developed by Rivest [20], who attempted to correct
for the bias in the Rule of Three due to sampling with re-
placement instead of sampling without replacement, by
only sampling (now without replacement) the expected
number of distinct elements that the Rule of Three sam-
ple (with replacement) would have contained. While that
may be an interesting approach, the current paper derives
its approximation formulae more directly, and provides
rigorous upper and lower bounds on their approximation
error.

Finally, in Section 5, we address three related ques-



tions: (1) determining the confidence level for a given
audit size and level of fraud one wishes to detect, (2) de-
termining the minimum amount of fraud one can detect
for a given audit size with a given confidence level, and
(3) auditing with constraints, such as the requirement that
at least one precinct in each county be audited.

1.1 Related Work

Saltman [22, Appendix B] was the first to study sample
size (for sampling without replacement) in the context of
voting; the basic formulae he develops for the optimal
sample size are the ones we are trying to approximate
here.

(There is much earlier relevant work on sampling the-
ory, particularly the notion of “lot acceptance sampling”
in statistical quality control. For example, the Dodge-
Romig Sampling Inspection Tables [6], developed in the
1930’s and first published in 1940, provide generaliza-
tions of the simple sampling methods used here.)

Previous work by Neff [17] is noteworthy, particularly
with regard to the economies resulting from having a
larger universe of many smaller, easily-testable, objects.
Brennan Center report [3, Appendix J] gives some sim-
ple estimation formula, based on sampling with replace-
ment. An excellent report [8] on choosing appropriate
audit sizes by Dopp and Stenger from the National Elec-
tion Data Archive Project is now also available; there is
also a nice associated audit size calculation utility on a
web site [16]. Stanislevic [23] also examines the issue
of choosing a sufficient audit size; he gives a particularly
nice treatment of handling varying precinct sizes.

Some states, such as California, mandate a certain
level (e.g. 1%) of auditing [19]. As we shall see, using
a fixed level of auditing is not a well justified approach;
sometimes one may need more auditing, and sometimes
less, to obtain a given level of confidence that no fraud
has occurred.

2 Auditing Model

Suppose we have n “objects.” In a voting context, such
an “object” might typically correspond to a precinct; it
could also correspond to a particular voting machine or
even an individual ballot, depending on the situation; the
math is the same.

In this paper, we assume an adversarial situation,
where an adversary may have corrupted some of the ob-
jects. For example, the adversary might have tampered
with the results of some precincts in a state.

Thus, after the adversary has acted, each object is
either “good” (that is, clean, untampered with, uncor-
rupted), or “bad” (that is, tampered with, corrupted).

We now wish to test a sample of the objects to de-
termine with high confidence that the adversary has not
committed a “large” amount of fraud.

(As we shall see, this is related to the following stan-
dard combinatorial problem: We have an urn containing
n balls, b of which are black and n − b of which are
white; we wish to sample enough balls to have a suffi-
ciently high probability of sampling at least one black
ball.)

We assume that each object is independently au-
ditable. That is, there is a test or audit procedure that
can determine whether a given object is good or bad. We
assume this procedure is always correct.

For example, testing the results in a precinct may in-
volve comparing the electronic results from the precinct
with a hand count of the corresponding voter-verified pa-
per ballots. The precinct may be judged to be good if
the results are equal (or perhaps if they are “sufficiently
close”).

Of course, there may easily be explanations for a dis-
crepancy other than malicious behavior on the part of
some “adversary.” Indeed, one of the normal goals of
such a post-election audit is to assess if there were sys-
tematic errors in the results due to undetected equip-
ment or procedural problems, such a misprogramming
ballot style or other configuration data, in addition to as-
sessing if fraud was present. In general, electronic offi-
cials will try to determine the cause of any discrepancies
found, whether it be due to malicious causes or not, and
take appropriate corrective or remedial action as neces-
sary (which might involve further auditing and investiga-
tions).

While discrepancies found are typically not due to ad-
versarial behavior (fraud), in this paper we nonetheless
focus on the problem of detecting fraud in election re-
sults through the use of appropriate post-election audit-
ing. This is in part because this is the most difficult case;
we feel that systematic problems not due to malicious
behavior are likely to be uncovered pretty well anyway
during an audit designed to detect fraud. (Although we
do favor requirements such as ensuring that at least one
precinct in each county participate in a post-election au-
dit.)

To continue with our modeling: we’ll now simply as-
sume that each object tested is found to be “good” or
“bad.” In the voting scenario, we assume each precinct
whose results have been in any way manipulated by an
adversary will test as “bad,” and each precinct which the
adversary has not touched will test as “good.”

This is of course a bit of a simplification, since an
adversary may try to influence an election by making
very small modifications to the results a large number
of precincts, hoping that each such modification will be
judged as too small to cause the precinct to be flagged as
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“bad” during the audit.
We note in this context that Ansolabehere and

Reeves [2] determined from historical recount data in
New Hampshire that there is typically a difference in
range of 0.5%–1.0% between an initial machine count of
a set of opscan ballots and a hand recount of those bal-
lots; adversarial manipulation in a similar range might
pass as non-anomalous. Similar results were found by
Alvarez, Katz, and Hill [1] in their study of the recount-
ing of punch-card ballots in California. (Another in-
teresting study of recounts in New Hampshire by Her-
ron and Wand [12] examines the question as to whether
the choice of different voting technologies by different
precincts was a source of partisan bias in the 2004 elec-
tion results.)

Nonetheless, in spite of the clear existence of a small
level of such “measurement noise,” we’ll continue to
make the simplifying assumption for our purposes in this
paper that each precinct measures cleanly as “good” or
“bad.”

For more general discussions of fraud in elections, see
the references collected by Hill [13], the report by the
EAC [4], and the report by the Brennan Center [3]. For
more general discussions of auditing election results, see
the case study by electionline.org [9], and the
Brennan Center web site [10] (including the House testi-
mony by Norden [18]).

To determine whether any fraud at all occurred, we
would need to test all objects. Here we give up the abil-
ity to detect any fraud, and test only a sample of the ob-
jects in order to determine, with high confidence, that a
large amount of fraud has not occurred. We lose a bit of
confidence in return for a large increase in efficiency, as
is usually the case for a statistical test.

Let b denote the number of “bad” objects we wish to
detect, where b is a given constant, 1 ≤ b ≤ n. That
is, we wish to determine, with high confidence, that the
number of corrupted objects is not b or greater.

Since the adversary wishes to escape detection, he
will corrupt as few objects as possible, consistent with
achieving his evil goals. We assume that corrupting b
objects suffices, and so the adversary corrupts exactly b
objects. (For voting, this implies that all precincts are
assumed to have roughly the same size; see Section 2.1.)

We let c denote our desired “confidence level”—that
is, we want the probability of detecting corruption of b or
more objects to be at least c, where c is a given parameter,
0 ≤ c ≤ 1 (e.g. c = 0.95).

We let
f = b/n (1)

denote the fraction of bad objects we wish to detect; we
call f the “fraud rate.” Given one of b or f , the other is
determined, via equation (1).

We will be considering samples drawn both with re-
placement and without replacement. For mnemonic con-
venience, we use t to denote sample sizes when the sam-
ple is drawn with replacement, and u to denote sample
sizes when the sample is drawn without replacement.
(Think of “u” for “unique” or “distinct”.)

The auditing process can be cast in the terminology
of a conventional “hypothesis-testing” framework. We
set the null hypothesis to be the hypothesis we wish to
refute,

H0 = the reported election outcome is incorrect

(i.e., there was fraud or other error in the electronic to-
tals sufficient to change the election outcome), while the
alternative hypothesis is its complement,

H1 = the reported election outcome is correct

(i.e., the electronic totals give the correct result).
We then randomly select a sample of precincts to au-

dit and hand-count the corresponding paper ballots. If
the hand-counts all match the electronic totals in those
precincts, we have event:

D0 = no sampled precincts were “bad”

(where “bad” means “showed evidence of possible
fraud”); otherwise, we have event:

D1 = at least one sampled precinct was “bad” .

Our statistical test is designed in such a way that if the
null hypothesis were true (sufficient fraud to change the
election outcome exists), then it is very unlikely (proba-
bility at most 1 − c) that no “bad” objects would be de-
tected (event D0) due to the random nature of sampling.
Thus, the absence of any “bad” objects in our sample per-
mits us to reject the null hypothesis with high confidence,
and in this case, we would typically declare the winner
to be the winner as shown by the electronic totals.

However, if we do detect “bad” objects (event D1),
we cannot reject the null hypothesis. This does not nec-
essarily imply that the null hypothesis is true; rather, we
simply do not have sufficient evidence to reject the null
hypothesis and declare a winner. (Indeed, if b−1 objects
were corrupted, a quantity posited to be insufficient to
alter the election outcome, then it is quite likely nonethe-
less that a “bad” object would be detected.) In the case
where we have evidence that some fraud may have oc-
curred, one would typically proceed with a wider inves-
tigation of the election. Thus, our statistical test is in-
herently one-sided: the absence of any “bad” objects in
our sample allows us to reject the null hypothesis with
high confidence and typically declare a winner, while the
presence of any “bad” objects would typically trigger a
wider investigation.
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In hypothesis testing terms, one considers two types
of errors. A Type I error occurs when the null hypothesis
is rejected incorrectly. For a given statistical test, the
probability that a Type I error occurs is denoted by α; in
our case, this type of error occurs with probability

α = Pr[D0 | H0] .

Here we have failed to detect fraud (or other significant
error) sufficient to change the outcome of the election.

Similarly, a Type II error occurs when the null hypoth-
esis is accepted incorrectly. For a given statistical test,
the probability that a Type II error occurs is denoted by β;
in our case, this type of error occurs with probability

β = Pr[D1 | H1] .

Here we have detected errors or fraud in some precincts
even though the election outcome is correctly determined
by the electronic totals.2

The quantity α is the statistical significance level of
the test, and the quantity 1 − β is the statistical power
of the test. We are primarily concerned with the signifi-
cance level of our test, i.e, the probability that we fail to
detect an incorrect election outcome due to the nature of
random sampling, a Type I error that occurs with proba-
bility α. In this paper, for historical reasons, we also refer
to the confidence level c of our test, where c = 1−α. (In
the final version of this paper we may stick with the more
typical usage.)

If we choose b appropriately (as, for example, sug-
gested in the next section), then we have that

α = Pr[D0 | H0] ≤ Pr[D0 | H ′
0]

where
H ′

0 = b precincts are “bad” .

By determining an appropriate value of b, and then
choosing the appropriate sample size to make Pr[D0 |
H ′

0] sufficiently small, we will make the probability of a
Type I error at most α = 1 − c. Thus, the probability of
reporting an incorrect election outcome will be at most
1− c.

2.1 Deriving b from the margin of victory
We now explain how a suitable value for b might be de-
termined for an election audit from the apparent mar-
gin of victory, using a method suggested by Dopp and
Stenger [8]. Here, b is the number of precincts that an ad-
versary would have had to corrupt to swing the election.
If we assume (as is suggested by Dopp and Stenger to be
reasonable) that the adversary wouldn’t dare to change
more than a fraction s = 0.20 (i.e. 20%) of the votes in a
precinct, and that the “winner” won by a margin of m of

the votes (where 0 ≤ m ≤ 1), then the adversary would
have had to have corrupted a fraction

f = m/(2s) = 2.5m (2)

of the precincts—or, equivalently,

b = mn/(2s) = 2.5mn (3)

precincts.
(We assume all precincts have the same size. If all

of the votes changed had been moved from the actual
winner to the alleged winner, then a margin of victory of
a fraction m of the votes cast for the alleged winner must
have involved at least a fraction m/(2 ∗ 0.20) = 2.5m of
the precincts, since each precinct corrupted changed the
difference in vote count between the top two candidates
by 2s = 40% of the vote count of that precinct.) If the
apparent winner has won by m = 1% in a county with
400 precincts, you would want to test for b = 2.5mn =
10 or more bad precinct counts.

This approach can be modified in various ways (e.g.
by adjusting s) to suit particular situations; in any case
a value of b is determined that represents the minimum
number of precincts that an adversary “must” corrupt in
order to have changed the election outcome.

See Saltman [22], Stanislevic [23], or Dopp et al. [8]
for further examples and excellent treatment of the issue
of computing appropriate target values b (or f ) given a
set of election results and possibly varying precinct sizes.
Rivest [21] also treats the case of varying precinct sizes.

3 Sampling with replacement and the Rule
of Three

We begin by examining sampling with replacement
(where the sample may contain an element more than
once). Although this wouldn’t be used in practice for
auditing an election, it is a useful starting point for our
analyses, and provides some reasonably accurate estima-
tion formulae that can be easily computed in one’s head.

For sampling with replacement, we use t to denote the
sample size, and t∗(n, b, c) to denote the optimal sample
size (when sampling a set of size n with replacement, in
order to find at least one bad element, with probability at
least c, when b bad elements are present). We’ll later use
the analogous notation u∗(n, b, c) for the optimal sample
size for sampling without replacement.

Here now is a simple “rule of thumb” for sampling
with replacement.
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Rule of Three:
Test, using sampling with replacement, enough ob-
jects so that you expect to see at least three corrupted
objects. That is, ensure that:

ft =
bt

n
≥ 3. (4)

or equivalently:
t ≥ 3n/b . (5)

(Where t is the number of objects to be tested, b is
the number of bad objects one wishes to detect, and
f = b/n, at a 95% confidence level.)

As a simple example: to detect a 1% fraud rate (f =
0.01) (with 95% confidence), you then need to test t =
300 objects.

Note that for a given fraud rate f , the rule’s sample
size is independent of the universe size n. This may
seem counter-intuitive, but is to be expected. If you have
some well-mixed sand where most sand grains are white,
but a fraction f are black, you need only sample a hand-
ful to be confident of obtaining a black grain, no matter
whether the amount of sand to be examined is a cupful,
a bucketfull, or a beach.

The sample size t may even be greater than n (if b <
3); this is OK since we are sampling with replacement,
and it may take more than n samples (when sampling
with replacement) to get adequate coverage when b is so
small.

3.1 A Sampling with Replacement Bound
We now justify the Rule of Three, and then generalize
it to handle an arbitrary confidence level (not just c =
0.95). Let f = b/n be the fraud rate, and let t be the
sample size.

We first justify the Rule of Three for a confidence level
of 95%; this analysis follows that given by Jovanovic and
Levy [15].

The probability that a fraud rate of f or greater goes
undetected (when drawing a sample of size t with re-
placement) is:

(1− b/n)t = (1− f)t . (6)

so t must be large enough so that

(1− f)t ≤ 0.05

or equivalently:

t ≥ ln(0.05)
ln(1− f)

(7)

Since

ln(0.05) = − ln(20) = −2.9957 ≈ −3

—isn’t it so very nice that ln(20) is almost exactly 3?—
equation (7) is implied by

t ≥ −3
ln(1− f)

. (8)

Using the well-known approximation

ln(1− f) ≈ −f , (9)

which is quite accurate for small values of f (and −f is
an lower bound on ln(1−f)), equation (8) is implied by:

t ≥ 3
f

which can be rewritten as

t ≥ 3n

b
(10)

or equivalently as
ft ≥ 3 . (11)

Equation (11) has a very nice and intuitive interpreta-
tion. Since t is the number of objects tested, and f is the
fraud rate, then ft is the number of objects among the
test objects that we would expect to find corrupted.

The sample should be large enough so that you ex-
pect it to contain at least three corrupted objects. If you
sample enough so that you expect to see at least three
corrupted objects on the average, then you’ll see at least
one corrupted object almost always (i.e., at least 95% of
the time).

(Similarly, a random variable X distributed according
to the Poisson distribution with mean λ > 3 satisfies
Pr[X = 0] = e−λ < e−3 = 0.04978 . . .)

As a running example, suppose that n = 400, b = 10,
and f = b/n = 0.025; the Rule of Three says to pick a
sample of size 3n/b = 3 ∗ 400/10 = 120.

(We shall see that the optimal sample size for sam-
pling without replacement for these parameters is a lit-
tle smaller—103—, so considering sample size with
replacement may be a good first-cut approximation to
the sample size needed for sampling without replace-
ment.This “Rule of Three” ( t ≥ 3n/b ) is simple enough
for some practical guidance.)

The Rule of Three is also easily generalized to handle
other confidence levels. For a general confidence level c,
0 ≤ c ≤ 1, we need that

(1− f)t ≤ (1− c) (12)

so we obtain the following formulae for the optimal sam-
ple size t∗(n, b, c), when sampling with replacement:

t∗(n, b, c) =
ln(1− c)
ln(1− f)

(13)

=
ln(1− c)

ln(1− b/n)
. (14)
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We note that equation (14) may give “optimal” values
for t∗ that are non-integral, while in practice the sample
size must be an integer. Of course, the optimal integral
sample size is then just t∗ rounded up to the next integer,
yielding T∗:

T∗(n, b, c) = dt∗(n, b, c)e .

Using equation (9), we obtain the generalized form of
the Rule of Three as an approximation:

t1(n, b, c) =
−n ln(1− c)

b
. (15)

This completes our discussion of sample sizes for sam-
pling with replacement.

4 Sampling without replacement

Suppose we pick u objects to test, where 0 < u ≤ n.
These u objects are chosen independently at random,
without replacement—the objects are distinct.3

In an election, if any of the u tested objects (e.g.
precincts or voting machines) turns out to be “bad,” then
we may declare that “evidence of possible fraud is de-
tected” (i.e., at least one bad object was discovered).
Otherwise, we report that “no evidence of fraud was de-
tected.” When a bad object is detected, additional inves-
tigation and further testing may be required to determine
the actual cause of the problem.

We wish it to be the case that if a large amount of fraud
has occurred (i.e., if the number of corrupted objects is
b or greater), then we have a high chance of detecting at
least one bad object.4

Given that we are drawing, without replacement, a
sample of size u from a universe of size n containing
b bad objects, the chance that no bad objects are detected
(i.e. all bad objects escape detection) is:

e(n, b, u) =
(

n− b

u

)/(n

u

)
(16)

=
(n− b)!

(n− b− u)!
· (n− u)!

n!
(17)

=
u−1∏
k=0

n− b− k

n− k
; (18)

the chance that at least one bad object is detected is:

d(n, b, u) = 1 − e(n, b, u) (19)

= 1 −
u−1∏
k=0

n− b− k

n− k
. (20)

We note here the convenient duality between b and u,
which we shall use later:

e(n, b, u) =
(n− b)!

(n− b− u)!
· (n− u)!

n!
(21)

=
(n− u)!

(n− u− b)!
· (n− b)!

n!
(22)

= e(n, u, b) . (23)

(If we think of the b bad objects as the “sample” and
the u audit objects as the targets to be detected, then we
are just switching the role of the bad objects and the au-
dited objects.) This duality gives us another expression
for e(n, b, u), dual to equation (18):

e(n, b, u) =
b−1∏
k=0

n− u− k

n− k
. (24)

For a given confidence level c (e.g. c = 0.95), the
optimal sample size u∗ = u∗(n, b, c) is the least value of
u making d(n, b, u) at least c:

u∗(n, b, c) = min{u | d(n, b, u) ≥ c } (25)
= min{u | e(n, b, u) ≤ 1− c } . (26)

We now address again the issue of non-integral sam-
ple sizes. Although of course sample sizes are integral
in practice, our formulae work perfectly well for non-
integral sample sizes, and it is convenient for us to work
with them: note that e(n, b, u) equation (24) is well de-
fined when u is any real number, and so d(n, b, u) = 1−
e(n, b, u) is also well defined when u is any real number.
In practice, a non-integral optimal sample size u∗(n, b, c)
would be rounded up to the next integer du∗(n, b, c)e,
which we denote as U∗(n, b, c).

Equations (16)–(20) and (25)–(26) are not new here;
they have been given and studied by others (e.g. [22, 17,
8]).

In our running example, we have n = 400 and b =
10; we wish to determine if a set of 400 objects contains
10 or more bad ones. Using a computer program to try
successive values of u yields the result:

U∗(400, 10, 0.95) = 103 ; (27)

we need to test a sample (drawn without replacement) of
size at least 103 in order to determine if our set of 400
objects contains 10 or more bad objects, with probability
at least 95%.

In some sense, this completes the analysis of the prob-
lem; it is easy for a computer program to determine
the optimal sample size U∗(n, b, c), given n, b, and
c. (See http://uscountvotes.org where such a
program may be posted.)

However, it is useful to find simple but accurate ap-
proximations for this optimal value U∗(n, b, c) of u, that
can be easily calculated without the use of a computer.
That is the main purpose of this paper—to derive accu-
rate and rigorously justified approximations for U∗ that
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can be evaluated by election officials using only a pocket
calculator.

The formulae of the previous section for T∗ (for sam-
pling with replacement) are of course crude estimates for
U∗ (sampling without replacement); they are overesti-
mates.

To see this, note that equation (18) implies that

e(n, b, u) ≤
(

1− b

n

)u

(28)

Now (1 − b/n)u is the probability of drawing a mul-
tiset of size u with replacement having no bad objects.
Thus, for a fixed sample size, the probability of failure
when drawing samples without replacement is, as one
would expect, upper bounded by the probability of fail-
ure when drawing samples with replacement. The qual-
ity of this upper bound is a function of the difference
between the right-hand sides of equation (18) and in-
equality (28). Note that this difference grows as u in-
creases, and for high probability results with large n and
small b, u can be quite large. (Indeed, when b = 1 and c
very large, t∗(n, b, c) is approximately n ln(n) — this is
the “coupon collector’s problem” — while u∗(n, b, c) is
clearly no larger than n.)

Thus, we can in fact use the Rule of Three or other for-
mulae from the preceding section to get an upper bound
on the sample size needed for sampling without replace-
ment; in many cases this may give a satisfactory first-cut
answer. But we can do better, as the next section shows.

4.1 Upper Bounds on Optimal Sample Size
for Sampling without Replacement

We now develop an upper bound on the optimal sam-
ple size when sampling without replacement to detect at
least one of b bad objects in a universe of size n with
probability at least c.

From equation (24), one can derive (analogous to the
derivation of equation (28) from equation (18)), the fol-
lowing bound:

e(n, b, u) ≤
(
1− u

n

)b

(29)

Our goal is to determine a value u is sufficiently large
to guarantee that e(n, b, u) is at most 1− c; from the
bound (29) we can obtain such a sufficiently large u:(

1− u

n

)b

≤ 1− c

⇔ 1− u/n ≤ (1− c)1/b

⇔ u/n ≥ 1− (1− c)1/b

⇔ u ≥ n(1− (1− c)1/b) (30)

Since (29) holds for any u satisfying (30), u∗(n, b, c)
is no larger than the right hand side of (30). This upper
bound on u∗(n, b, c) is our first major result for sampling
without replacement; it is a formula that is easy to calcu-
late, yet remarkably accurate.

We designate this bound as u1:

First Upper Bound on u∗(n, b, c):

u∗(n, b, c) ≤ u1(n, b, c) (31)

where

u1(n, b, c) = n(1− (1− c)1/b) (32)
= n(1− exp(ln(1− c)/b))

The formula for u1(n, b, c) is the same as the that pro-
posed by Rivest [20] as an approximation for u∗(n, b, c);
however, that paper only justified u1 as an approximation
heuristically and empirically; here we have shown that it
is a firm upper bound for u∗(n, b, c).

Of course, if we round up u1(n, b, c) to obtain
U1(n, b, c), we obtain an integer upper bound on the op-
timal integral sample size:

U1(n, b, c) = du1(n, b, c)e
≥ du∗(n, b, c)e = U∗(n, b, c) .

A Tighter Upper Bound: We can obtain a tighter up-
per bound by analyzing the product in equation (24) di-
rectly. Using the following well-known inequalities re-
lating the harmonic, geometric, and arithmetic means for
non-negative values xi [11]

k∑k
i=1 1/xi

≤ k

√√√√ k∏
i=1

xi ≤
∑k

i=1 xi

k
(33)

we proceed as follows, where Hk is the k-th harmonic
number, i.e., Hk = 1 + 1/2 + · · ·+ 1/k.

e(n, b, u) =
b−1∏
k=0

(
1− u

n− k

)

=

 b

√√√√b−1∏
k=0

(
1− u

n− k

)b

≤

(
1
b

b−1∑
k=0

(
1− u

n− k

))b

(34)

=

(
1− u

b
·

b−1∑
k=0

1/(n− k)

)b

=
(

1− u · Hn −Hn−b

b

)b

7



As before, our goal is to determine a u sufficient to guar-
antee that the above quantity is at most 1−c. Solving the
inequality

(
1− u · Hn −Hn−b

b

)b

≤ 1− c

in much the same manner as the derivation of inequal-
ity (30), we obtain

u ≥ b

Hn −Hn−b
· (1− (1− c)1/b) (35)

Note that the bound obtained in inequality (35) was
derived using only one approximation, inequality (34)
above. The right-hand side of inequality (35) is our sec-
ond upper bound on the optimal sample size required for
sampling without replacement. We call this upper bound
u2(n, b, c); we also let U2(n, b, c) = du2(n, b, c)e; this is
of course an upper bound on U∗(n, b, c).

Second Upper Bound on u∗

u∗(n, b, c) ≤ u2(n, b, c) (36)

where

u2(n, b, c)

=
b

Hn −Hn−b
· (1− (1− c)1/b) (37)

=
b

Hn −Hn−b
· (1− exp(ln(1− c)/b))

Unfortunately, most calculators don’t have a “har-
monic number” button, so inequality (35) isn’t so useful
in practice!

To fix this situation, without weakening our bound too
much, we note that

b

Hn −Hn−b
=

b∑b−1
k=0

1
n−k

is the harmonic mean of the set of values {n, . . . , n −
b + 1}; thus, we can obtain a simpler though slightly
weaker bound by employing inequality (33) and replac-
ing this harmonic mean by the corresponding (and some-
what larger) arithmetic mean (n− (b−1)

2 ), which yields

u ≥
(
n− (b− 1)

2

)
·
(
1− (1− c)1/b

)
(38)

This gives our third and final upper bound:

Third Upper Bound on u∗

u∗(n, b, c) ≤ u3(n, b, c) (39)

where

u3(n, b, c)

=
(
n− (b− 1)

2

)
·
(
1− (1− c)1/b

)
(40)

=
(
n− (b− 1)

2

)
·
(
1− exp(ln(1− c)/b)

)

Note the similarity of inequalities (30) and (38): the
factor n has been replaced with (n − (b−1)

2 ). Thus, the
new inequality (38) (and inequality (35) which precedes
it) is a strict improvement over inequality (30) for all b >
1 (and the same for b = 1).

We let U3(n, b, c) = du3(n, b, c)e; this is of course
also an upper bound on U∗(n, b, c).

Inequality (38) is our third (and final) upper bound on
the optimal sample size required for sampling without
replacement; it is the inequality that we recommend for
actual use in practice.5 As we see in the next section, it
should never give a sample size that is more than 3 too
large, assuming that c ≤ 0.9975.

4.2 Lower Bounds on Optimal Sample Size
for Sampling without Replacement

Here is a simple proof that our bound (38) does not ex-
ceed u∗(n, b, c) by too much. Interestingly, the amount
that it exceeds u∗(n, b, c) is largely independent of both
n and b.

We now give a lower bound on our probability of fail-
ure, derived from equation (24), complementary to our
previous upper bound (29):

e(n, b, u) =
b−1∏
k=0

n− u− k

n− k

=
b−1∏
k=0

(
1− u

n− k

)

≥
(

1− u

n− b + 1

)b

.

Thus, our probability of failure is at least 1− c if(
1− u

n− b + 1

)b

≥ 1− c .

Solving for u, this is equivalent to

u ≤ (n− (b− 1)) · (1− (1− c)1/b) .
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Thus,

u∗(n, b, c) ≥ (n− (b− 1)) · (1− (1− c)1/b) (41)

Note the resemblance of this lower bound on u∗ to the
upper bound of inequality (38):

u∗(n, b, c) ≤ (n− (b− 1)/2) · (1− (1− c)1/b).

Now we can show that the bound (38) does not exceed
u∗(n, b, c) by much; the difference is at most

(b− 1)
2

· (1− (1− c)1/b). (42)

Note that this is independent of n. It is also effectively
independent of b: Using elementary calculus, one can
show that the difference (42) above is monotonically in-
creasing in b and that

lim
b→∞

[
b−1
2 · (1− (1− c)1/b)

]
=

− ln(1− c)
2

Thus, our bound u3(n, b, c) never exceeds u∗(n, b, c) by
more than (− ln(1 − c))/2, independent of n and b, and
this quantity is less than 3 for all c ≤ 0.9975. (It follows
that U3(n, b, c)− U∗(n, b, c) is at most 3.)

Similar reasoning shows that our bound u1(n, b, c)
never exceeds u∗(n, b, c) by more than twice as much as
u3(n, b, c) does: it is off by no more than (− ln(1 − c)),
independent of n and b, and this quantity is less than 6
for all c ≤ 0.9975.

In conclusion, we have a sample size

u3(n, b, c) =
(
n− (b− 1)

2

)
·
(
1− (1− c)1/b

)
that is

• simple,

• provably “conservative” (an upper bound on
u∗(n, b, c)),

• provably accurate (exceeding u∗ by no more than
(− ln(1− c))/2 for all n, b, c), and

• empirically very accurate (see next table).

The following table demonstrates the accuracy of our
formula for n = 500 (slightly larger than the number
of precincts in a typical U.S. Congressional district), for
c = 0.95 and c = 0.99, and various values of b. The
“low” column gives the lower bound of equation (41), the
“opt” column gives the optimal sample size U∗(n, b, c),
and the “up” column gives our upper bound u3(n, b, c).

c = 0.95 c = 0.99
n b low opt up low opt up

500 1 475 475 475 495 495 495
500 2 388 388 388 450 450 450
500 5 224 225 225 299 300 300
500 10 128 129 129 182 183 183
500 20 67 69 69 99 101 101
500 50 27 28 28 40 42 42
500 100 12 14 14 19 21 21
500 200 5 6 6 7 9 10

5 Related Questions

This paper has largely been concerned with determining
the size of a statistical audit u for a given universe of size
n, desired fraud detectability level b, and desired confi-
dence c. However, there are related “inverse” questions
which are frequently asked that our bounds and tech-
niques can usefully address.

For example, the size u of a statistical audit may be
mandated by law (e.g., u = 0.02n for 2% audit), and
one may wish to know for this u and a given b what con-
fidence level c one has in detecting corruption of b (or
more) objects. This is the “confidence level” question.

Or, one may wish to know for this u and a given c the
smallest number b of corrupted objects one can detect
with confidence at least c. This is the “level of fraud
detectability” question.

These two questions can be effectively answered using
the bounds or techniques developed above. Essentially,
the four variables n, u, b, and c are related by the equa-
tion(

n− b

u

)/(n

u

)
=
(

n− u

b

)/(n

b

)
= 1− c

and fixing any three of these variables, one can approxi-
mate the fourth.

Besides the “inverse” questions, our techniques can
be adapted to handle various restrictions imposed on
the auditing process. The proposed Holt bill [14], for
instance, specifies that at least one precinct from each
county needs to be audited.

We show how to answer the “inverse” as well as the
restriction questions above using our bounds and tech-
niques.

5.1 Estimating Confidence Levels
Given a universe of size n and a given audit size u, what
confidence can one have in being able to detect one (or
more) of b “bad” objects?

This confidence is given exactly by

c = d(n, b, u) = 1− e(n, b, u). (43)
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Much of Section 4 was effectively devoted to proving the
following bounds on e(n, b, u):(

1− u

n− (b− 1)

)b

≤ e(n, b, u)

≤
(

1− u

n− (b− 1)/2

)b

.

Applying these inequalities to equation (43), we obtain:

Upper and Lower Bounds on c

c ≥ 1−
(

1− u

n− (b− 1)/2

)b

c ≤ 1−
(

1− u

n− (b− 1)

)b

The above inequalities may be useful, say, when con-
sidering legislation that mandates some fixed level u of
auditing (see [7] as one example of this sort of consider-
ation). This scenario is also useful for a “tiered” auditing
approach [18]. In the tiered approach, thresholds for the
margin of victory correspond to particular auditing per-
centages. For example, for a margin of victory of 1.75%,
one should audit 5% of the precincts because it offers a
confidence of 61% compared to 43% as given by a 3%
auditing strategy [18]. In this case, our techniques are
useful to compute the confidence level achieved when
auditing a certain percent of precincts for a given margin
of victory.

5.2 Estimating Level of Detectable Fraud
Given a universe of size n, a fixed audit size u, and a con-
fidence level c, what is the smallest b for which can one
detect one (or more) of b “bad” objects with confidence
at least c?

While our original problem was solved by approximat-
ing the quantity

e(n, b, u) =
(

n− u

b

)/(n

b

)
,

this dual problem is best solved by approximating the
equivalent quantity

e(n, b, u) =
(

n− b

u

)/(n

u

)
.

Using the techniques developed in Section 4, one can de-
rive the following analogous bounds on e(n, b, u):(

1− b

n− (u− 1)

)u

≤ e(n, b, u)

≤
(

1− b

n− (u− 1)/2

)u

.

Setting e(n, b, u) = 1− c and solving for b, we obtain:

Upper and Lower Bounds on b

b ≥ (n− (u− 1)) · (1− (1− c)1/u)
b ≤ (n− (u− 1)/2) · (1− (1− c)1/u)

As before, one can show that these bounds are never dif-
ferent by more than (− ln(1 − c))/2, which is less than
3 for all c ≤ 0.9975.

One could then apply these results using relation-
ship (3) to estimate what is the corresponding smallest
margin of victory that one could confirm with an audit
of the given size u, to the given confidence level c, in a
straightforward manner.

5.3 Auditing with constraints
Some election systems might place constraints on the au-
diting process. In this section, we illustrate how one can
employ our techniques in the case of the Holt bill when at
least one precinct from each county needs to be audited
(as specified in [14]).

Let z denote the number of counties and ai the number
of precincts in county i. We are still aiming for a total
confidence of c, when sampling n precincts out of which
b are corrupted. There are at least two ways to audit the
precincts:

1. Select one precinct from each county uniformly at
random and then employ our techniques on the rest
of the precincts.

2. Employ our technique first, and then audit one
precinct from each county that did not have any
precincts audited.

In this case, we prefer the first approach because the
latter can audit as many as u(n, b, c) + z − 1 if all the
precincts audited with our technique belong to the same
county.

Specifically, we propose the following procedure:

1. Audit at random one precinct from each county.
If any corrupted vote is detected or the confidence
achieved at this step (and computed below) is larger
or equal to the overall confidence needed, we stop
auditing.

2. Otherwise, we audit u(n∗, b∗, c∗) from the remain-
ing precincts using our formula (for instance, equa-
tion (32)), where n∗, b∗, and c∗ are computed below.

At step 2, b∗ = b because no fraud was detected so far
and n∗ = n−z because z precincts were already audited.

10



We show that c∗ = 1− 1−c
(1−1/amax)b guarantees a global

confidence level of at least c, where amax is the maxi-
mum number of precincts in a county. For brevity, let us
define the following events: A = “fraud goes undetected
after conducting the procedure above,” A1 = “fraud is
undetected at step 1,” and A2 = “fraud is undetected at
step 2.” We now have:

Pr[A] = Pr[A1A2] = Pr[A1]Pr[A2 | A1] (44)

Pr[A1] =
z∏

i=1

(1− bi/ai)

≤
z∏

i=1

(1− 1/ai)bi ≤ (1− 1/amax)b,

where bi is the number of corrupted precincts from the
i-th county. We also used the fact that (1 − bi/ai) ≤
(1− 1/ai)bi .

According to our formula in Section 4,

Pr[A2 | A1] ≤ 1− c∗ ≤ 1− c

(1− 1/amax)b
,

if we audit u(n∗, b∗, c∗).
Therefore, using equation (44), the probability that

corruption goes undetected is less than 1− c.
Note that the formulae for c∗ makes sense because be-

cause when 1 − c > (1 − 1/amax)b step 1 suffices to
guarantee the desired confidence. Also, since n∗ < n
and c∗ < c, u(n∗, b∗, c∗) + z < u(n, b, c) + z; hence,
this method is more efficient method than the first.

Furthermore, the number of precincts audited beyond
the u(n, b, c) that we would audit when no constraints
exist is small as follows. We make use of the formulae in
equation (32) for simplicity.

z + u(n∗, b∗, c∗)− u(n, b, c)

= z + n− z − (n− z) · (1− c)1/b

1− 1/amax
(45)

− n + n(1− c)1/b

=
(1− c)1/b

1− 1/amax
· (n− n/amax − n + z)

≤ z − n/amax,

where the inequality comes from the fact that 1−c ≤ 1−
(1 − 1/amax)b since otherwise one would stop auditing
at step 1. For a balanced distribution of the precincts
in counties, z − n/amax is close to 0 which means that
the additional number of precincts we audit with the new
constraint is small.

A related question that may be encountered in elec-
tions is when the candidate that lost the election is al-
lowed to audit z precincts of his/her choice. In this sce-
nario, we have a similar choice: to use our techniques be-
fore or after the loser’s auditing. If the loser audits first,
we will next audit an additional number of u(n− z, b, c)
precincts. The sample space is reduced by z while the
confidence required, c, stays the same because we do not
know the loser’s probability of detecting fraud (and thus
assume it to be 0). On the other hand, if the loser picks
after we employ our auditing techniques, we will have
to audit u(n, b, c). The sample space remains the same
because the loser’s strategy may be so bad that he/she
selects only uncorrupted precincts. The first procedure
turns out to be better once again.

6 Discussion

We note (as other authors have as well) that overly simple
rules, such as “sample at a 1% rate”, are not statistically
justified in general. Using the Rule of Three, we see that
a 1% sample rate is appropriate only when

t ≤ 0.01n

or
3n/b ≤ 0.01n

or
b ≥ 300 .

Since b is the total number of corrupted objects, we see
that a 1% sampling rate may be inadequate when n is
small, or the fraud rate is small. . . (Of course, the Rule of
Three is only for sampling with replacement, but the in-
tuition it gives carries over to the case of sampling with-
out replacement.)

We hope that the rules presented here will provide use-
ful guidance for those designing sampling procedures for
audits.

Indeed, since the formula

U3(n, b, c) = d(n− (b− 1)/2)(1− (1− c)1/b)e (46)

is so simple, so accurate, and always conservative, one
could imagine just always using this sample size (instead
of the optimal value), or writing this formula into elec-
tion law legislation mandating audit sample sizes. Along
with this formula, one could perhaps mandate use of
equation (3) deriving the number b of bad objects to test
from the apparent margin of victory m of the winner.
(But it would probably be best to merely mandate a sam-
ple size sufficient to detect, with a specified level of con-
fidence, any election fraud sufficient to have changed the
outcome. In addition, one may wish to ensure that ob-
jects (e.g. precincts) with surprising or suspicious results
also get examined.)
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Notes
1For example, the calculator must be able to compute xy given real

numbers x and y or equivalently be able to do so with the logarithm
and exponential functions via xy = exp(ln(x) · y).

2While our test does not explicitly accept the null hypothesis, i.e.,
that fraud sufficient to change the outcome of the election has occurred,
one could view the unnecessary triggering of a wider investigation
when a “bad” object is sampled as a kind of Type II error.

3The question of how to pick objects “randomly” in a publicly
verifiable and trustworthy manner is itself a very interesting one; see
Cordero et al. [5] for an excellent discussion of this problem.

4This is in keeping with the hypothesis testing framework described
in Section 2. One may also ask the question of how many “bad” objects
are likely to be seen in such a sample. The number of sampled “bad”
objects follows the well-known hypergeometric distribution.

5We also developed other formulae – such as

n · (1 − (1 − c)−1/(n ln(1− b
n

))) + 1

which we could prove to be an upper bound on optimal sample size;
the current paper only reports on the most useful such bounds.
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