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ABSTRACT
We present Scratch & Vote (S&V), a cryptographic voting
system designed to minimize cost and complexity: (1) bal-
lots are paper-based and can be printed using today’s tech-
nology, (2) ballots are universally verifiable without election-
official intervention, and (3) tallying requires only one trustee
decryption per race, thanks to homomorphic aggregation.

Scratch & Vote combines the multi-candidate election tech-
niques of Baudron et al. with the ballot-casting simplicity
of Chaum and Ryan’s paper-based techniques. In addition,
S&V allows each voter to participate directly in the audit
process on election day, prior to casting their own ballot.

Categories and Subject Descriptors
H.4.m [Information Systems Applications]: Miscella-
neous; J.1 [Administrative Data Processing]: Govern-
ment; K.4.1 [Computers and Society]: Public Policy Is-
sues

General Terms
Security, Human Factors, Verification

Keywords
Cryptographic Voting, Scratch Surface, Barcode, Paper Bal-
lot, Homomorphic Tallying, Paillier Cryptosystem

1. INTRODUCTION
Cryptography can reconcile public auditability and ballot

secrecy in voting. Votes are encrypted and posted on a
public bulletin board, along with the voter’s name (or voter
identification number) in plaintext. Everyone can see that
Alice has voted, though, of course, not what she voted for.
The encrypted votes are then anonymized and tallied using
publicly verifiable techniques.

Most cryptographic voting schemes require complex equip-
ment and auditing. A certain degree of complexity is un-
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avoidable, as the functional goal of cryptographic voting is
to run an election correctly while trusting third parties as lit-
tle as possible. Unfortunately, this complexity often stands
in the way of adoption. If it takes significant expertise to
understand how a voting system functions, and if the oper-
ation of the system is particularly complex, election officials
and the public may be reluctant to adopt it. The question,
then, is how much can we simplify the voting process while
retaining cryptographic verifiability?

Voting systems & scratch surfaces. In recent months,
Arizona has proposed running a cash-prize lottery for all
citizens who vote [27]. In response, a well-known online
satirical publication jokingly proposed a “Scratch & Win”
voting system [30]. Though our proposal, Scratch & Vote,
uses scratch surfaces, it should not be confused with a game
of chance. That said, we hope that, given the public’s famil-
iarity with scratch surfaces, our own use of them will help
spark more widespread interest in the topic of cryptographic
voting.

1.1 Our Proposal
We propose Scratch & Vote (S&V), a cryptographic vot-

ing method that provides public election auditability using
simple, immediately deployable technology. S&V offers:

1. Paper ballots: ballot casting is entirely paper- and
pen-based.

2. Self-contained ballot auditing: ballots contain all
the necessary information for auditing; there is no need
to interact with the election officials.

3. Simple tallying: ballots are tallied using homomor-
phic encrypted counters rather than mixnets. Anyone
can easily verify the final tally, and election officials
need only cooperate to decrypt a single tally cipher-
text per race (or even a single tally ciphertext for the
entire election, if it isn’t too large.)

The voter experience is simple and mostly familiar:

• Sign in: Alice signs in and obtains a ballot with ran-
domized candidate ordering. Election officials should
not see this candidate ordering. The ballot is perfo-
rated along its vertical midline, with candidate names
on the left half and corresponding scannable bubbles
on the right. A 2D-barcode is positioned just below
the checkboxes on the right. A scratch surface, la-
beled “void if scratched,” is positioned just below the
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barcode, and an additional perforation separates the
scratch surface from the rest of the right half. (See
Figure 1.)

• Audit [optional]: Alice may select a second ballot for
auditing. She scratches off the scratch surface, hands
the now void ballot to a helper organization on the
premises – i.e. a political party or activist organization
she trusts – and receives confirmation that the ballot
was well-formed. This gives Alice confidence that her
first ballot is also well-formed: if enough voters per-
form the audit, even a handful of bad ballots will be
quickly detected. (See Figure 2.)

• Make selection: Alice steps into the isolation booth
to make and review her selection.

• Detach ballot halves: Alice separates the two halves
of the ballot. A receptacle is available for her to dis-
card her left ballot half. Note that this discarded half
carries no identifying information, only a randomized
candidate ordering. (See Figure 3.)

• Casting: Alice presents the right half of her ballot
to an election official, who inspects the scratch surface
to ensure it is intact. The official then detaches the
scratch surface and discards it in sight of all observers,
including Alice herself. Alice then feeds what remains
of her ballot – the checkmark and barcode – into a
scanner. This is effectively her encrypted ballot. Alice
takes it home with her as a receipt. (See Figure 4.)

• Verification: Alice can log on to the election web
site to verify that her ballot – including checkbox and
barcode – has been correctly uploaded to the bulletin
board. If it hasn’t, she can complain with receipt in
hand. Alice can also verify the entire tally process, in-
cluding the aggregation of all ballots into a single en-
crypted tally, and the verifiable decryption performed
by election officials. (See Figure 5.)
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Figure 1: A Scratch & Vote ballot, before and after
Alice makes her selection. The ballot is perforated
along two axes: down the vertical midline, and be-
tween the barcode and scratch surface on the right
half.

So far, this description uses the Scratch & Vote adaptation
of the Ryan Prêt-a-Voter ballot. In section 5, we also show
how to achieve the same features based on a new ballot
inspired by Chaum’s Punchscan [20], whose physical layout
accommodates numerous races more easily. We consider the
threat model and certain extensions to our proposal that
further increase practicality.
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Figure 2: Auditing the S&V ballot. Alice receives
two ballots and chooses to audit one at random, re-
moving its scratch surface. In this diagram, Alice
selects the ballot on the left. Alice’s chosen helper
organization then scans the barcode, reads the ran-
domization data r1, r2, r3, r4 (one value per candi-
date) previously hidden under the scratch surface,
and confirms that the ballot is correctly formed. Al-
ice then votes with the second, pristine ballot.
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Figure 3: Separating the S&V ballot. Alice sepa-
rates the left half of her ballot and places it into
the appropriate receptacle which contains other dis-
carded left halves (Alice could easily take one to
claim she voted differently.)

1.2 Overview of the Ideas
Scratch & Vote combines a number of existing crypto-

graphic voting ideas in a novel way, with some interesting
new variations.

Homomorphic tallying. Cryptographic paper ballots do
not naturally support write-in votes. Generally, when Alice
wants to write in a name, she selects the “write-in” pre-
determined pseudo-candidate option, and follows a separate
process to specify her candidate. Thus, our first proposal for
S&V is to use homomorphic aggregation to simplify the tally
for pre-determined candidates, as originally proposed by Be-
naloh [9, 3] and, more specifically, as extended by Baudron
et al. [2] for multi-candidate election systems. This design
choice opens the door to further simplifications.

2D-barcode and scratch surface. With homomorphic tal-
lying and pre-determined candidate names, all of the ci-
phertexts required for one race on one ballot can be fully
represented using a single 2D-barcode. The randomization
values used to generate these ciphertexts are also printed
on the ballot, under a scratch surface. Thus, a ballot is
entirely self-contained: by scratching and checking the en-
cryption of the candidate ordering against the ciphertexts in
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Scan &
take home

Figure 4: Casting the S&V ballot. The election of-
ficial verifies that the scratch surface is intact, then
discards it. The remainder of the ballot is cast using
a typical modern scanner. Alice then takes it home
as her receipt.

Bulletin Board
Alice Bridget Carol
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Figure 5: Verifying proper S&V casting. Alice can
look up her ballot on the web, using her name and
confirming that the barcode matches (assuming she
or her helper organization has a barcode scanner.)

the 2D-barcode, one can immediately verify ballot correct-
ness. This auditing requires only a barcode scanner, a basic
computer, and the public election parameters. In particular,
this auditing process does not require network access.

Cut-and-choose at the precinct. Once a ballot is audited,
it cannot be used for voting: with its randomization values
revealed, the ballot is no longer privacy-protecting. Thus,
auditing is used in a cut-and-choose process: each voter may
select two ballots, auditing one and voting with the other.
The specific advantage of S&V is that this cut-and-choose
auditing requires no election official intervention: the ballot
and the public election parameters are sufficient. Thus, au-
diting in S&V is practical enough to be performed live, in
front of the voter, just before she casts her ballot. In addi-
tion, local election officials may audit a number of ballots
on their own before voting begins: once again, these local
election officials only need the public election parameters to
successfully audit.

Proofs of correctness and certified ballot list. In a ho-
momorphic tallying system, auditors want assurance that
the encrypted ballots contribute no more than one vote per
race; otherwise, a malicious official and voter could collude
to artificially inflate a candidate’s tally. For this purpose,
election officials prepare zero-knowledge proofs of correct-
ness for each official ballot. These proofs are published on
the bulletin board for all to see prior to election day, and
only ballots whose proofs verify are included in the tally.

As a result of this tallying condition, voters now need

assurance that their ballot won’t be disqualified at some
point after ballot casting. Unfortunately, the sheer size of
the proof precludes printing it on the ballot alongside the
ciphertexts.

To address this concern, election officials produce a certi-
fied ballot list containing ballots that officials are prepared
to guarantee as correct. This certified list can be easily
downloaded to each physical precinct before the polls open.
The voter can then check that his ballot is present on the
certified list before voting. In addition, this certification pre-
vents spurious complaints from malicious voters who might
inject fraudulent ballots in to the system solely for the pur-
pose of complaining and holding up the proper execution of
the election.

1.3 Related Work
Chaum [7] introduced the first paper-based cryptographic

scheme in 2004 . Ryan et al. [8] proposed a variant, the Prêt-
a-Voter scheme, recently extended to support reencryption
mixes and just-in-time ballot printing [29]. Another variant
by Randell and Ryan [28] suggests the use of scratch sur-
faces (though for different goals than ours). Chaum’s latest
variant, called Punchscan [20, 6], proposes a number of inter-
esting variations to further simplify the paper-based voting
approach.

All of these methods make use of mixnets to anonymize
the ballots, though it should be noted that the mixnet pro-
posed by Punchscan is simplified and uses only hash-based
commitments for the shuffle permutation. In this latter case
as well as in most decryption mixnets, proofs are performed
by randomized partial checking [17]. In the case of reen-
cryption mixnets, Neff’s proof [23] can be used . In all cases,
however, the officials are involved in the anonymization of
the ballots.

1.4 This Paper
In section 2, we cover some preliminaries. We cover the

basic S&V method in section 3, some potential extensions in
section 4, and the adaptation of S&V to the Chaum ballot in
section 5. We consider the system’s threat model in section
6, before concluding in section 7.

2. PRELIMINARIES

2.1 Paillier Cryptosystem
The Paillier public-key cryptosystem [24] provides seman-

tically secure encryption, efficient decryption, and an addi-
tive homomorphism by ciphertext multiplication. The de-
tails of the Paillier cryptosystem can be found in the original
paper. We provide a brief summary:

• Gen(1k): generate two safe primes p1 and p2. The
secret key sk is λ = lcm(p1 − 1, p2 − 1). The public
key pk includes n = p1p2 and g ∈ n2 such that g ≡
1 mod n. Oftentimes, g = n + 1.

• Encpk (m; r): encrypt a message m ∈ n with random-
ness r ∈ ∗

n2 and public key pk as c = gmrn mod n2.
We write c = Encpk (m) when the randomness r is not
crucial to the explanation.

• Decsk (c) decrypt a ciphertext c ∈ ∗
n2 . Consider func-

tion L(x) = (x − 1)/n. Decryption is then:
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L(cλ mod n2)

L(gλ mod n2)
mod n

The additive homomorphism enables the following:

Decsk

“
Encpk (m1) · Encpk (m2)

”
= m1 + m2

Generalized Paillier. Damg̊ard and Jurik [11] provide a
generalization of the Paillier cryptosystem that yields a larger
plaintext domain with relatively less ciphertext expansion.
Specifically, a plaintext in ns can be encrypted into a ci-
phertext in n(s+1) , where the security of the scheme still
depends on the bit-length of n. The security of this gener-
alized scheme is proven under the same assumption as the
original Paillier scheme.

Threshold Decryption. The Paillier cryptosystem supports
fairly efficient threshold decryption [14], even in its gener-
alized form [11]. It also supports fairly efficient distributed
key generation [12]. In other words, it is possible for k offi-
cials to jointly generate a Paillier keypair (pk , sk) such that

each has a share sk (i) of the secret key. It is then possible
for an h-sized subset of these k officials to jointly decrypt a
ciphertext in a truly distributed protocol.

Practical Considerations. Paillier relies on the hardness
of the factoring problem. Thus, we must assume at least
a 1024-bit modulus, and potentially a 2048-bit modulus.
Given a κ-bit modulus, plaintext size is κ bits while cipher-
text size is 2κ bits. For a larger plaintext domain, we can
use Generalized Paillier, as described above.

2.2 Homomorphic Counters
The homomorphic voting approach was made practical by

Baudron et al. [2], using techniques introduced by Benaloh
[9, 3]. The homomorphic multi-counter was specifically for-
malized by Katz et al. [19].

Baudron et al. describe a multi-counter encrypted under
an additive cryptographic system, like Paillier. The bit-
space of the plaintext is partitioned into separate counters,
ensuring that enough bits are dedicated to each counter so
that no overflow occurs from one counter to another (as this
would violate the correctness of the multi-counter).

Assuming a message domain of n where b = |n| is the
bit-size of n, we encode a value tj for counter j ∈ [1, l] as

tj · 2(j−1)M . Thus, each counter can run only up to 2M − 1,
and we must ensure that b > lM . To add 1 to counter j
contained within the multi-counter T , we use the additive
homomorphic property:

T ′ = T · Encpk (2
(j−1)M )

Note that, given the semantic security of the Paillier cryp-
tosystem, an observer cannot tell, from looking at this homo-
morphic operation, which internal counter was incremented.
In other words, given encrypted messages, the homomorphic
aggregation into an encrypted counter can be performed and
verified by any observer.

2.3 Proofs of Correctness and NIZKs
If Alice encrypts a message m into a ciphertext c using

the Paillier cryptosystem, she can prove, in honest-verifier
zero-knowledge, that c is indeed the encryption of m, using
a typical, three-round interactive protocol similar to Guillou
and Quisquater’s proof of RSA pre-image [15].

Using the techniques of Cramer et al. [10], this proto-
col can be extended to prove that ciphertext c encrypts
one of possible values (m1, m2, . . . , mk), without revealing
which one. Combining this with the homomorphic proof
technique of Juels and Jakobsson [16], one can prove, fairly
efficient and in zero-knowledge, that a set of ciphertexts
(c1, c2, . . . , ck) encrypts a permutation of m1, m2, . . . , mk,
assuming that no two subsets of {mi} have the same sum:

• for each ci, prove that ci encrypts one of m1, . . . , mk,
• the homomorphic ciphertext sum

L
i ci is the correct

encryption of the plaintext sum
P

i mi.

For more than a handful of plaintexts, more efficient proof
techniques are available, including Neff’s shuffle proof of
known plaintexts [23].

In any case, all of these proofs can be made non-interactive
using the Fiat-Shamir heuristic [13], where the interactive
verifier challenge is non-interactively generated as the cryp-
tographic hash of the prover’s first message in the three-
round protocol. These types of proof, first introduced by
Blum et al. [4], are abbreviated NIZKs.

2.4 Paper Ballots
Existing paper-based cryptographic methods use two types

of ballot layout: the Prêt-a-Voter split ballot, and the
Punchscan layered ballot. We review these approaches here,
as they can be both adapted to use S&V.
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Figure 6: The Prêt-a-Voter Ballot: A ballot is a
single sheet of paper with a midline perforation. The
Voter fills in her choice, then tears the left half off
and destroys it, casting the right half.

Prêt-a-Voter. In Ryan’s Prêt-a-Voter, the ballot is a single
sheet of paper with a perforated vertical midline. Candidate
names appear on the left in a per-ballot-randomized order,
with a corresponding space on the right half. After Alice,
the voter, has marked her choice in the appropriate space,
the two halves are separated: the left half (the one with the
candidate names) is discarded, and the right half is cast.
The right half contains a mixnet onion that allows adminis-
trators to recreate the left half of the ballot and determine
the voter’s choice. (See Figure 6.)

Punchscan. In Chaum’s Punchscan [20], the ballot is com-
posed of two super-imposed sheets. The top sheet contains

32



the question, an assignment of candidates to codes (ran-
domized by ballot), and physical, circular holes half-an-inch
wide which reveal codes on the bottom sheet. The codes on
the bottom sheet match the codes on the top sheet, though
their order on the bottom sheet is randomized.

Alice, the voter, selects a candidate, determines which
code corresponds to this candidate, and uses a “bingo dauber”
to mark the appropriate code through the physical hole. The
use of this thick marker causes both sheets to be marked.
Then, Alice separates the two sheets, destroys one, and casts
the other. Individually, each sheet displays the voter’s choice
as either a code or a position, but the correspondence of
code to position is only visible when both sheets are to-
gether. A hash-committed permutation on both sheets al-
lows the administrators to reconstitute the discarded half
and recover the vote. Because Alice chooses which half to
destroy and which half to cast, she can eventually get as-
surance, with 50% soundness, that her ballot was correctly
formed: the election officials eventually reveal what the kept
halves should look like.

q r m x

8c3sw

Adam - x 
Bob - q

Charlie - r
David - m

8c3sw

q r m x

Adam - x 
Bob - q

Charlie - r
David - m
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Adam - x 
Bob - q
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David - m

q r m x
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Figure 7: The Chaum Ballot: A ballot is composed
of two super-imposed sheets. Alice, the voter, marks
both sheets simultaneously using a dauber. The two
sheets are separated, one is discarded, and the other
is scanned and posted on the bulletin board. This
same half is also the voter’s receipt.

Auditing Prêt-a-Voter and Punchscan. In both Prêt-a-
Voter and Punchscan, there are two ballot auditing com-
ponents: verification of the correct ballot form, and verifi-
cation of correct tallying. In both schemes, a system-wide
cut-and-choose is performed before the election: for a ran-
domly selected half of the ballots, election officials reveal
the randomization values used in creating the ballots. These
audited ballots are thus spoiled, as they no longer protect
ballot secrecy. The remaining ballots, now proven to be al-
most all correct with very high probability, are used in the
actual election.

Once ballots are cast, they are shuffled, and the post-
election audit consists of Randomized Partial Checking [17]
on the shuffle and the prior permutation commitment.
Punchscan adds an additional verification of ballot form after
the election, thanks to the voter decision of which half to
keep and which half to discard. This guarantees that any
cheated ballot that made it through the initial audit will be
detected with 50% probability.

Limitations. In the case of Prêt-a-Voter, significant syn-
chronous involvement of election officials is required during
all audits. It is particularly challenging to interactively re-
veal the randomization values for half the ballots while keep-
ing the other half truly secret. Consequently, this audit is
performed by election officials in advance. Individual voters
must trust that this audit was performed correctly, in par-
ticular that election officials didn’t collude to produce faulty
ballots. This is a slightly weaker verification property than
we would like: ideally, voters should get direct assurance
that their vote was recorded as intended, without having to
trust election officials.

In the case of Punchscan, there is also some degree of
dependence on synchronous involvement of the election of-
ficials. While the additional check performed on the ballot
form certainly alleviates this situation—Alice now gets di-
rect assurance that her ballot was correctly formed—this
assurance comes after the close of elections. This delay may
reduce Alice’s trust in the system, since the error correction
protocol will likely be onerous.

3. THE SCRATCH & VOTE METHOD
We assume a single race for now. Section 4 naturally

extends these techniques to multiple races.

3.1 Election Preparation
At some point prior to election day, the list of candidates

is certified by election officials and publicized for all to see.
The l candidates are ordered in some fashion for purposes of
assigning index numbers (alphabetical order is fine). This
ordering need not be known by individual voters. Thus,
election laws on candidate ordering should not apply to here.

Election officials then jointly generate a keypair for the
election, where official Oi holds share sk (i) of the decryp-
tion key sk , and the combined public key is denoted pk . A
parameter M is chosen, such that 2M is greater than the
total number of eligible voters. Election officials ensure that
b = |n| is large enough to encode a multi-counter for l candi-
dates, each with M bits, i.e. b > Ml. A vote for candidate
j is thus encoded as Encpk (2

(j−1)M ). When all is said and
done, the election parameters are publicized:

params =
“
pk , M, {cand1, cand2, . . . , cand l}

”

Example. With l = 4 candidates, a candidate ordering is
assigned: Adam is #1, Bob #2, Charlie #3, and David
#4. With 2 × 108 eligible voters (big enough for the entire
US), we set M = 28 > log2(2 × 108). A Paillier public key
with |n| = 1024 bits is largely sufficient for this single-race
election. In fact, we could have up to 35 candidates for
this single race, or 7 races with 5 candidates each, without
having to alter cryptographic parameters.

3.2 Ballot Preparation

The Ballot. Our first S&V ballot is based on the Ryan Prêt-
a-Voter ballot[8]. Each ballot is perforated along a vertical
midline. On the left half of the ballot is the list of candidate
names, in a randomized order. The right half of the ballot
lines up scannable checkboxes (represented as lines in our
diagrams) with each candidate on the left half. The voter
will mark one of those checkboxes.
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Also on the right half, the S&V ballot contains the repre-
sentation of ciphertexts that encode votes corresponding to
each ordered option. The representation of these ciphertexts
can be machine-readable only and should be scannable, e.g.
a 2D-barcode [32]. Just below this barcode, the ballot also
includes a scratch surface, under which are hidden the ran-
domization values used to produce the ciphertexts in the
barcode. (See Figure 8.)

_______
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_______

Bob
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David 

Adam

PARAMETERS

#1 - Adam 
#2 - Bob
#3 - Charlie
#4 - David

M=28, Public Key = pk

r1 r2 r3

Epk (228; r1)

Epk (256; r2)

Epk (284; r3)

Epk (20; r4)

H(pk)

r4

Figure 8: Public Election Parameters and the S&V
Ballot. Election parameters are on the left. The
ballot is midline-perforated. The order of the can-
didate names is randomized for each ballot. The
2D-barcode on the bottom right corner of the ballot
contains ciphertexts encoding the candidates in the
corresponding order according to the public election
parameters. The scratch surface on the left hides
the randomization values r1, r2, r3, r4 used to create
the ciphertexts on the right.

The Proofs. Election officials must also generate NIZK
proofs of ballot correctness. These proofs will not be printed
on the ballot, as they are too long. Instead, they are kept
on the public bulletin board, indexed by the sequence of
ciphertexts on the corresponding ballot (or a hash thereof),
and used at tallying time to ensure that all ballots contribute
at most one vote per race.

In addition to these proofs, election officials compile an
official ballot list, which includes all properly created ballots
designated again by the sequence of ciphertexts on each bal-
lot. Officials digitally sign this ballot list, posting the list
and signature on the bulletin board. This official ballot list is
particularly useful to help prevent various denial-of-service
attacks against both voters and election officials.

Example. Assume the randomized candidate ordering of a
given ballot is “Bob, Charlie, David, Alice”, or, by index,
“2,3,4,1”. Recall that M = 28. The machine-encoding on
the right ballot half should then be: c1 = Encpk (2

28; r1),
c2 = Encpk (2

56; r2), c3 = Encpk (2
84; r3), c4 = Encpk (2

0; r4).
This encoding requires 4 ciphertexts, or 8192 bits. Under

the scratch surface lie, in plaintext, r1, r2, r3, r4. Election
officials also generate ΠH(c1,c2,c3,c4), a NIZK of proper ballot
form indexed by the ciphertexts, then post it to the bulletin
board. The same hash H(c1, c2, c3, c4) is also included in the
compiled list of official ballots, which the election officials
eventually sign.

3.3 Ballot Auditing
Ballot auditing in S&V uses a cut-and-choose approach to

verify candidate ordering (while further ballot correctness is

enforced by the bulletin-board NIZK). A random half of the
ballots are audited, and almost all remaining ballots are then
guaranteed to be correctly constructed: the probability that
more than x bad ballots go undetected is 2−x. Once audited,
a ballot is spoiled and cannot be used to cast a vote.

Auditing a single ballot. This auditing process is simi-
lar to that of Prêt-a-Voter and Punchscan, with one major
difference: auditing can be performed using only the public
election parameters, without election-official interaction.

1. Scratch: the scratch surface is removed to reveal the
randomization values.

2. Encrypt: the candidate ordering is encrypted with
the revealed randomization values.

3. Match: the resulting ciphertexts are matched against
the ciphertexts in the 2D-barcode.

Note that, to automate this process without having to scan
or type in the displayed candidate ordering, one might per-
form the matching the other way around: read the cipher-
texts, try all possible plaintext candidates with each revealed
randomization value (effectively a decryption), and display
the expected candidate ordering. Matching the actual order-
ing against this expectation can be performed by the voter
herself.

Spoiling a ballot. A ballot no longer protects privacy if
its randomization values are revealed. Thus, if its scratch
surface is removed, a ballot should be considered spoiled,
and it cannot be cast. This is consistent with existing uses
of scratch surfaces, e.g. those used on lottery tickets, and
the usual “void if scratched off” message can be printed on
top of the scratch surface. This condition for ballot casting
must be enforced at ballot casting time, as will be described
Section 3.4.

Who should audit?. Though we find that individual voter
auditing is preferable, some might prefer to audit ballots in a
centralized fashion. Scratch & Vote supports such an audit
method, of course. One can also imagine officials auditing
a few ballots on their own before election day, in addition
to per-voter auditing. S&V enables all of these auditing
combinations.

Checking for Variability in Ordering. Malicious election
officials might attempt to breach Alice’s privacy by present-
ing all voters only ballots with the same candidate order-
ing. To protect against this de-randomization attack, Alice
should select her two ballots herself, ensuring that there is
enough variability between the ballots offered to her.

Chosen ballot check. Alice must also check the ballot she
actually uses: she needs assurance that her ballot will count,
specifically that it won’t be disqualified for some unforeseen
reason, e.g. an invalid NIZK proof at tallying time. For
this purpose, Alice checks the presence of her ballot on the
certified official ballot list, which she can obtain from the
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bulletin board ahead of time. If, at a later date, Alice’s bal-
lot is disqualified for any reason, she can present the signed
official ballot list as a complaint.

3.4 Ballot Casting
On election day, after having audited and spoiled a first

ballot, Alice enters the isolation booth with a second ballot.
She fills it out by applying a checkmark (or filling in a bub-
ble) next to the candidate name of her choice. Then, she
proceeds to ballot casting:

1. Detach: Alice detaches the left half of the ballot and
discards it in the appropriate receptacle (inside the
booth). She then leaves the voting booth.

2. Confirm: An election official verifies that the scratch
surface on Alice’s ballot is intact. This is crucial to
ensuring the secret ballot: if a voter sees the random-
ization values for the ballot she actually casts, then
she can prove how she voted to a potential coercer.

3. Second Detach: The official detaches and discards
the scratch surface, in view of all observers, including
Alice.

4. Scan: Alice feeds the remainder of her ballot through
a typical modern scanner, which records the barcode
and checkmark position and posts them on a bulletin
board along with Alice’s name (or other identifier).

5. Receipt: Alice retains this same remainder as her
encrypted receipt. She can later check that her ballot
is indeed on the bulletin board.

3.5 Tallying
For each ballot on the bulletin board, election officials and

observers check its NIZK. If it verifies, the ciphertext cor-
responding to the checkmark position is extracted from the
2D-barcode and aggregated into the homomorphic counter,
just like any other homomorphic voting system. Anyone can
verify that only valid ballots have been aggregated, as any
observer can verify the NIZK and re-perform the appropri-
ate homomorphic aggregation.

Similarly, all election trustees can independently verify
that the homomorphic aggregation has been performed cor-
rectly. Then, the single resulting ciphertext counter is de-
crypted by a quorum of these trustees, along with proofs of
correct decryption. The resulting plaintext reveals the vote
count for each candidate. The tally and trustee proofs are
posted to the bulletin board for all to see.

3.6 Practical Considerations
We consider computation requirements and physical con-

straints of the ballot:

• generating the NIZK proofs for each ballot, given that
ZK proofs are typically expensive,

• auditing a ballot at voting time, given the voter’s lim-
ited time and patience, and

• fitting all of the ciphertext data in reasonably sized 2D
barcodes.

Consider an election with 5 races, each with 5 candidates.

Proofs. Each race contains 5 ciphertexts, one per candi-
date. Using the CDS [10] proof-of-partial-knowledge tech-
nique, each ciphertext must be proven to encrypt one of
the 5 candidates. The CDS technique simulates 4 of these
proofs and computes a fifth one for real. This requires the
equivalent work of 5 proofs, both in terms of computation
time and number of bits needed to represent the proof. In
addition, the homomorphic sum of the ciphertexts must be
proven to encrypt the sum of the candidate representations,
which is one more proof. Thus, each race requires 26 proofs,
and 5 races thus require 130 proofs.

Each of these proofs, whether real or simulated, requires
two modular exponentiations. The entire proof thus re-
quires a total of 260 modular exponentiations. Conserva-
tively, modern processors can perform a 1024-bit modular
exponentiation is approximately 12ms on a 2.8Ghz machine
running GMP [1]. Thus, a single ballot proof can be per-
formed in just over 3 seconds.

Each of these proofs is composed of 2 Paillier ciphertext
space elements, and one Paillier plaintext space element (the
challenge). Assuming a 1024-bit modulus, the ciphertext el-
ements are 2048 bits and the plaintext is 1024 bits. Thus,
each proof require 5120 bits, and the entire ballot thus re-
quires 83 kilobytes of proof data, which is posted on the
bulletin board (e.g. a web site.)

Ballot Verification. At the polls, the only verification cost
is the single ballot audit per voter. Given the 5 random-
ization values, all 5 values of rn can be computed through
modular exponentiation, after which only modular multipli-
cations are needed to re-discover the randomized ordering.
These multiplications are negligible in comparison to the
modular exponentiations. Thus, ballot verification can be
performed in 60ms per race, or 300ms for our considered
ballot. The scratch-off and the time allotted for each person
to vote (1-2 minutes) will likely make the cryptographic cost
negligible.

Barcode Size. The PDF417 2D-barcode standard [31] can
store 686 bytes of binary data per square inch, using a sym-
bol density that is easily printed and scanned. In our exam-
ple with 25 candidates, 25 Paillier ciphertexts are required,
which means 6400 bytes, assuming a 1024-bit modulus for
Paillier. Thus, 10 square inches are sufficient to represent all
of the ciphertexts we need for this sample election. Even if
we factor in significant error correction, this represents less
than 1/8th of the surface area of a a US Letter page.

4. EXTENSIONS
We now explore a few extensions to make Scratch & Vote

more practical.

4.1 Helper Organizations
We do not expect individual voters to show up to the

polls with the equipment required to audit ballots and check
the official ballot list. Instead, helper organizations, e.g.
political parties and activist organizations, can provide this
service at the polls. Voters can consult one or more of these,
at their discretion. Most importantly, these helpers are not
trusted with any private election data.
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4.2 Multiple Races & Many Candidates
When the election contains more than one race, it may

outgrow the space of the multi-counter, which can only hold
|n|/m counters. One solution is to use higher-degree encryp-
tion using the Damg̊ard-Jurik generalization [11], so that
the counter space can be s|n| rather than |n|, with a cor-
responding ciphertext length of (s + 1)|n|. Unfortunately,
this ciphertext size may outgrow the 2D-barcode encoding,
which is expected to hold no more than a few kilobytes.

Another option is to designate, in the public election pa-
rameters, separate multi-counters, potentially one per race.
In that case, the parameters must also indicate the race/multi-
counter assignments. With a separate 2D-barcode per race,
most practical cases are accounted for, barring elections such
as the California Recall election of 2004, which had more
than 100 candidates.

In such borderline cases, there is no choice but to use the
Damg̊ard-Jurik generalization, as the individual ciphertexts
for a given race should not be distinguishable and thus can-
not be assigned to different multi-counters. If a single 2D-
barcode cannot hold all the required ciphertexts for that
one race, we can, as a last resort, designate a separate 2D-
barcode for each candidate. The resulting auditing complex-
ity is an inevitable consequence of these extreme conditions.

4.3 Reducing the Scratch Surface
As the printed material behind the scratch surface may

become damaged from the scratching, we cannot expect to
reliably store significant amounts of data behind this scratch
surface. In fact, it is easy to reduce this data by having elec-
tion parameters designate a pseudo-random function, call it
PRF, which generates all the randomization values from a
single short seed, which need only be 128 bits. Such a data
length can be easily encoded as alphanumeric characters or
as a single-dimension barcode, both of which offer enough
redundancy to withstand quite a few scratches.

4.4 Chain Voting and Scratch Surfaces
All paper-based voting systems have long been known to

be susceptible to chain voting attacks. In these attacks, a
coercer gives Alice a pre-marked ballot before she enters the
polling location, expecting her to cast this pre-marked ballot
and return a blank ballot to him on her way out.

The well-known countermeasure to chain voting attacks
[18] suggests having unique ballot identifiers on a tear-off
slip attached to the ballot. An official writes down the bal-
lot identifier for Alice before she enters the isolation booth.
At ballot casting time, the official checks that this ballot
identifier still matches the pre-recorded value. Then, for
anonymity, the identifier is torn off and discarded.

This process is, in fact, almost identical to the scratch
surface tear-off we suggest. Thus, our election-official verifi-
cation process can be piggy-backed onto existing practices.
In addition to checking the ballot identifier, the election of-
ficial must simply check the scratch surface integrity. The
overhead of our proposal at casting time is thus minimal.

4.5 Write-Ins
Like the Prêt-a-Voter and Punchscan ballots, Scratch &

Vote does not support write-in votes out of the box. A sep-
arate system should be used, where a special option named
“write-in” is selected by the voter, and the voter can sepa-
rately cast the content of the write-in. The details of this

process can be worked out for all paper-based schemes, pos-
sibly using the vector-ballot method of Kiayias and Yung
[21].

5. ADAPTING PUNCHSCAN
Recall that Chaum’s Punchscan facilitates more races per

ballot than Prêt-a-Voter, because the full ballot face can
be used without a midline separation. However, Punchscan
is also more complicated, because the voter may cast either
sheet. This makes the mandatory destruction of the remain-
ing half more delicate, since Alice could easily sell her vote
if she successfully preserves the second half.

Thus, we propose a new ballot that combines the qualities
of Punchscan and Prêt-a-Voter and adds the S&V method.
As this ballot originated from Punchscan, we call it the
Punchscan Scratch & Vote ballot. However, we note that
it inherits some properties from Prêt-a-Voter, too.

c a b d

Adam - a 
Bob - b

Charlie - c
David - d

c a b d

Adam - a 
Bob - b

Charlie - c
David - d

c a b d

Figure 9: The Punchscan Scratch & Vote variant. The
left and middle sheets are superimposed to create
the ballot on the right. The bottom sheet contains
no identifying information. The top layer has circu-
lar holes big enough to let the candidate ordering
from the bottom sheet show through. The check-
mark locations, represented by small squares, are
only on the top layer.

Punchscan Scratch & Vote Ballot. The Punchscan Scratch
& Vote ballot, like Punchscan, is composed of two superim-
posed sheets. Unlike the original Punchscan, the two sheets
serve different purposes. Alice, the voter, will be expected
to separate both halves and cast the top half in all cases.
The bottom half, like Prêt-a-Voter’s left half, is generic, and
its destruction need not be strongly verified.

The top sheet lists the races and candidates in standard
order, with a standard code assigned to each candidate (e.g.
‘D’ for democrats, ‘R’ for republicans.) Again, this differs
from the Punchscan ballot, where random codes are assigned
to candidates. This top sheet offers checkboxes for each race,
and one hole above each checkbox which reveals the code
letter displayed on the bottom half at that position. Also
included on the top sheet are the S&V components: the
ciphertexts in a 2D-barcode, and the randomization values
hidden under a scratch surface.

The bottom sheet contains only the standard candidate
codes in random order. The ciphertexts on the front sheet
should match this random order. Note, again, that this
bottom sheet is entirely generic: it contains no identifier of
any kind, no ciphertexts, and no randomization values. It
functions exactly like the Prêt-a-Voter left half.
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c a b d

Adam - a 
Bob - b

Charlie - c
David - d

c a b d

c a b d

d bc a

c
a

b
d

a

b

d

c

Adam - a 
Bob - b

Charlie - c
David - d

Figure 10: The Punchscan Scratch & Vote ballot sep-
aration. Alice separates the top and bottom sheets,
depositing the bottom sheet in the appropriate re-
ceptacle. The top sheet is effectively an encrypted
ballot. Note how the “codes” for each candidate are
intuitively chosen, not random.

Pre-voting Verification. Just like in the original Prêt-a-
Voter-based S&V ballot, Alice chooses two ballots. She au-
dits one by scratching off the scratch surface and having a
helper organization verify the randomization values for the
ballot’s candidate ordering. Alice then votes with the sec-
ond ballot, as the audited ballot with the scratch surface
removed is now void. One notable advantage of S&V is that
Alice can perform the audit before she casts her ballot.

Casting the Ballot. Alice marks her ballot in isolation.
Unlike the original Punchscan method, the markings in the
top-sheet bubbles do not bleed through to the bottom half.
When she is ready, Alice detaches the bottom half of the
ballot and discards it in the proper receptacle (where, again,
she can easily grab another bottom half to claim that she
voted for someone else.)

Alice then presents the top sheet of her ballot to the elec-
tion official, who treats it exactly like in the Prêt-a-Voter
Scratch & Vote ballot: verify the scratch surface, detach
and discard it, and scan the remainder. Again, this remain-
der serves as Alice’s receipt.

Scan &
take home

Adam - a 
Bob - b

Charlie - c
David - d

Figure 11: Casting a Punchscan Scratch & Vote bal-
lot. An election official verifies that the scratch sur-
face is intact, then tears it off and discards it in view
of all observers. The remainder is scanned and cast.
Alice then takes it home as her receipt.

6. THREAT MODEL
We consider various threats and how Scratch & Vote han-

dles them. We cover the threats thematically rather than
chronologically, as some threats pertain to multiple steps of
the election lifecycle.

6.1 Attacking the Ballots

Election officials. An election official might create bad
ballots in two ways: a completely invalid ballot or, more
perniciously, a valid ballot that does not match the human-
readable candidate ordering. In either case, the first line
of defense is the voter cut-and-choose: only a small num-
ber of such ballots can go undetected, since half of them
will get audited randomly. In the case of completely invalid
ballots, the verification is much more stringent: election of-
ficials would have to answer for certified ballots that do not
have a proper NIZK proof, and only valid ballots can have
proper NIZK proofs.

External parties. External parties may wish to introduce
fraudulent ballots, most likely as a denial-of-service attack
against voters at certain precincts, or, by vastly increas-
ing the number of complaints, as a denial-of-service attack
against election officials. These problems are thwarted by
the certified ballot list. The moment an election official dis-
covers an uncertified ballot, he can begin an investigation.
If officials fail to catch the problem, the voters’ helper or-
ganizations will. Consequently, fraudulent ballots should be
caught before the voter enters the isolation booth.

Collusion between officials and voters. A single mali-
ciously crafted ballot could alter the count significantly in
the homomorphic aggregation. This is particularly problem-
atic if the officials collude with a voter who won’t perform
the proper cut-and-choose audit because he is very much
interested in using the fraudulent ballot. Once again, the
NIZK proof on the bulletin board prevents this from ever
happening, providing a universally verifiable guarantee that
each cast ballot only contributes a single vote to a single
candidate for each race.

6.2 Attacking Ballot Secrecy

Leaky Ballots. Election administrators could leak informa-
tion about the ballot candidate ordering using the cipher-
text randomness. This threat is somewhat lessened with the
use of seed-based randomness, where a portion of the seed
is public and selected after the individuals ballot seeds are
picked. However, this topic requires further exploration.

Tampering with the scratch surface. Eve, a malicious
voter, may attempt to remove the scratch surface from her
ballot, read the randomization values, and replace the scratch
surface undetected. This would allow Eve to sell her vote,
given that her encrypted vote will be posted on the bulletin
board, along with Eve’s full name, for all to see and audit.
We must assume, as a defense against this threat, that the
scratch surface is sufficiently tamper-proof to prevent such
an easy replacement that would fool an election administra-
tor. Real-world experiments will be necessary to determine
if this is feasible.
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Ballot face recording. One significant weakness of all pre-
printed paper-based cryptographic voting, including Scratch
& Vote, is that election officials who produce the ballots may
record the ballot ciphertexts and candidate orderings, thus
violating ballot secrecy.

Even in Prêt-a-Voter and Punchscan, which use multiple
authorities in a mixnet setting, the last mix server knows the
final candidate ordering. It may be worthwhile to explore
clever ways of distributing the ballot generation mechanism,
though the best solution may be process-based, where ma-
chines produce ballots and immediately forget the random-
ness used. The recent proposal of Ryan and Schneider [29]
addresses this threat with on-demand ballot printing, though
this requires significantly more deployed technology at the
precinct level.

The ballot face recording problem exists for more than
just election officials: those who transport ballots may have
a chance to record the correspondence of candidate order-
ing to barcode. We note, again, that Prêt-a-Voter and
Punchscan suffer from the same problem. One promising
defense in all cases is simply to hide some portion of the
ballot such that it can no longer be uniquely identified dur-
ing transport. For example, individual ballots can be sealed
individually in opaque wrappers. Alternatively, the 2D-
barcode can be hidden under opaque plastic that can be
peeled off prior to voting. If the printed barcode is par-
ticularly resilient, one can even use an additional scratch
surface.

Casting. At ballot casting time, election administrators must
ensure that the cast ballot has not revealed its randomiza-
tion values, for this would enable vote selling. Of course,
this verification must be performed without violating ballot
secrecy in the process. Our proposal specifically addresses
this threat: an election official only sees the encrypted half
of the ballot. He can take all the necessary care to ver-
ify that the scratch surface is intact, while ballot secrecy
remains protected.

Another threat remains: official-voter collusion. If an
election official and voter collude to preserve, rather than
discard, the scratch surface, the voter may be able to re-
veal his selection to the official (and later to other parties.)
Sufficient observation of the voting process by competing
political parties should address this issue. S&V further mit-
igates this risk with ballots created such that the “missing
half” is generic. Thus, voters can easily pick up alternative
“missing halves” to claim they voted differently, and a co-
ercer may not be certain whether the claimed half is, indeed
the proper decryptor half for Alice’s ballot.

Coerced Randomization. Recently, a new threat to paper-
based voting systems has been pointed out: coerced ran-
domization [5]. In this attack, a coercer wishes to “reduce
to random” Alice’s vote. Consider, for example, the situa-
tion where Alice votes in a precinct that historically favors
one political party by a wide margin. Such precincts are
quite common in the United States. A coercer can ask Alice
to vote for the first candidate in the list, no matter what
that candidate is. The coercer can check this by viewing
the bulletin board under Alice’s name or voter identifica-
tion number. Of course, the coercer won’t know for sure
who Alice voted for—in fact she may, by sheer luck, have

obtained a ballot where this position coincides with her pre-
ferred choice—but he will have effectively reduced her vote
to random. With enough voters, the coercer can statistically
reduce the number of votes for the party typically favored
by this precinct.

By way of countermeasure, one can offer the voter enough
ballot ordering selections that she can pick a ballot where the
prescribed behavior fits her personal choice. Unfortunately,
the attack can become much more complex: for example,
the prescribed behavior may involve voting for a position on
the ballot that depends on the ballot identifier. This issue
merits significant research. However, we note that Scratch
& Vote does not make this problem any worse: Punchscan
and Prêt-a-Voter are equally vulnerable.

6.3 Attacking the Bulletin Board and the Tally
Much of the security of the tallying process depends on

the bulletin board. An attacker may want to insert fraudu-
lent data, for example to change the election parameters or
replace an honest citizen’s cast vote. Digital signatures on
all posted data can prevent such attacks, assuming that a
minimal PKI is deployed to certify the public keys of elec-
tion officials. Public observers of the bulletin board content,
including helper organizations, can then detect bad data.

Alternatively, an attacker may want to suppress infor-
mation from the bulletin board. In particular, the bul-
letin board server itself may suppress information. To pro-
tect against this attack, the bulletin board should be im-
plemented by multiple servers. These servers may run a
distributed Byzantine agreement protocol to ensure consis-
tency of content [22], or observers may simply rely on cryp-
tographic signatures of the content and the redundancy of
the servers to catch any server the suppresses content, using,
for example hash trees [26].

Given a secure bulletin board implemented as above, at-
tacks on the tallying process can be prevented, because every
step is verified with proofs. Ballots are proven well-formed
by the NIZK proof on the bulletin board, any observer can
re-perform the homomorphic aggregation, and the final tally
decryption is also proven correct.

7. CONCLUSION
We have proposed Scratch & Vote, a simple cryptographic

voting system that can be implemented with today’s tech-
nology, at very low cost and minimized complexity. Most
importantly, ballots are self-contained: any helper organi-
zation, or the voter herself, can audit the ballot without
interacting with election officials, before the voter casts her
ballot. Given its intuitive use of scratch surfaces, Scratch
& Vote may prove particularly useful in providing an acces-
sible explanation of the power of cryptographic verification
for voting systems.
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re-encryption mixes. In ESORICS, Lecture Notes in
Computer Science. Springer, 2006.

[30] Scratch ’N Win Ballots To Debut In November, July
2006.
http://www.theonion.com/content/node/50640.

[31] The Barcode Software Center. PDF-417, 2003.
http://www.mecsw.com/specs/pdf417.html.

[32] Wikipedia.
http://en.wikipedia.org/wiki/2D barcode.

39


