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Abstract

Population protocols/{ ] are a popular model of distributed computing, in which ramdly-
interacting agents with little computational power co@gerto jointly perform computational tasks.
Recent work has focused on the complexity of fundament&ktas the population model, such as
leader election(which requires convergence to a single agent in a spetéalder” state), anchajority
(in which agents must converge to a decision as to which ofg@ssible initial states had higher initial
count). Known upper and lower bounds point towards an initérade-off between thigme complexity
of these protocols, and tlepace complexity.e. size of the memory available to each agent.

In this paper, we explore this trade-off and provide new ume lower bounds for these two fun-
damental tasks. First, we prove a new unified lower boundchvielates the space available per node
with the time complexity achievable by the protocol: fortarsce, our result implies that any protocol
solving either of these tasks faragents using)(loglogn) states must tak@(n/polylogn) expected
time. This is the first result to characterize time complefatr protocols which employ super-constant
number of states per node, and proves that fast, poly-ligaié running times require protocols to have
relatively large space costs.

On the positive side, we show th@{(polylogn) convergence time can be achieved ugingog? n)
space per node, in the case of both tasks. Overall, our sesiglhlight a time complexity separation
betweerO(log log n) and©(log® n) state space size for both majority and leader election infadipn
protocols. At the same time, we introduce several new taudstechniques, which should be applicable
to other tasks and settings.
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1 Introduction

Population protocols/ | are a model of distributed computing in which agents witthelicomputa-
tional power and no control over the interaction schedulgpecate to collectively perform computational
tasks. While initially introduced to model animal poputbais | ], they have proved a useful ab-
straction for wireless sensor networks\[\/09, ], chemical reaction networksC|[ ], and gene
regulatory networksHB04].

Specifically, a population protocol consists of a setdinite-state agents, interacting in pairs, where
each interaction may update the local state of both paatidgp The protocol starts in a valid initial con-
figuration, and the goal is to have all agents converge to #pubwalue, representing the output of the
computation, which is a predicate of the initial state ofemdThe set of interactions occurring in each step
is assumed to be decided bypeobabilistic scheduler, which picks the next pair to interact uniformiy a
random in each step. The fundamental measure of convergepeeallel time defined as the number of
pairwise interactions until convergence, dividedrby

Considerable work has been invested in studying the cortplek certain fundamental taské the
population model. One such fundamental task#gority (consensus) ) ! ], in which
agents start in one of two input statésind B, and must converge on a decision as to which state has a higher
initial count. A complementary fundamental taskgader electior] ! , ], which requires
the system to converge to states in whictirgleagent is in a specidéaderstate. Efficient leader election
is key for fast predicate computatiofi 4 , \ ], as most known constructions require
a leader to co-ordinate phases of computation. A paratieldif applied research has shown that these tasks
can be implemented at the level of molecule$)f ], and that they are connected to computational tasks
solved by living cells in order to function correctliz { 1.

A progression of deep technical resulfsof14, ] culminated in showing thakeader elec-
tion in sublinear time is impossibl®r protocols which are restricted tocmnstantnumber of states per
node [ ]. At the same time, it is now known that leader election carstiged inO(log® n) time via
a protocol requiringD(log® n) states per node?[515]. For the majority task, the space-time complexity
gap is even wider: sublinear time is impossible for proteaaistricted to having at mo&iur states per
node [ ], while there exists a poly-logarithmic time protocol whicequires a number of states per
node that idinear in n [ ].

These results strongly suggest a trade-off betweenmuhring timeof a population protocol and the
space or number of states, available at each agent. This relasi@ll the more important since time
efficiency is critical in practical implementations, whilechnical constraints limit the number of states
currently implementable in a moleculell ].* However, the characteristics of the time-space trade-off
in population protocols are currently an open guestion.

Contribution: In this paper, we take a step towards answering this quebticexhibiting a general trade-
off between the number of states available to a populati@topol, and its time complexity, as well as
providing new and improved upper bounds for both majoritgd &ader election, which are tight within
poly-logarithmic factors. Along the way, we introduce sadeew tools and techniques.
L ower Bound: More precisely, when applied to majority, our lower boumdves that there exist constants
c € (0,1) and K > 1 such that any protocol using, < cloglogn states must tak@(n/(K*» + en)?))
time, whereen is the difference between the initial counts of the two cotimgestates. Specifically, any
protocol usingconstantstates and supporting a constant initial difference necibgsakeslinear time.

For leader election, the bound shows that there exist cotsstae (0,1) andK > 1 such that any pro-
tocol using),, < cloglog n states and electing at ma&i) leaders, requireQ(n/(K*» - £(n)?)) expected
time. Specifically, any protocol electing one leader usinglog log n states require€(n/polylog n) time.

10ne such technical constraint is the possibilityeztks i.e. spurious creation of states following an interactibnpractice,
the more states a protocol implements, the higher the ttigeli of a leak, and the higher the probability of divergence.



Algorithms: On the positive side, we give new poly-logarithmic-timgaithms for majority and leader
election which use)(log? n) space. Our majority algorithm, called Split-Join, runs(iilog® n) time
with high probability, and use®(log? n) states per node. The only previosly known algorithm to aghie
sublinear time { ] required©(n) states per node. Our new leader election algorithm @5asz” n)
states, and converges@(log” n) expected parallel time. This reduces the state space siaéoggrithmic
factor over the best known algorithmiG 15], at the cost of a poly-logarithmic running time increase.

Techniques. The core of the lower bound is a technical argument provived & hypothetical algorithm
which would converge faster than allowed by the lower boumy neach “stable” configuratiofisn which
certain low-count states can be “erased.” This leads to &ramintion, since these low-count states may
be exactly the set of all current leaders (in the case of leal@etion protocols), or a set of nodes whose
state may sway the outcome of the majority computation. itiqudar, our argument employs the method of
bounded differences to obtain a stronger version of the aierisity theorem ofi} ], and develops a new
technical characterization of the stable states which eareched by a protocol, which does not require
constant bounds on state space size, generalizing upong. The argument provides a unified analysis:
the bounds for each task in turn are corollaries of the maorém characterizing stable configurations.

On the algorithmic side, we introduce a newinthetic coirtechnique, which allows nodes to generate
almost-uniform local coins within aonstantnumber of interactions, by exploiting the randomness in the
scheduler, and in particular the properties of random watkthe hypercube. Synthetic coins are useful in
both our protocols, for instance by allowing nodes to estintiae total number of agents in the system, and
may be of independent interest as a way of generating ranglgsrin a constrained setting. The Split-Join
protocol is based on a new quantized averaging techniguehimh nodes represent their output opinions
and their relative strength by encoding them as powers gféwd opinions are averaged on each interaction.

Summary: In sum, our results can be seen as bad news for algorithngrasi since they show that
convergence for both exact majority and leader electiohbgiklow even if the protocol is able to implement
a super-linear number of states per node. However, we shatwatthievable convergence time improves
quickly as the size of the state space nears the logarithmestiold: in particular, fast, poly-logarithmic
time can be achieved using poly-logarithmic space.

It is interesting to notice that previous work by Chatzigiakis et al. | ] identified the space
threshold of© (log log n) for the computational power of a family of population praitsccalledpassively
mobile machineslin particular, their results show that variants of sucheyst in which nodes are limited
to o(log log n) space per node are limited to only computsgmilinear predicatesvhereasO (log log n)
space is sufficient for computing non-semilinear predsassndO (logn) space is sufficient to compute
general symmetric predicates. By contrast, we shaaraplexityseparation between algorithms which use
O(loglogn) space per node, and algorithms employindog n) space per node.

2 Preliminaries

Population Protocols. We haven agents (also called cells, or nodes) each executing as rmrteitstic state
machine with states from a finite s&t with a finite set of input symbolX C A, a finite set of output
symbolsY’, a transition functiod : A x A — A x A, and an output function : A — Y. Each agent starts
with an input from the sek’, and keeps updating its state following interactions witteoagents, according
to the transition function. For simplicity of exposition, we assume that the agentg @entifiers from the
setV = {1,2,...,n}, although these identifiers are not known to agents, andssat by the protocols.

The agents’ interactions proceed according to a direictedaction graphG without self-loops, whose
edges indicate possible agent interactions. Usually, thehy~ is considered to be the complete graph on
n vertices, a convention we also adopt in this work.

2Roughly, a configuration is stable if it may not generate agw types of states.



The execution proceeds steps where in each step a new edge w) is chosen uniformly at random
from the set of edges @. Each of the two chosen agents updates its state accordihg tonction?.

A population protocol computes a functign XV — Y within ¢ steps with probability — ¢ if for all
x € g1(Y), the configuratiort : V' — A reached by the protocol aftérsteps satisfies the following two
properties with probability — ¢: (i) for all v € V, g(z) = v(c(v)). Specifically, all agents have the correct
output ing; (ii) for every configuration”’ reachable fronz, and for allv € V, g(z) = v(c/(v)).

Parallel Time: The above setup considers sequential interactions; fewievgeneral, interactions between
pairs of distinct agents are independent, and are usuatlyidered as occurring in parallel. In particular, it
is customary to define one unit parallel timeasn consecutive steps of the protocol.

The Majority Problem: In the majority problem agents start with arbitrary initial states in the input set
X = {A, B}. Leta be the number of agents starting in stateandb be the number of agents starting in
stateB, and lete = |a — b|/n denote the relative advantage of an initial state. The awspiisY” = {0, 1}.

A population protocol solves the majority problem withirsteps with probabilityl — ¢, if, for any
configurationc : V' — A reachable by the protocol after ¢ steps, it holds with probability — ¢ that (1) If
a > b for the given input, then for any ageinty(c(i)) = 1, and, conversely, (2) B > a for the given input,
then for any agent, y(c(i)) = 0. We emphasize that in this paper we considerekectmajority task, as
opposed t@pproximatemajority | ], which may return the wrong answer with some probability.

Leader Election: In theleader electiorproblem, all agents start in the same initial stdtei.e. the only
state in the input seX = {A}. The output set i§ = { Win, Lose}.

A population protocol solves leader election withirsteps with probabilityl — ¢, if it holds with
probability 1 — ¢ that for any configuration : V' — A reachable by the protocol after ¢ steps, there exists
a unique agentsuch that, (1) for the agenty(c(i)) = Win, and, (2) for any agent+ i, v(c(j)) = Lose.

3 Lower Bound

3.1 Preiminaries

We now refine the notation of the previous section, to makeoitenamenable to proving lower bounds. We
start by making the dependence on parametexplicit. In particular, in this section, a population ool

P will be a sequence of protocadl®, P,, . . . with P,,, one for each value of, where for eacti > 1 we have
thatP; = (A;, d;), whereA; andd; are the set of protocol states and transitions fagents, respectively.

We say that a protocol iswonotonicif, for all i > 1, (1) |A;] < |Air1], and (2) If|A;| = |As41], then
A; = Aj1q,andé; = 6;41. This definition allows for different population protocdts different number of
states, and captures all protocols where the number ofstagiiven as a parameter to the protocol, and may
be super-constant, e.ghG15, ]. We do require that if the number of states used by the ptipala
protocol is the same for agent countandj, then the whole protocol must necessarily be the same.

A configurationc of the system is formally a function: A,, — N, wherec(s) represents theount of
sin c. We let|c| stand for the sum, over all statesc A, of ¢(s). For a given task, lef = I}, I»,... be
a sequence of sets, wheiig| = n and [, is a subset (possibly all) of allowed initial configuratidias n
agents. In leader electiod,, consists of a single uniform configuration where all agen¢siathe same
state. For majority/,, contains configurations where each agent is in one of twialrsitatesA and B.

We say that a configuration of n agents has atable leaderif for all 3/ such thaty = ¢/, it holds
that) ", '(¢) = 1, whereL, is the set of all leader states Iy,. Analogously, a configuratiop has a
stable majority decisioffor initial value A, if for all 3/ with y = 1/, every agent in/ is in a state that
corresponds to decisiaA. We say that a protocdtabilizes when it reaches a stable output configuration.
The quantity of interest is the expected parallel time foopytation protocol to reach a configuration with
a stable leader or with a stable majority decision from atiaintonfiguration. We will also sometimes refer
to this quantity as theonvergence timdf the expected time is finite, then we say that populaticstqaol
stably elects a leader (or stably computes majority degjsio



3.2 Technical Machinery

We now prove a set of technical lemmas, on which the main aggumelies. In the following, we assume
n to be fixed;A,, is the set of all states of the protocol, whose size may depand Let Sy be the set of
states in the initial configuration. For all integérs> 1, define inductively the set of states

Sk = Sk—1U0n(Sk—1,Sk-1)-

Assume without loss of generality that all states\inactually occur in some configurations reachable
by the protocolP,, from some input configuration. Then, itholds tisat |, = S5, = ..., andS|y,, -1 =
A,,. We say that a configuration @enseif all present states have countn/M for some constand/. We
prove the following statement, which generalizes the mesuiit of [ ] to super-constant state counts.

LemmaA.l. Let = 1/100 be a constant. For all population protocalsusing|A,,| < 1/2loglog n states
and starting in a dense initial configuration, with probatyil> 1 — (1/n)'~?, there exists an integgrsuch
that the configuration reached aftgrsteps is»!~#-rich, all states have counts more thah 7.

Let f : N — R™ be some function. We say that a transition r1, 7o — p1, po is an f-bottleneckfor
configuratione, if ¢(ry) - c(r2) < f(|c|). If every transition sequence from initial configuratioosfinal
configurations contains a bottleneck, then we get a lowentbaun the convergence time. Conversely, the
next lemma shows that, if a protocol converges fast, thenpossible to converge using a bottleneck-free
transition sequence from'—A-rich intermediate configurations (which are reachablédyima A.J).

LemmaA.3. LetP = (A, ) be a population protocol using\,,| < 1/2loglogn states for all sufficiently
large n, and let] be a sequence of sets of dense initial configurations. Finetifon f. Assume that for
sufficiently largen, P stabilizes in expected tirm(m) from all i, € I,,. Then, for all sufficiently
large m € N there exists a configuratiom,,, with |z,,| = m agents, reachable from somec I,, and
transition sequencg,,, with the following properties: (1),,(s) > m!=? forall s € A,,, whereg = 1/100
is a constant, (2x,, =, ym, Wherey,, is stable, and (3p,, has nof-bottleneck.

The above lemma establishes the existence of a bottlemeekransition sequence to convergence from
a sufficiently rich configuration. The nettinsition ordering lemmadue to | ], proves a property
of such a transition sequence. We can order all states wlosgscdecrease more than some set threshold
such that, for each of these statbsthe sequence contains at least a certain number of a sgeaifition
that consumed;, but does not consume or produce any stdies. . , d;_; that are earlier in the ordering.

Lemma A4 Letb € Nandz,y € N in a system of, agents, such thats € A, : z(s) > by and
x =, y via a transition sequencgwithout a(b,)>-bottleneck, wheréy = |A,,|*> - b + |A,| - b. Define
A={de A, |y(d) < b}

i.e. the set of states whose count in configuratigdmat mosb. Then, there is an ordek = {d;,da, ..., dy},
such that, for alli € {1,...,k}, there is a transitiono; of the formd,,s; — o;,0} with s;,0;,0; &
{dy,...,d;}, anda; occurs at leasb times inq.

3.3 ThelLower Bound Argument

Our framework is based on the lower bound argumentCai [, but differs from it in a few key points.
Specifically, the crux of the argument iD§ 19 is the existence of a sdt of unbounded statesvhose
counts grow unbounded in stable configurations, as the nuailzgentsn tends to infinity. This property
is then used to construct a leaderless reachable configunatiere only states ifi have non-zero counts.
The unbounded property df is used multiple times throughout the proof, and togetheh Wiickson’s
Lemma it establishes the existence of a sequence of statfiguxations with growing counts for all states
in T'. In turn, this implies that the leaderless configuration inesstable, as stability is closed downward
completing the contradiction argument.

3A configuratione must be stable if another configuratidhis stable with counts of all states not less than.in
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This argument breaks in our case: Dickson's Lemma does miy & non-constant state counts, and
even the definition of becomes problematic. A notational issue is that we consiglguence of population
protocolsP,, for different values:, without requiring that they use the same state space. Eveeyi did,
the sefl” according to its original definition could just be entpty

Instead, given a family of population protocd = P;, P, ... whose number of states grow as a
function ofn, for any fixedn, configurationc € N*» and functiong : N — N*t, we definel'y(c) = {s €
Ay | e(s) > g(le])} andAy(e) = {s € A | e(s) < g(|c])}, where|c| is the number of agents in the
system in this configuration. Notice thB§(c) = A,, — Ag4(c).

The proof strategy is to first show that if a protocol convertjeo fast,” then it can also reach configu-
rations where all agents are in state§'jfic). These configurations are useful because of the following.

LemmaA.5. Consider a population protocol in a system with any fixed remobagents:, and an arbitrary
fixed functionh : N — N7 such thath(n) > 2/A2|. Leth/(n) = 2/*»I. For all configurationsc, ¢ € NA»,
such that all agents i are in states i, (c) (i.e. Vd € Ap(c) : ¢(d) = 0) andT',(c) C T'y/ (), any state
producible fromc is also producible frona’. Formally, ifc = y : y(s) > 0 for somes € A, andy € N*»,
then there also existg € N*» such that’ — ¢/ andy/(s) > 0.

Next, we prove the main theorem.

Theorem 3.1. Let P be a monotonic population protocol using at most| < 1/2loglogn states for all
sufficiently largen. Letg : N — N+ be a function such that(n) > 2/A=! for all n and6/*»! - [A,, |2 - g(n) =
o(n'=#) = o(n"9). LetI be the sequence of sets of dense initial configurationgfaiith the property
thatViy € I, ,i2 € In,, If |An,| = [Any| = [An 4|, theniy + iy € Iy, 4p,.

If P stabilizes ino (W) expected time for any initial configuration, then we can find

infinitely manym, such that for eachn there exists an initial configuration € I»,,, and a stable final
configurationy of m agents, reachable from an initial configuration i, such that
(1) i = z, wherez € N's() (j.e. all agents in configuration are in states front’y (y)).
(2) i + ¢, = 2/, wherez’ € N's®) andc, is configuration consisting gf(m)/2 + 1 agents in some
states € Ay(y) : y(s) < g(m)/2 — 1 (for any such stats, if such a state exists).

Proof. For simplicity, seth(n) = (613! + 2181 . g(n), ba(n) = [An|? - b(n) + |An| - b(n), and f(n) =
(bo(n))2. The condition in the theorem statement implies that théopm stabilizes ir (W) time.

Then, byLemma A.3 for all sufficiently largem we can findi,,, z,,, ym € N*», all configurations withn
agents, with,,, € I,,, such that:
® iy, = Ty =>p,. Ym, Wherey,, is a stable final configuration and the transition sequengceoes
not contain ary-bottleneck (i.e. @b,)2-bottleneck).

o Vs € Ayt xim(s) > ba(m), where = 1/100. (Here, we use the assumption on the funcgon
Moreover, becausg\,,| < 1/2log log n for sufficiently largen, for infinitely manym it also addition-
ally holds that|/A,,| = |Ap+1| = ... = |Asy| which according to our definitions means that population

protocolsP,,, Prm+1,- - -, Pam are all the same. Otherwis,,| would grow at least logarithmically in.

Consider any suchn. Then, we can invokéemma A.4with z,,, ¥, transition sequencg,, and
parameteb = b(m). The definition ofA in the lemma statement matchas(y,,), andby matches,(m).
Thus, we get an ordering of stat&s(y,,) = {di,ds, ..., dx} and a corresponding sequence of transitions
ag, e, ..., ar, Where eachy; is of a formd;, s; — o;, 0, with s;,0;,0; & {di,da,...,d;}. Finally, each
transitionc; occurs at leadi(m) = (61471 4+ 2lA=1) . g(m) times inp,,.

We will not perform a set of transformations on the transits®quence,,,, calledsurgeries with the
goal of converging to a desired type of configuration. Thet tww claims specify these transformations,
which are similar to the surgeries used ing15, with the key difference that counts i were bounded

4Consider for instance when the stable configurations fgelat increase the counts for the newest states.



while the counts i grew without limit, allowing the gap to get arbitrarily laggThis is no longer the case
here, so we need to carefully bound the counts of agents faicetates, and adopt the second transforma-
tion and its proof to get the desired counts. The proofs areiged in the appendix.

Let c, as defined in the theorem statement be a configuratigivoj agents each in some state A,
with y,,(s) = 0. The configuratiory in the theorem statetement will bg,. For brevity, we usd’y =
Fg(ym)v Ag = Ag(ym)- Iy = Pb(ym) andAb = Ab(ym)-

Claim A.6. There exist configurations ¢’ € N*= and 21,2} € N''s, such thate + z,, = 21, €’ + ¢, +
x,m = z}. Moreover, we have an upper bound on the counts of stateamde’: Vs € A, : e(s) <
2lAml . g(m) ande’(s) < 2l . g(m).

The configurationg + x,, ande’ + ¢, + ., have at mose*»| . g(m) - |A,,| + g(m) + m agents, which is
less tharBm for sufficiently largem. In the end, when we construgt!’, z, 2’ and the transition sequences,
it will also be in the system of at mo8tn agents, corresponding to the exact same protocol as fgents.

For any configuratior € N2, lete® be its projection ontd\, i.e. a configuration consisting of only
the agents in state8. We can define! analogously. By definitiong! = e — e2.

Claim A.7. Lete be any configuration with the property thét € A,, : e(s) < 21l . g(m). There exist
configurationsp € N® andw € N's¢, such thatp + z,,, = p + w + ¢®9. Moreover, for counts ip, we
have thatvs € A, : p(s) < b(m) and for counts inv"s, we haveys € T, : w(s) > 2MAml . g(m).

Let our initial configuratior bei,, + i,,, which according to the Theorem assumptions, must also be
a dense initial configuration frorfy,,,. Then, triviallyi — z,, + x,,. Let us applyClaim A.7 with e as
defined inClaim A.6, but use oner,, instead ofp. This is possible becaus& € A, : z(s) > ba(m) >
b(m) > p(s). Hence, we get,, + z,, = , + w + €29 = 2, + e + (w — el'9). The configuration
w — e's is well-defined because bothandes contain agents in states Iy, with each count inv being
larger or equal to the respective countln, by the bounds from the claims.

Finally, by Claim A.6, we havexr,, + ¢ + (w — e'9) = 2z + (w — e'v). We denote the resulting
configuration (with all agents in stateslip) by z, and have —> =, as desired. The proof for+- c, is fully
analogous, by simply using the respective claus€lefm A.6to get frome, + z,, + € + (w — e''s) =
2 + (w — el'9) in the last step of the argument. We tétbe the resulting configuration. O

This theorem implies the following lower bounds.

Corallary 3.2. Any population protocol that useéd,,| < 1/2loglogn states for for all sufficiently large
number of agents and stably elects at least one and at mst) leaders, must tak@ (
expected parallel time to convergence.

____n
14410 1|\, 6-£(n)2

Proof. We setg(n) = 247! . ¢(n). Input configurations for leader election consist of allrtgen the same
dedicated starting state. Hence, the sum of two input coriguns of the same population protocol for
leader election is also an input configuration, and all tleesdigurations are dense.

Assume, to the contrary, that the protocol converges inllphtane o (W) For all n,

let I,, contain the only initial configuration with agents in the initial state. Usingheorem 3.1we can
find infinitely many configurations and z of 2m agents, such that ()= z, (2) i € I3, is an initial
configuration with2m agents, (3) the same protocol is used for all number of adetigeenn and2m,
implying |A,,| = |A2,|, and (4) inz all agents are in states Iy (y ), i.e. the states that each have counts at
least2/A! . ¢(m) in some stable final configuratian(of |y| = m elements).

Becausey is a stable final configuration of a protocol that elects attnigs) leaders, none of these
states inl",(y) that are present in strictly larger coun®B’! - £(m) > ¢(m)) in y andz can be leader
states. Therefore, the configuratierdoes not contain a leader. This is not sufficient for a coittiaad,
because a leader election protocol may well pass throughdatiess configuration before converging to a
stable configuration with at mogtm) leaders. We prove below that any configuration reachabla fro



must also have zero leaders. This implies an infinite timeoaffergence from a valid initial configuratian
(asi = z) and completes the proof by contradiction.

If we could reach a configuration fromwith an agent in a leader state, thenlbymma A.5 from a
configurationc’ that consists o2lA=| agents in each of the statesli(y), it is also possible to reach a
configuration with a leader, let us say through transitiaqusece;. Recall that the configuratiompcontains
at leastlA=! . ¢(m) agents in each of these state'i{y), hence there exist disjoint configuratiorisC v,
dy Cy,etc,... ,cg(m) C y contained iny and corresponding transition sequengesss; - - - , gy(m), such
that ¢; only affects agents i@, and leads one of the agents dhto become a leader. Configuratign
is a final configuration so it contains at least one leader tagleeady, which does not belong to ady
because as mentioned abowés only contain agents in non-leader states. Therefore,gbssible to reach
a configuration fromy with ¢(m) + 1 leaders via a transition sequengeon thec;, component of, followed
by g2 on ¢}, etc,qy(m) ON clg(m), contradicting thay is a stable final configuration. O

The proof of the majority lower bound follows similarly, aisldeferred to the Appendix.

Corallary A.8. Any population protocol that used,,| < 1/2loglogn states for for all sufficiently large
number of agenta and stably computes majority decision among two initialegavith majority advantage

en, must take? ( 2) expected parallel time to convergence.

n
36/Anl. A, |6 -max(2/Anl en)

4 Synthetic Coin Flips

The state transition rules in population protocols arerdatastic, i.e. the interacting nodes do not have
access to random coin flips. In this section, we introduce reeigeé technique that extracts randomness
from the schedule and after only constant parallel timewalthe interactions to rely on close-to-uniform
synthetic coin flips. This turns out to be an useful gadgetésigning efficient protocols.

Suppose that every node in the system has a boolean parasmtemitialized with zero. This extra
parameter can be maintained independently of the rest gbribtecol, and only doubles the state space.
When agents: andy interact, they bottilip the values of their coins. Formally,.coin < 1 — z.coin and
y'.coin < 1 — y.coin, and the update rule is fully symmetric.

The nodes can use thein value of the interaction partner as a random bit in a randedhagorithm.
However, these bits are not independent and uniform. Howexeprove that with high probability, very
quickly, the distribution ofcoin becomes close to uniform and remains that way. We use theotation
properties of random walks on the hypercube, analyzed quely in various other contexts, e.g.R15].

We also note that a similar algorithm is used by Laurenti.gt al ] to generate the uniform distribution
in chemical reaction networks.

Theorem 4.1. Suppose& > an for a fixed constantv > 2. Let X; be the number of ones in the system after
i interactions. For all sufficiently large, we have thaPr[| X, — n/2| > n/21%] < 2exp(—an/8).

Proof. Let us number the nodes frointo »n, and represent their coin values by a binary vector of size
Suppose we knew a fixed vectorepresenting the coin values of the nodes after the inferagt— an.
For example, it = an, we knoww is a zero vector, because of the way the algorithm is irdeéali For
1 <t < an, define byY; the pair of nodes that are flipped during interaction an + ¢t. Then, X is a
deterministic function of7, ..., Y4, (whereby the function encodes the fixed starting veetoMoreover,
Y; are independent random variables and changing anypoaly changesX;, by at most4. Hence, we
can apply McDiarmid’s inequality witt, = f,(Y7,...,Yan).

Claim 4.2 (McDiarmid’s inequality) Let Y7, ..., Y,, be independent random variables and ltbe their
functionX = f(Y1,...,Y:,), such that changing variabl¥; only changes the function value by at mast

Then, we have th@r[| X —E[X]| > ¢ <2- exp(—gzz).
J




Settinge = a/n we getPr[| X, — E[X|] > ay/n] < 2 - exp(—an/8), given that the coin values after
interactionk — an are fixed and represented by vectorFixing v also fixes the number of ones among coin
values in the system at that moment, which we will denote biye. x = 2?21 v; = Xj_an. We can now
prove the following.

ClamC.LEX;1n | Xi=2z] =n/2+ (1 —4/n)™ - (z —n/2).

By Claim C.1we haveE[ X}, | Xi—an = 2] = n/2 4+ (1 —4/n)*" - (x —n/2), which asd < z < n and
(1 —4/n)°" < exp(—4a), impliesn/2 — n/2%*tt < E[X}), | Xp_an = 7] < n/2 +n/2%*1 For each
fixed v, we can apply McDiarmid inequality as above, and get an uppand on the probability thaX,

(given the fixedv), diverges from the expectation by at mesyn. But as we just established, for any

the expectation we get in the bound will be at mag2**+! away fromn /2. Combining these and using
n/2%*1 > o, /n for all sufficiently largen gives the desired bound. O

Approximate Counting: Synthetic coins can be used to estimate the number of agetite system, as
follows. Each node counts the number of consecutigynthetic flips it observes, until the first The
agents then exchange their values, always recording thémaax The agents will converge to a number
which is a constant-factor approximationlog . This property is made precise in the proof.eimma D.2

5 Thelottery Leader Election Algorithm

We now present a leader election protocol usin@pg? ) states, converging in expectédlog® n) parallel
time. The protocol starts from the leader-minion mechan$m ], and uses synthetic coin flips to
reduce the size of the state space. More precisely, a no@ddss ia the algorithm is determined by six
parameters:coin, mode, payoff, level, counter, and ones. All agents start in the same state, in which
initial values are zero for all parameters.

Variables: coin admits binary values and is initialized @0 mode describes the mode of operation of the
agent, and assumes one of the four valueseding, lottery, tournament, or minion. Its initial value is
seeding. payoff < 0, level <— 0 and counter < 4 are all positive integers anghes = true is a boolean.
We will assume that > 196, as needed for the synthetic coin flips. We fix a parametesuch that
(18logn)? < m < C""é#, and the number of states per node will®@émn) (16 for the four modes and
binary parametersnes and coin, and7m/3 for the other three parameters combined).

Seeding Mode: All agents start irseeding mode. Whileseeding an agent decreases itsunter on every
interaction until it reache8. When thecounter reache$), the agent changes kettery mode. The idea is to
make sure that the values of the agents’ coins diverge sriflgifrom the initial all-zero assignment before
the majority of the agents start the rest of the protocol.

Lottery Mode: In lottery mode, an agent starts counting in its opayoff the number of consecutive
interactions until observing as thecoin value of an interaction partner. When the agent first meéia
if the agent reaches the maximum possible value ghabff can hold (set ta/m), the agent: keeps its
payoff in variablep,, and changes itsiode to tournament.

Tournament Mode: In tournament mode, the agents start at theel 0, and make repeated attempts to in-
crease their level. Each agenkeeps track ophaseseach consisting @b (log p,.) consecutive interactions.
For each phase, if all coin values of interaction partneed athen the agent’s level.level is incremented;
otherwise, it stays the same. An agent that reaches the maxpossibldevel (set at,/m /3 log m) remains

in tournament mode, but stops increasing its level.

Whenever two agentsandy in tournament mode meet, they compare statespayoff , x.level, x.coin)
and(y.payoff , y.level,y.coin). If the former is larger, then agenteliminates agenj from the tournament.
Practically, ageny sets itsmode to minion. Note that agents with higher lottery payoff always have
priority; if both payoff andlevel are equal, theoin value is used as a tie-breaker.



Minion Mode: An agent inminion mode keeps a record of the maximupayoff, .level pair ever en-
countered in any interaction in its owiayoff andlevel parameters. If.mode = minion andy.mode =
tournament, and(z.payoff , x.level) > (y.payoff , y.level), then the agent in stagewill be eliminated from
contention, and turned into a minion. Intuitively, as ix{15], minions help leaders with high payoffs and
levels to eliminate other contenders by spreading infoionatImportantly, minions do not use the coin
value as a tie-breaker (as this could lead to a leader eltmgaself).

The intuition behind this process is that the agent with igbdst lottery payoff eventually becomes the
leader. This is an agent that manages to reach a high lewklydiriurn other competitors into its minions,
which further propagate the information about the highesbff and level through the system.

Analysis Overview: Recall that only nodes withhode = minion are non-leaders, and once a node becomes
a minion it remains a minion. Therefore, we start by provingt thot all nodes can be minions at the same
time, and if there are — 1 minions in the system, then there is a stable leader. Lateryill establish a
finite convergence bound on expected time until only one ®det a minion, which proves correctness.

LemmaD.1. In any reachable configuration, at least one node is not aoninFurthermore, a configuration
with n — 1 minions must have a stable leader, meaning that the norsmmde will never become a minion,
while all minions will remain minions.

Lemma D.2. Then, the expected number of interactions until all nodesehaode = tournament or
.mode = minion is O(nlog?n). Moreover, once that happens, with probability at least 5/n°, at most
12log n nodes will hold the maximupuyoff value, which will be at leasbg n/4 and at mosti6 log n.

Once all agents have left tlheeding andlottery modes, thesecond stagef the algorithm begins. In
this second stage, all nodes are in eitb@rrnament or minion modes. For any agent, if its payoff is
p, it will now use thecounter parameter to observélog p + 12 consecutive coin values of interaction
partners and increase itsvel if they all happen to be one. The maximum allowedinter value is thus
6logm/2 + 12 < Tlogm, but it only counts up t@logp + 12, sincep is the actual payoff as opposed

to the maximum possible payo{fm. We will set the maximum possible value bfvel to %, which
when combined with/m possible values opayoff and7logm for counter, gives7m/3 for these three
parameters combined.

Next, we focus on the second stage. Below, let usamaitenderghe nodes that have the highestjoff

after the first stage and aretisurnament mode.

Lemma D.3. With probability at least — 2U%™ only one contender reaches lever e Tet g @nd

for each level up td, it takes at mosD(n log” n) interactions before some contender gets to a larger level.
Conditioned on this high probability event, the expectechiber of interactions before having— 1 minions

is O(nlog”n).

The above technical lemma implies the global convergencadho

Corollary D.4. The algorithm converges in expected parallel tid@og® n) and with high probability in
parallel timeO(log!'® n).

6 The Split-Join Majority Algorithm

Description: We now give an algorithm for exact majority usinyflog? n) states per node.

Each algorithm state corresponds to a pair of integeasd y, represented byz, y), whereby both
integers come fromx,y € {0,1,2,22,...,2/°e"1}, Not all possible pairs are valid states, in particular,
for all states of the algorithm; # y and2 - min(x, y) # max(x,y) hold. For technical reasons, we have
two additionalweak statesepresented as paitg, 0)™ and (0,0)~. Therefore, ifx andy are equal, the
pair (z,y) must be either0,0)* or (0,0)~. We will refer to states and their corresponding value pairs



State Space:

StrongStates = {(z,y)|z,y € {0,1,2,22,...,2M10271} & £ 4 2. min(z, y) # maz(z,y)},
WeakStates = {(0,0)*,(0,0)~}

Input: States of two nodesx 1, y1) and(z2, y2)

Output: Updated stateér’ , v/;) and(z), y5)

[0,0] if u=ov

u—v,0 if u=2v
1 Reduce(u,v) = { {O,v — u% if 2u = v

[, v] otherwise.

procedure cancel(z1, y1, 22, y2)
(@), 4] + Reduce(z1,ya)
(wh o]  Reduce(zz,y)
procedure join(z1, y1, 72, y2)
if (1 —y1 > 0andz2 — y2 > 0andy; = y2) then y} < y1 + y2 andy, < 0
else yi < y1 andyl < yo
if (r1 —y1 <O0andzz —y2 < 0andxy = x2) then x| « x1 + x2 andz), < 0
else 7| < 1 andz), < z2
procedure split((z1,y1), (x2,y2))
if (x1 —y1 > 00rz2 —y2 > 0) and max(z1,x2) > 1 and min(z1, z2) = 0 then
x| + max(x1,x2)/2 andz), < max(x1,z2)/2
else 7| < 1 andz), < z2
if (x1 —y1 < 0o0rz2 —y2 < 0)and max(y1,y2) > 1 and min(y1,y2) = 0 then
Yy + max(y1,y2)/2 andys + max(y1,y2)/2
else y| + y1 andyl, < yo
procedure normalize(z, y, v)
(%, 9] + Reduce(z,y)
if r = 0andy = 0 then
if v > 0then (z/,y’) «+ (0,0)F
dse (z',y') < (0,0)~
dse (z',y') < (z,y)
23 procedure interact({z1,y1), (x2,y2))

© 0 N O O~ WN

NN NERRRERRER
NP O ©oNoOhs NP

2 ifo1 =y1 =22 = y2 = 0then [(z,y)), (x5, ¥5)]  [{z1,91), (z2,y2)]
25 ese

26 (21, Y1, T2, y2] + split(join(cancel(z1, y1,z2,¥2)))

27 (x!,y}]) < normalize(«1, 41, €2 — ¥2)

28 (xh, yh) < normalize(d2, 42, €1 — ¥1)

Figure 1: The state update rules for the Split-Join majaigorithm.

interchangeably.

Nodes start in one of two special states. By convention, sigtlting in stated have the initial pair
(2Meen] 0), and the nodes starting in staehave the initial pair0, 2/'°¢"1). We define avalueof a state
corresponding to a paitz, y) asvalue({x,y)) = = — y. Then, the output function maps each state to
the output based the sign of its value (treat{figd) ™ as positive and0, 0)~ as negative). To show that the
algorithm solves exact majority, we prove that all nodes/eaye to the values of the same sign as the initial
majority (positive forA, negative forB), and that the convergence is fast with high probability.

The algorithm, specified iigure 1, consists of a set of simple deterministic update rulestfermode
state. In the pseudocode, a péir y) always stands for a state, while, 3] just means a tuple of integer
values (without refering to a state). Hence, ®educehelper function takes two values and returns two
values. The main interaction rule between the statgsy;) and (z2,y2) of two interacting nodes is de-
scribed by the functiointeract The states after the interaction dré, v}) and(z}, v5). All nodes start in
the designated initial states and continue to interactrdong to theinteract rule.

If both of the interacting states are weak, nothing chanlijes Z4). Otherwise, three elementary reac-
tions, cancel join, andsplit are applied, in this order. The reactioanceltakes four values:, y1, x2, yo
and returns (possibly updated) valuésy], x5, 5. These values are then fed as inputs tojtire reaction,
that also returns four values which are then fedpbt. The four outputs osplit are, 31, 72, 12, which
are then normalized to form the output states (becatgsej;) may not be a valid state).

The elementary reactions are each described as a functionrohputszy, y1, 2, y2 and four outputs
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zh, v}, ©h, yh, We say that @ance] split or join reaction issuccessfuif x; # z; ory; # y. fori € {0,1}.
Correctness and Convergence: The first observation is that the sum of values in the systeponstant
throughout the execution. Since the initial sum is of thearsj sign, the algorithm is guaranteed to be
correct. The proof of convergence follows by carefully kiag the maximum value in the system, and
showing that minority values get cancelled out and switgim sjuickly. Due to space limitations, we only
state the main claim here, and defer the complete proof tépipendix.

Theorem B.1. The Split-Join algorithm will never converge to the mingulecision, and is guaranteed to
converge to the majority decision within(log® n) parallel time, w.h.p.

7 Conclusion

We studied the trade-off between time and space complexifgopulation protocols, and showed that a
super-constant state space is necessary to obtain fagtlogakithmic convergence time for both leader
election and exact majority. On the positive side, we gagerdghms which achieve poly-logarithmic ex-
pected convergence time usitlog® n) states per node for both tasks.

Our findings are not necessarily good news from the pracsieeddpoint, as even small constant state
counts are currently difficult to implement| ]. Itis interesting to note how nature appears to have
overcome this impossibility: algorithms solving majoriy the cell level do sapproximately allowing
for a positive probability of error, using small constarates per node and converging in poly-logarithmic
time [ ].

We open several avenues for future work. The first is to tygbtlaracterize the time-space trade-off,
betweenog log n andpolylogn states. This question appears challenging, and will liketyuire the devel-
opment of analytic techniques parametrized by the numbetabés that an algorithm employs. A second
direction is to explore the space-time trade-off in the acdsspproximately correct algorithms.
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A Lower Bound

LemmaA.1l (Density Lemma)Let 5 = 1/100 be a constant. For all population protocoks using|A,,| <
1/2loglogn states and starting in a dense initial configuration, witlolpability > 1 — (1/n)'~#, there
exists an integey such that the configuration reached aftesteps is:' —?-rich.

Proof. We begin by defining, for intege#s > 0, the function

F(k) = n517 2+,

Alternatively, we have thaf(k)? = f(k + 1)n/51.
Letc = 1/2, andg = 1/100. Given the above, we notice that, for our choice-@d 3, it holds that, for
sufficiently largen > 2,

e 3(cloglogn)?/n < (1/n)'=#, and

e for 0 < k < cloglogn, we have thaif (k) > max(n'~?, 50y/nlogn).

We divide the execution into phases of index> 0, each containing/2 consecutive interactions. For
each0 < k < |A,| — 1, we denote by’ the system configuration at the beginning of phiase

Inductive Claim.: We use probabilistic induction to prove the following aleiassuming that configuration
CY is f(k)-rich with respect to the set of statég, with probability 1 — 3|A,,|/n, the configuratiorCy, ., is
f(k+ 1)-rich with respect t& ;.

12



For generak > 0, let us fix the interactions up to the beginning of phiasand assume that configuration
C is f(k)-rich with respect to the set of stat8g. Further, consider a statec Sy1. We will aim to prove
that, with probabilityl — O(1/n), the configuratiorCy; satisfies contains statewith count> f(k).

First, we define the following auxiliary notation. For anydea- and set of noded, and define this
counts the number of interactions betweeand nodes in the sdt i.e.

intcount(I,r) = |{ interaction; in phasek : there exists € I such thae; = (i,7) }|.
Next, we define the set of nodes in a statd the beginning of phadeas
Wi(s) ={v:v e VandCy(v) = s}.
Finally, we isolate the set of nodes in statat the beginning of phasewhich did not interactduring phase
k as
W'(s) = {v:v € W(s)andintcount(V,v) = 0}.

Returning to the proof, there are two possibilities for ttetesg. The first is wherny € S, that is, the
state is already present at the beginning of pliadgut then, by assumption, staidas count> f(k) at the
beginning of phasé. To lower bound its count at the end of phasaet is sufficient to examine the size of
the seti’’(¢). For a nodey € W (q), the probability thav € W'(q) is

1 n/2
- — >
<1 n) > 1/2,

by Bernoulli’'s inequality. Therefore the expected sizé1f(q) is at leastW (¢)| /2. Changing any interac-
tion during phasé: may changelV’(¢)| by at mostl, and therefore we can apply the method of bounded
differences to obtain that

pr )] < 2 - aTogn] < exp (<122 ) —

n n
Since, by assumptioniV (¢)| > f(k) > 10y/nlog n, it follows that
pr ()] < 210)] <

Since2f(k)/5 > f(k + 1), we have thaPr[#q(Cr41) > f(k +1)] > 1 — 1/n, which concludes the
proof of this case.

It remains to consider the case wher Sy 1 — S;. Here, we know that there must exist stajeand
gr in Sk such that(q;, ¢,) = ¢. We wish to lower bound the number of interactions betweeatesan state
¢; and nodes in statg. throughout phasg. To this end, we isolate the sgtof hodes which are in staig
at the beginning of phase and only interact once during the phase, i.e.

R ={v:v € W(q,) andintcount(V,v) = 1},

and the set of nodeR’, which are inR, and only interacted once during phasevith a node in the set

W/(qz-), i.e

R’ = {v:v € Randintcount(W'(g;),v) = 1}.

Notice that any node in the s&t is necessarily in statgat the end of phase+ 1. In the following, we
lower bound the size of this set.

First, a simple probabilistic argument yields thHai R|] > |W(q,)|/4. Since each interaction in this
phase affects the size & by at most2 (since it changes the count of both interaction partnerg)can
again apply the method of bounded differences to obtain that

r 1
{\R[ < |W ar) 2\/nlogn} < o
implying that
1

P IRl < 9] < 1.

To lower bound the size oft’, we apply again the method of bounded differences. We haae th
[W'(q)| > (2/5)f(k), and thatR| > (1/20) f (k), we have that
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1
n’

pe 1) < o (LE20) — Vntog <

n
At the same time, we have that

1 (f(k:)2> W>—f(k+l)__f(k+l) flk+1),

50 n
which concludes the claim in this case as weII. Finally, vvleaaply a union bound on the set of states to
obtain that, with probability> 1 — 3|A,,|/n,

Final Argument.: According to the lemma statement, we are considering dialiconfiguration in which
all states which are present have countn/M, for some constand/ > 0. Let ko be the first positive
integer such that /M > f(ko). We have that the initial configuration f§k)-rich with respect to the set
of initial statesS,. By a variant of the previous inductive claim, we obtain tfiat any integed < ¢ < |A,,|
satisfying f (ko + £) > max(n'~”,10y/nlogn), at the beginning of phage configurationC; is f (ko -+ £)-
rich with respect t,.

It therefore follows that, with probability at least

(1 = 3|Ap|/n)A > 1 —3(cloglogn)?/n>1—1/n'"",

there exists an integgrsuch that the configuration reached afteteps is:! —#-rich. O

Claim A.2.In a system of, nodes, lety > 0,f : N — R*,¢c € N*, and X,Y C NA» such that
Prjc = X] > v, and every transition sequence from everg X to somey € Y has anf-bottleneck.
ThenT[c = Y] > fym

Proof. We will prove that for anyz € X, T[x = Y| > W holds, which implies the desired
claim. By definition, every transition sequence franto a configurationy € Y contains anf-bottleneck,
so it is sufficient to lower bound the expected time for thet ffrdottleneck transition to occur from
before reaching”. In any configuratiorc reachable frome, for any pair of states,,r, € A,, such that
r1,T2 — p1,pe IS @ f-bottleneck transition i, the definition implies that(ry) - ¢(r2) < f(n). Thus the
probability that the next pair of agents selected to integiee in states; andr,, is at mostf(ji—(fi). Taking an

union bound over aI]IAn\2 possible such transitions, the probability that the nextsition isf-bottleneck

is at mostiA, |2 nln— i) Bounding by a geometric variable with success probabfh 12'_/\1)|2 the expected
number of interactions until the firgtbottleneck transition is at lea; (%K)‘Q. The expected parallel time
is this quantity divided by,, completing the argument. O

Lemma A.3.Let P = (A,0) be a population protocol such théh,,| < 1/2loglogn states for all suffi-
ciently largen, and let/ be a sequence of sets of dense initial configurations Asthathéhere exists &),
such that for all sufficiently large, P ()-stabilizes in expected t|mef( A ‘2) from all i,, € I,,. Then,

for all sufficiently largem € N there exists a configuration,,, with |z,,| = m agents, reachable from some
1 € I, and transition sequengeg,, with the following properties,

e z,,(s) >m!~Pforall s € A, wheres = 1/100 is a constant.

® T, =, Ym, Wherey,, is Q-stable, and

e p,, has nof-bottleneck.

Proof. Recall that, as defined earli€p, is a sequence of subset of transitions from the respectraagits
of 4, i.e. ), C ¢, holds for alln. Also, I,, is a set of some legal initial configurations formagents, which
are all given to be dense. We kno that the expected time th r@gestable configuration from s finite.
Hence ifi = x,,, for i € I,,,, then aQ)-stable configurationy,,, must be reachable from,, through some
transition sequencg,,, but we also need,, andp,, to satisfy the first and third requirements.

We know |A,| < 1/2loglogn for all large enough. Hence, byLemma A.1 for a constants =
1/100, starting in any dense configuratiép < I,,, with probability at least — (1/n)'~#, ann!=#-rich
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configuration is reachable. So> 2, we get thatr[i, — X,,] > 1/2 whereX,, = {z | i, = z and
(Vs € Ap)z(s) > nt=F}.

Let Y,, be a set of all)-stable configurations with agents. Suppose that every transition sequence
from every configurationr € X, to somey € Y has anf-bottleneck. Then, usinGlaim A.2, the expected

time to Q-stabilize fromi € I,, is T[i,, = Y] > 5 - 2f(Z)_\/1Xn\ = O(fyaz)- But we know that the
protocolQ-stabilizes fromi € I, in time o(m), implying that for all sufficiently largen, we can find

Tm € X, from which it is possible to reach @-stable configuration i” without an f-bottleneck. First
requirement is satisfied by the definition &f,, and we letp,,, be the transition sequence frarp, to some
y € Y without anf-bottleneck. O

Lemma A4 Letb € Nandz,y € N in a system of, agents, such thats € A, : z(s) > by, and

x =, y via a transition sequencgwithout a(b,)>-bottleneck, wheréy = |A,,|*> - b + |A,| - b. Define
A={de A, |y(d) <b}

i.e. the set of states whose count in configuratig®at mosb. Then, there is an ordek = {d;,da, ..., dy},

such that, for alli € {1,...,k}, there is a transitiono; of the formd,,s; — o;,0} with s;,0;,0; &

{dy,...,d;}, anda; occurs at leasb times inq.

Proof. The argument is identical as if'{ ] ] and is described below for the sake of completeness.

Letk = |A| and defineA;, = A. We will construct the ordering in reverse, i.e. we will deténe d; for
i=k,k—1,...,1inthis order. At each step, we will define the néxt ; asA; — {d;}.

We start by setting = k. For alli we define®; : N*» — N based om\; as®;(c) = > dea, c(d), i.e.
the number of agents in states fraly in configurationc. Notice that once\; is well-defined, so i%,.

The following works for all; > 1 and lets us construct the ordering. Becayg8 < b for all states in
A, it follows that®;(y) <i-b < |A,|-b. On the other hand, we know thatd) > b, for all d € A;, hence
®;(z) > by > |Ay| - b > ®;(y). Letc be the last configuration alongfrom x to y where®;(c’) > bo,
andr be the suffix ofg afterc’. Then,r must contain a subsequence of transitioresach of which strictly
decrease®;, with the total decrease over all ofbeing at leas®; (') — ®;(y) > by — |A,| - b > |A,|% - b.

Leto : r1,70 — p1,p2 be any transition ini. « is in u so it strictly decrease®;, and without loss of
generalityr; € A;. Transitiona is not a(bs )?-bottleneck, since: (andg) do not contain such bottlenecks,
and all configurationg alongu havec(d) < by for all d € A; by definition of . Hence, we must have
c(ra) > by meaningre ¢ A,. Exactly one state id\; decreases its count in transitian but « strictly
decrease®;, so it must be that botpl ¢ A; andpg Q A;. We taked; = T1,8; = 12,0; = P1 andog = p2.

There are A, |? different types of transitions. As each transitionuimlecrease®; by exactly one and
there are at leagt\,,|> - b such instances, at least one transition type must repeatainleastb times,
completing the proof. O

Lemma A.5. Consider some population protocol in a system with any fixadber of agents,, and an
arbitrary fixed functionh : N — N* such thath(n) > 2/Al, Leth/(n) = 2/*»I. For all configurations
c,d € N4 such that all agents inare in states i, (c) (i.e. Vd € Ap(c) : ¢(d) = 0)andT,(c) € T (c),
any state producible fromis also producible frona’. Formally, ifc =y : y(s) > 0 for somes € A,, and
y € N then there also existg € N*» such that?! — 3’ andy/(s) > 0.

Proof. Sinceh(n) > 2/A~l, for any state froni,(c), its count inc is at leastl?~l. As T, (¢c) C T'y/(¢),

the count of each of these states-ins also at least/(n) = 2/A». We say two agents have the same type
if they are in the same state in We will prove by induction that any state that can be produzg some
transition sequence from can also be produced by a transition sequence in which at2es$ agents of
the same type participate (ever interact). Configurationly has agents with types (states)lip(c), and
configuration also has at least»| agents for each of those types, the same transition seqoandee
performed from’ to produce the same state as frenproving the desired statement.
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The inductive statement is the following. There i& & |A,,|, such that for each= 0, 1,. ..,k we can
find setsSy € 51 C ... C Sk whereS), contains all the states that are producible franiet A; be a set
consisting o2 agents of each type iy, (c), out of all the agents in configuratien(\we could also use'),
for the total of2 - |T',(c)| agents. There are enough agents of these typegand inc’) asi < k < |A,,|.
Then, for eacl) < ¢ < k and each state € .S;, there exists a transition sequence from which only the
agents in4; ever interact and in the resulting configuration, one ofeteggents frond; ends up in state.

We do induction oni and for the base cagse= 0 we takeSy, = I';,(¢). The set4, as defined contains
one @°) agent of each type ifi;,(c) = Sy°. All states inSy are immediately producible by agentsAg via
an empty transition sequence (without any interactions).

Let us now assume inductive hypothesis for san¥e 0. If .S; contains all the producible states from
configuratione, thenk = ¢ and we are done. We will have< A,,, becausesy # @ andSy C S; C ... Sk
imply that S, contains at least different states, and there g, | total. Otherwise, there must be some
states ¢ S; that can be produced after an interaction between two agetitsin states irb;, let us say by
a transitiona : 71,79 — s,p with 71,79 € S;. Also, asS; contains at least states out ofA,,| total, and
there is the state ¢ S;, i < |A,| holds and the sefi; ., is well-defined. Let us partitiodd;; into two
disjoint setsB; and B, where each contai®f agents fronr for each type. Then, by induction hypothesis,
there exists a transition sequence where only the ageits @aver interact and in the end, one of the agents
b, € B; ends up in the state. Analogously, there is a transition sequence for agenisjrafter which an
agentby € Bo ends up in state,. Combining these two transition and adding one instanceaasition«
in the end between agenis andb,, (in statesr; andr, respectively) leads to a configuration where one of
the agents fromH;; is in states. Also, all the transitions are between agentslin,. Hence, we can set
Si+1 = S; U {s}, completing the inductive step. O

Claim A.6. There exist configurations ¢’ € N*= and 21,2} € N''s, such thate + z,, = 21, €’ + ¢, +
x,m = z}. Moreover, we have an upper bound on the counts of stateamde’: Vs € A, : e(s) <
2lAml . g(m) ande’(s) < 2l . g(m).

Proof. The proof is analogous t@[514, but we consider a subsequence of the ordered transitigns
{d1,...,d} obtained earlier byemma A.4 Sinceb(m) > g(m), we can represemk, = {d;,,...,d;},
with iy < ... < 4;. We iteratively add groups of transitions at the end of fiteors sequence,,,, (p,, is the
transition sequence from,, to y,,,), such that, after the first iteration, the resulting configion does not
contain any agent id;, . Next, we add group of transitions and the resulting conéigon will not contain
any agent agent id;, or d;,, and we repeat thistimes. In the end, no agents will be in states from

The transition ordering lemma provides us with the traosgito add. Initially, there are at magtn)
agents in state;, in the system. So, in the first iteration, we add the same am@imostg(m)) of
transitionsd;, , s, — o;,, 05, , after which, as;, , 0, , 0}, ¢ {di,...d; }, the resulting configuration will not
contain any agent in configuratiafy, . If there are not enough agents in the system in statalready to
add all these transitions, then we add the remaining agestsie ins;, to e (or ¢’). For the first iteration,
we may need to add at magtmn) agents.

For the second iteration, add transitions of typg s;, — 0;,,0;, to the resulting transition sequence.
Therefore, the number of agentsdy) that we may need to consume is at m®sj(m), g(m) of them could
have been there in,,, and we may have addé@d g(m) in the previous iteration, if for instance bath and
o;, wered,,. Otherwise, the iteration is analogous, and we may3adg(m) extra agents te (or ¢’).

If we repeat these iterations for all remainifig= 3, ..., [, in the end we will end up in a configuratian
(or 2’) that contains all agents in statedliras desired, because of the property of transition ordeemyria
thats;,, 0;;, o;j ¢ {d1,...,d;, }. Foranyj, the maximum total number of agents we may need to addto

iterationj is (2/ — 1) - g(m). The worst case is when, andoj, are bothd;,, ando;,, o}, are bothd;,, etc.

®In ¢, all the agents are in one of the state¥'g{c), so as long as > 0 there must be at least one agent per state (type). Also,
if ', (c) = @, thenn must necessarily b& so nothing is produciblely = &, kK = 0 and we are done
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Finally, it must hold that < |A,,|, because the final configuration containsagents in states ifi, and

none in{d;,,...,d; }, sol'y cannot be empty. Therefore, the total number of agents atddetbr ¢’) are
g(m) - 22:1 2l — 1 < 21 . g(m) < 2lAnl. g(m). This completes the proof becausg) for any states
can be at most the number of agentg,imwhich is at mosgl*=| . g(m). O

Claim A.7. Lete be any configuration with the property that € A, : e(s) < 2141 . g(m). There exists
configurationsp € N® andw € N9, such thatp + z,,, = p + w + ¢®9. Moreover, for counts ip, we
have thatvs € A, : p(s) < b(m) and for counts inv"s, we haveys € T, : w(s) > 2=l . g(m).

Proof. The following proof has some significant differences froendbunterpart in[pS14. Also, as in the
proof of Claim A.6, we define a subsequence K 4;), Ay = {d;,,...,d;} of Ay = {di,...,d;} that

we obtained earlier biyemma A.4 We again start by the transition sequepggefrom configurationz,,, to

ym, and perform iterations fof = 1,... k. At each iteration, we modify the transition sequence, ipbss
add some agents to configuratipnwhich we will define shortly, and consider the counts of gkiats not

in p in the resulting configuration. Configuratignacts as a buffer of agents in certain states that we can
temporarily borrow. For example, if we ne&dagents in a certain state with counto complete some
iterationj, we will temporarily let the count te-5 (add5 agents tg), and then we will fix the count of the
state to its target value, which will also return the “borea agents (s@ will also appear in the resulting
configuration). As inlDS14, this allows us let the counts of certain states tempgraribp belowo.

We will maintain the following invariants on the count of agge excluding the agents in in the
resulting configuration after iteratign

1) The counts of all states (notjn in A, N {d1,...,d;} match to the desired countsdn.
2) The counts of all states ifily, ... d;} — A, are at lease/*»| . g(m).
3) The counts in any state diverged by at m@st— 1) - 214! . 4(m) from the respective counts ip,.

These invariants guarantee that we get all the desired pirepafter the last iteration. Let us consider
the final configuration after itaratio Due to the first invariant, the set of all agents (nop)nin statesA,
is exactlye®s. All the remaining agents (also excluding agentg)rare inw, and thus, by definition, the
counts of states i\, in configurationw will be zero, as desired. The counts of agents in states- A,
that belong taw will be at leas2/Am! . g(m), due to the second invariant. Finally, the counts of agenks i
that belong tav will also be at leasb(m) — 3/A=! . 2lAnl . g(m) > 2lAml . g(m), due to the third invariant
and the fact that the states i had counts at leagt{m) in y,,. Finally, the third invariant also implies
the upper bound on counts in The configuratiorp will only contain the agents in states;,, because the
agents i, have large enough starting countsyip borrowing is never necessary.

In iterationd;, we fix the count of staté,. Let us first consider the case whénbelongs taA,. Then,
the target count is the count of the staein e®¢, which we are given is at mogt*~! . g(m). Combined
with the third invariant, the maximum amount of fixing reqdrmay be i$/ - 214! . g(m). If we have to
reduce the number af;, then we add new transitions, s; — o;, o}, similar toClaim A.6 (as discussed
above, not worrying about the count ©f possibly turning negative). However, in the current casenvay
want to increase the count df. In this case, we remove instances of transitions; — o, 0 from the
transition sequence. The transition ordering lemma tellthat there are at leastm) of these transitions
to start with, so by the third invariant, we will always hav@agh transitions to remove. We matched the
count ofd; to the count ine®s, so the first invariant still holds, and so does the second ditee third
invariant also holds, because we performed at rabsp/Aml . g(m) transition additions or removals, each
affecting the count of any other given state by at nistnd hence the total count differ by at most

(37 —1)- 20l g(m) + 237 - 2Aml . g(m) = 37+ — 1) - 2Aml . g(m).

Now assume thad; belongs toA, — A,. If the count ofd; is aleady larger thag*»| . g(m), than
we do nothing and move to the next iteration, and all the iavas will hold. If the count is smaller than
2lAml . g(m), then we set the target count2d'~! - g(m) and add or remove transitions like in the previous
case, thus the first two invariants will again hold after ttezation. Becausd; is in I'y, the its initial
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count iny,, was at leasy(m), it diverged by at most3’ — 1) - 2/A=l . g(m), and ended up less than

2lAml . g(m) which we are fixing t@2/A~! . g(m). Therefore, the maximum amount of fixing required is
(37 — 1) - 2ml . g(m) + (2181 . g(m) — g(m)), which is at mos8’ - 2147 . g(m), as in the previous case,

we will have enough transitions to remove and the third iiawdrwill also hold. O

Corollary A.8. Any population protocol that used,,| < 1/2loglogn states for for all sufficiently large
number of agents and stably computes majority decision among two initialegtavith majority advantage

en, must take? ( 2) expected parallel time to convergence.

n
36/An1.| A, |6-max(2Anl en)

Proof. We setg(n) = max(2/A*1 4en). For majority computation, initial configurations consiéagents
in one of two states, corresponding to two opinions, withrtiggority opinion holding aren advantage in
the counts. Therefore, the sum of two initial configurati@ishe same protocol is also a valid input
configuration. The bound is nontrivial only in a regirae € o(y/n), which we will henceforth assume
without loss of generality. The initial configurations wensaer inI,, will all have advantagen, and
therefore will all be dense.

Let us prove that for all sufficiently large, in any final stable configuration strictly less tharzlA=! <
g(m)/2 agents will be in the initial minority states. The reason is that if is the initial configuration of all
m agents in statep, the protocol must converge froato a final configuration where the states correspond
to decisionsz. By Lemma A.5 from any configuration that contains at least~| agents insp it would
also be possible to reach a configuration where some agembiisiglecisiorsz. Therefore, all stable final
configurationy have at mosy(m)/2 — 1 agents in initial minority statez. This allows us to let, be a
configuration ofy(m)/2 + 1 > 2em + 1 agents in statep.

Assume, to the contrary, that the protocol converges inllpatane o (36‘[\”‘_|An|6':1ax(2mn‘7m)2). Re-

call that! is the sequence of sets of dense initial configuratign$-or alln, we letl,, contain configurations
with @ agents in state 4 and@ agents in statep, i.e. having majority opinion 4 with advantage
en®. Using Theorem 3.1we can find infinitely many configuratiorisand 2’ of at most3m agents, such
that (1)¢ + ¢, = 2/, (2) i € Iy, is an initial configuration foRm agents, with majority opinior 4
and advantaggem. (3) the same protocol is used for all number of agents betweand 3m, implying
|Am| = [A2m| = [Agmic,||, @nd (4) in2 all agents are in states Ity (y), i.e. the states that have counts at
leastg(m) in some stable final configuratianof m elements, reachable from an initial configuratiord,jn

To get the desired contradiction we will prove two thinggsEk’ is actually a stable final configuration
for decisions 4 (majority opinion inz), and second; + ¢, is a valid initial configuration for the majority
problem, but with majority opinion g (majority of agents iz z). This will imply that the protocol converges
to a wrong outcome, and complete the proof by contradiction.

If we could reach a configuration fromi with any agent in a state corresponding to the decision for
then byLemma A.5 from a configuratiory (which containg/*~| agents in each of the stateslip(y)) itis
also possible to reach a configuration with an agent supgpst. This is impossible, as configuratigns
a final stable configuration for an initial configuration/in, which has a majority of 4.

Configurationi € I, contains2em more s, states thansg. Configurationc, consists of at least
2em + 1 agents all in stateg. Hence; + ¢, is a legal initial configuration with a majority afg. O

B Analysisof the Majority Algorithm

The update rules irigure 1are chained, i.e. a cancel is followed by a join and a splitis Than opti-
mization, applying as many possible reactions as posshbtsvever, for the analysis we consider a slight
modification, where we only apply split only if both join andnzel were unsuccessful.

For presentation purposes, we assumesthiata power of two, and when necessary, we assume that it
is sufficiently large. Throughout this proof, we denote tbeaf nodes executing the protocol by We

®To clarify, I, has to contain some dense initial configurations-f@gents, but not necessarily all such configurations.
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measure execution time in discrete steps (rounds), wheleteae step corresponds to an interaction. The
configurationat a given time is a functionc : V' — @Q, wherec(v) is the state of the nodeat timet¢. (We
omit the explicit timet when clear from the context.)

Recall that a value of a state, y) is defined as: — y and we will also refer tanax(z, y) as theevelof
this node. We callx, y) a mixedstate if bothx andy are non-zero, and jgure state otherwise. A mixed or
pure node is a node in a mixed or a pure state, respectively.

The rest of this section is focused on proving the followiaguit.

Theorem B.1. The Split-Join algorithm will never converge to the mingulecision, and is guaranteed to
converge to the majority decision within(log® n) parallel time, w.h.p.

Correctness: We first prove that nodes never converge to the sign of thialiminority (safety), and that
they eventually converge to the sign of the initial majofigrmination).

The first statement follows since given the interaction gswéthe algorithm, the sum of the encoded
values stays constant as the algorithm progresses. Thefploavs by the structure of the algorithm.

Invariant B.2. The sund ;- value(c(v)) never changes, for all reachable configuratiensf the protocol.

This invariant implies that the algorithm may never coneetg a wrong decision value. For instance, if
the initial sum is positive, then positive values must algvayist in the system. Therefore we only need to
show that the algorithm converges to a state where all noaless the same sign, which we do via a rough
convergence bound, assuming an arbitrary starting coatigar

Lemma B.6. Let ¢ be an arbitrary starting configuration. We define the (ifjtiaum of values a8 :=
> vey value(c(v)). By assumptions # 0. With probability 1, the algorithm will reach a configuration
such that i)sgn(é(v)) = sgn(S) for all nodesv € V, and ii) no node changes its sign in configurations
reachable front, i.e. V¢, reachable fromcandv € V' : sgn(c.(v)) = sgn(é(v)). For sufficiently largen,
the convergence time tois at mostn® expected communication rounds, i.e. parallel tinte

Convergence Time: Next, we bound the time until all nodes converge to the abisgn.

Claim B.3. Consider a configuration wher@ out of then nodes are in a mixed state, for> %. In

the next interaction round, the number of mixed nodes btritgcreases with probability at Iea%ogii_l).
Proof. Considerlogn — 1 buckets corresponding to valué,4,...,n/4. Let us assign mixed nodes to
these buckets according to their states, where node in(staje goes into bucketnin(x, y). All nodes fall
into one of thdog n — 1 buckets because of the definition of (mixed) states.

If two nodes in the same bucket interact, either cancel aryoll be successful, and since we consider
the algorithm where split is not applied in this case, andnilmaber of mixed nodes will strictly decrease.
Thus, if there arél;, da, . . . , diog n—1 NOdes in the buckets, the number of possible interacticatitrcrease

(s — 2y _
the number of mixed nodes is at leggfes" ! 2=l _ od)-n0,

. . n252 .. . . .
By the Cauchy-Schwartz inequality, d? > - Combining this with the above and using >

logn—

2(log n—1) we get that the there are at Ieﬁ% pairs of nodes whose interactions decrease the number
of mixed nodes. The total number of pairsig: — 1)/2, proving the desired probability bound. O

Claim B.4. Suppos¢ is a function such thaf (n) € O(poly(n)). For all sufficiently largen, the probability
of having less thalau’fm pure nodes in the system at any time during the fitst) communication rounds

is at mostl — 1/n°.

Proof. Assume that this number became less tE\ﬁl’ﬁog—n for the first time at time&l” after some number of
communication rounds. Letbe the last time when the number of pure nodes was at%@ﬁs%{ﬁ (such a
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time exists since the initial number of pure nodeg)snd leta be the number of communication rounds
betweent andT'. The number of mixed nodes increases by at most two in eachlysoa > m.
By definition of ¢t andT", at all times during thex communication rounds betweerand 7', at least

9 _ . . . . .
%5&1) > 5 nodes are mixed. Thus, lylaim B.3in each of these communication rounds, the number

of mixed nodes decreases by at least one with probabilityeaﬂt%m. Let us describe by a random
variable X ~ Bin(«, @) at least how often the number of mixed nodes decreased. Eatehis pure

or mixed, and by Chernoff Bound, the probability that the bemof pure nodes increased less thgﬁﬁ

s 5 X ] =P [X € (1 1/2)] < v (~prory) <o (i)
On the other hand, in each of theseounds, the number of pure nodes can decrease only if one of

the interacting nodes was in a pure state. By definitiom ahdT’, the number of such pairs is at most
2 n2(2° logn—1) on? i - . T

218?0g2n 2 T T0g <3 lZgn' This implies that in each round the probability that the bemof pure

nodes will decrease is at m%. Let us describe the (upper bound on the) number of such solbyd

a random variabl@” ~ Bin(a, M). Since in each such round the number of pure nodes can decreas

by at most2, using Chernoff bound the probability that the number ofepuondes decreases by more than

T6logn during thea communication rounds is at maBt [Y' > «/(32logn)] < exp (—m
In order for the number of pure nodes to have decreased gge@; at timet to W at timeT,

either the number of mixed nodes must have increased by atﬁ%gsﬁ, or the number of pure nodes must
have decreased by at Ieal-%t;;E during thea communication rounds betweerandT. Otherwise, the
increase in mixed nodes would be more than the decrease énnmagles. However, by union bound, the
probability of this is at mostxp (—m) + exp (‘W)

We can now take union bound over the number of communicationds until the number of pure nodes
drops belowm (time T"). For at mostf(n) € O(poly(n)) rounds, we get that the probability of the

number of pure nodes ever being less tlaﬁt—?@ is at mostl /n° for all large enough. O

Consider the high probability case of the above claim, wileefeaction of pure nodes are present in
every configuration in the execution prefix. We call a roumagative-roundf, in the configuratiorr at the
beginning of the round, there are at Iegﬁtﬁ)@ pure nodes and at leasalf of the pure nodes encode a
non-positive value. Analogously, we call a roundasitive-roundf there are at Ieasgll’fm pure nodes, at
least half of which encode a non-negative value. A round easifnultaneously negativend positive, for
instance when all pure nodes encode valuRext claim establishes the speed at which the maximum level
in the system decreases. The proof, given in full in the Apperiollows by bounding the probability that
a node with the maximum level meets a pure node with v@laea value of the opposite sign. This results
in a split (or cancel) reaction decreasing the level of theéen@nd we use Chernoff and Union Bounds to
bound the probability that the node avoids such a meetingigmificant time.

We get a condition for halving the maximum level (among pesibr negative values) in the system
with high probability. The initial levels in the systemsis which can only be halvetbg n times for each
sign. Combining everything results in the following claim:

Claim B.8. There exists a constarit, such that if during the firse3n log® n rounds the number of pure
nodes is always at leastris;, then with probability at least — 2log™ one of the following three events
occurs at some point during these rounds:

1. Nodes only encode values{in 1,0, 1};
2. There are less tha@#gn nodes with non-positive values, all encodihgr —1,

3. There are less tha@#gn nodes with non-negative values, all encodingr 1.
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Final Argument: To see how this claim can be used to obtain the convergenoer lppund, let us assume
without loss of generality that the initial majority of nale/as inA (positive) state, i.ea > b.
Setting 3 as inClaim B.8§ by Claim B.4 with high probability, we have at Ieag{#gn pure nodes

during the firs26n log® n rounds. Thus, w.h.p. during these rounds the executiorhesaa configuration
where one of the three events fr@phaim B.8holds. Consider this poiri in the execution.

By our assumption about the initial majority amariant B.2 Y, ., value(c(v)) = en? holds in every
reachable configuration The third event is impossible, because the total sum woelddgative. In the
first event, the total sum is:? > n of n encoded values each being, 0 or 1. Therefore, in this case, all
nodes must be in staté, 0) and we are done.

. . 12 — . . .
In the second event implies there are at Iéé%trl‘fogg%nl) > %" nodes encoding strictly positive values.

Hence, at tim&" during the firs23n log® n rounds there are at leasf3 more strictly positive than strictly
negative values. Moreover1’s are the only strictly negative values of the nodes at pbingand this will
be the case for the rest of the execution because of the updese After timel’, we have

Claim B.9. Consider a configuration where all nodes with strictly négatvalues encode-1, while at
Ieast%" nodes encode strictly positive values. The number of rountis convergence i£)(nlogn) in

expectation and(n log? ) with high probability.

Using this, and by Union Bound ov&iaim B.4and Claim B.8 with probability1 — bgn++1 the number
of communication rounds to convergence is tBds log® n + O(nlog? n) = O(nlog®n).

In the remaining low probability event, with probabilityrabstl‘)%“, the remaining number of rounds
is at mostO(n°) by Lemma B.6 Therefore, the sam@(n log® n) bound also holds in expectation,

Claim B.5. There are at mos2n? split reactions in any execution.

Proof. A level of a node in state = (z, y) is defined asevel(s) = max(z,y). Consider a node in a state
with level I. Then, we say that thpotential of the nodés ¢(I) = 2/ for I > 0 and¢(0) = 1. In any
configurationc, thepotential of the systeiis ®(c) = > | ¢(level(s;)).

Then, the potential of the system in the initial configunatis >~(2n) = 2n?2, and it can never fall
below) (1) = n. By the interaction rules of the algorithm, potential of #ystem never increases after an
interaction, and it decreases by at least one after eackssfatsplit interaction. This implies the claim.d

Lemma B.6. Let ¢ be an arbitrary starting configuration. Defing := " _; value(c(v)) # 0. With
probability 1, the algorithm will reach a configuratioa such thatsgn(é(v)) = sgn(S) for all nodesv €

V. Moreover, in all later configurations, reachable from¢, no node can ever have a different sign, i.e.
Vo € V : sgn(ce(v)) = sgn(é(v)). For sufficiently largen, the convergence time tds at most:® expected
communication rounds, i.e. parallel timg.

Proof. Assume without loss of generality that the si9ihs positive.

We estimate the expected convergence time by splittingxeeution into three phases. The first phase
starts at the beginning of the execution, and lasts untieeif) no node encodes a strictly negative vatue
i) each node encodes a value{in1,0,1}, i.e. all nodes are in statés, 0), (0,0)*. (0,0)~ or (0, 1).

Due tolnvariant B.2 at least one node encodes a strictly positive value. Algadfinition, during the
first phase there is always a node encoding a strictly negagilue. Moreover, there is a node in statey)
with max(z,y) > 1. Assume that: > y for this node. Then, if there is another node in stétes») for any
Yo, then with probability at least/n? these two nodes interact in the next round resulting in & igaiction.
Otherwise, every nodéry,y;) that encodes a strictly negative value must have(x1,y;) > 0. At least
one such node exists and if there is another node in &tat®) for any x5, then again with probability at
least1/n? a split reaction occurs in the next round. The case &f y is analogous and we get that during
the first phase, if there is no pair whose interaction woukliltein a split reaction, all nodes must be in

states(z, y) with min(z,y) > 0, i.e. in mixed states. Bylaim B.3 with probability at Ieastz(hyngl)
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a pure node appears after the next communication round antebgbove argument, if the first phase
has not been completed, in the subsequent round a spliteeauill occur with probability at least /n?.
Therefore, during the first phase, the expected number afd®wntil the next split reaction is at most
4n?(logn — 1). By Claim B.5 there can be at mo&u? split reactions in any execution, thus the expected
number of communication rounds in the first phase is at mwStlog n — 1).

The second phase starts immediately after the first, andvehels no node encodes a strictly negative
value. Note that if this was already true when the first phamte@, then the second phase is trivially
empty. Consider the other case when all nodes encode valugg and1 at the beginning of the second
phase. Under these circumstances, because of the updsgemalnode will ever be in a state, y) with
max(x,y) > 1in any future configuration. Also, the number of nodes enugaion-zero values can only
decrease. In each round, with probability at lelgst?, two nodes with values and—1 interact, becoming
(0,0)" and ({0, 0)~. Since this can only happety?2 times, the expected number of communication rounds
in the second phase is at mast/2.

The third phase lasts until the system converges, that i$,aimodes with value) are in statg0, 0) .

By Invariant B.2 S > 0 holds throughout the execution, so there is at least one wiiiea positive sign
and non-zero value. There are also at most 1 conflictingnodes with negative sign, all in state, 0) .
Thus, independently in each round, with probability at ieas:?, a conflicting node meets a node with
strictly positive value and becomés 0) ", decreasing the number of conflicting nodes by one. The numbe
of conflicting nodes can never increase and when it becomesthe system has converged to the desired
configuration¢. Therefore, the expected number of rounds in the third pisasiemostn>.

Combining the results and using the linearity of expectattbe total expected number of communica-
tion rounds before reachingis at mostn?(8n(logn — 1) + 1/2 + 1) < n’ for sufficiently largen. Finite
expectation implies that the algorithm converges with pholity 1. Finally, when two nodes with positive
sigh meet, they both remain positive, so any configuratioeachable froné has the correct signs. [

Claim B.7. Letw > 1 be the maximum level among the nodes with a negative (resfitive) sign. There
is a constani3, such that aftesn log? n positive-rounds (resp., negative-rounds) the maximusel Ewong
the nodes with a negative (resp., positive) sign will be astho /2| with probability at leastl — ni

Proof. We will prove the claim for nodes with negative values. (Thewerse claim follows analogously.)
Fix a roundr, and recall thatv > 1 is the maximum level of a node with a negative value at therireigg

of the round. LelU be the set of all nodes with negative values and the samedeatthe beginning of the
round, and let: = |U|. We call these noddsrget nodes

By the structure of the algorithm, the number of target natmger increases and decreases by one in

everyeliminatinground where a target node meets a pure node with a non-negative, due to a split or
cancel reaction. Consider a setcaf log n consecutive positive-rounds afterfor some constant > 2'2,

In each round, if there are still at ledst/2] target nodes, then the probability of this round being elating

is at Ieastzl(“/ 2] (since in a positive round at least half@ﬁﬁ)—gn pure nodes have non-negative value).

2nlogn

Let us describe the process by considering a random variable Bin(an logn, 212[%1”), where each
success event corresponds to an eliminating round. By anGfi@ound, the probability of havingn log n
iterations with at mosfu/2] eliminations is at most:
12 122
Pr(Z < [u/2]] =Pr [Z < a[zuléﬂ (1 _— a2 >] < exp <_a[u/2;£?a2 27) >

For sufficiently largex andu > log n, the probability of this event is at moﬁg for an log n positive-rounds.
Applying the same rationale iteratively as longwas> log n, we obtain by using a Union Bound that the
number of target nodes will become less thagm within an log n(log n — log log n) positive-rounds, with
probability at least — an=logloan

Finally, we wish to upper bound the remaining number of pasitounds until no target node remains.
Again for sufficiently largex, but whenu < log n, we get from the same argument as above that the number
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anlog?n

of target nodes is reduced ta/2] within -5 consecutive positive-rounds with probabilityn®. So
we consider increasing numbers of consecutive positiveds, and obtain that no target nodes will be left
after at mostvn log n+2anlogn+ . .. +anlog? n < 2anlog? n positive-rounds, with probability at least
1— bgyﬁ#, where we have taken the union bound dwerlog n events. The original claim follows by setting
8 = 3a, taking Union Bound over the above two evenisX logn andu < logn) andlogn < n. O

Claim B.8. There exists a constarit, such that if during the firs2sn log® n rounds the number of pure
nodes is always at_ Iea%, then with probability at least — 212%", one of the following three events
occurs at some point during these rounds:

1. Nodes only encode values{ir 1,0, 1};

2. There are less tha@#gn nodes with non-positive values, all encodihgr —1,
3. There are less tha@#gn nodes with non-negative values, all encodinor 1.

Proof. We take a constant that works forClaim B.7. Since there are at Iea%ﬁ)m pure node at all

times during the firse8n log® n rounds, each round during this interval is a negative-roungositive-
round, or both. We call maximum positive (resp. negativegllehe maximum level among all the nodes
encoding non-negative (resp. non-positive) values. Wriles maximum positive level in the systenxidl,

by Claim B.7, a stretch of3n log? n negative-rounds halves the maximum positive level, withbpbility at
leastl — ni The same holds for stretchesf log? n positive-rounds and the maximum negative level.

Assume that none of the three events hold at any time duredjst23n log® n rounds. In that case,
each round can be classified as either:

e a negative-round where the maximum positive level is $grierger thani, or

e a positive-round where the maximum negative level is $griarger thani.

To show this, without a loss of generality consider any pasitound (we showed earlier that each round is
positive-round or a negative-round). If the maximum negalkevel is> 1 then the round can be classified
as claimed, thus all non-positive values in the system meistdr —1. Now if there are less tha@#gn
such nodes, then we have the second event, so there must beha% nodes encoding and—1.
However, all these nodes are pure, so the round is simuliahea negative-round. Now if the maximum
positive level is> 1 then the round can again be classified as claimed, and if thkémae positive level is

at mostl, then all nodes in the system are encoding valdgs0 or 1 and we have the first event.

Thus, each round contributes to at least one of the stretdh#slog? n rounds that halve the maximum
(positive or negative) level, w.h.p. However, this may happt mose log n times. By applyingClaim B.7
2logn times and the Union Bound we get that after the 8t log® n rounds, with probability at least
1-— 21;’# only values—1, 0 and1 may remain. However, this is the same as the first event alhterce,

the probability that none of these events happen is at ﬁi;é’@ O

Claim B.9. Consider a configuration where all nodes with strictly négatvalues encode-1, while at
Ieast%" nodes encode strictly positive values. The number of rountis convergence i€£)(nlogn) in
expectation and)(n log? ) with high probability.

Proof. In any configuration, let us catlonflictingany node that encodesl, andtargetnode any node that
has a strictly positive value. Because of the structure efallgorithm, and that in configuratianthe only
nodes with non-positive sign encodel or 0, in all configurations reachable fromnodes with negative
values will also only encode 1 or —0. Moreover, the number of conflicting nodes can never ineredter

an interaction. Observe that the number of conflicting natkxseases by one after an interaction where
a target node (with a stritly positive value) meets a nodé walue—1, while the number of target nodes
may also decrease by at mdstThis is because a split reaction happens on the positivepanemt of the
target node (since the positive component of the confliatinde is0) and both nodes get value 0 after
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the interaction. There are at least3 more target nodes than conflicting nodes,itherefore, in every later
configuration, there must always be at leass target nodes.

Let us estimate the number of rounds until each conflictindenmas interacted with a target node, at
which point no more conflicting nodes may exist. Let us sayeteerex conflicting nodes in configuration
c. The expected number of rounds until the first conflictingenpteets a target node is at mé§t since the
probability of such an interaction happening in each rosrat ieast’ - 5. The expected number of rounds
for the second node is thq@gj‘—l), and so on. By linearity of expectation, the expected nunobeounds
until all conflicting nodes are eliminated @¥(n log z) < O(nlogn).

At this point, all nodes that do not have a positive sign meshtstate(0, 0) ~. If we redefineconflicting
to describe these nodes, it is still true that an interaatiom conflicting node with a target node brings the
conflicting node to staté), 0)*, decreasing the number of conflicting nodes. As we discuaskhstn /3
target nodes are still permanently present in the systemth&tructure of the algorithm no interaction
can increase the number of conflicting nodes, and the systemerges when all conflicting nodes are
eliminated. This takes expectétn log n) rounds by exactly the same argument as above.

To get the high probability claim, simply observe that whieeré arer conflicting nodes in the system,
a conflicting node will interact with a target node wittﬁﬁ@ rounds, with high probability. The same
applies for the next conflicting node, etc. Taking Union Bdbomer these events gives the desired resdli.

C Synthetic Coins
ClamC.LEX;in | Xi=2z]=n/2+ (1 —4/n)" (z —n/2).

Proof. If two agents both with coin values one are selected, the murmbones decreases by two. If both

coin values are zero, it increases by two, and otherwise steysame. Hence, we have that

E[Xz—l-m | Xitm-1= t] = (t — 2) . PI”[XH_m =1 — 2] +t- PT‘[XH_m = t] + (t + 2) . PI”[XZ'+m =t+ 2]
t(t—1) 4t 2t(n —t) (n—t)(n—t—1)

=(t-2) n(n—1) n(n—1) n(n—1)

+(t+2)-

=t+— (N —2nt—n+2t)=t- R
n(n—1) n

Thus, we get a recursive dependefidé; . ,,] = E[X;,—1] - (1 — 4/n) + 2, that gives

=2 52 e (1) 5 () 2

§=0
by telescoping. O

D Analysisof theLeader Election Algorithm

Lemma D.1. All nodes can never be minions. A configuration with 1 minions must have a stable leader,
meaning that the non-minion node will never become a minidiile minions will remain minions.

Proof. Assume for contradiction that all nodes are minions at same ', and letw be a maximum
(.payoff , .level) pair (lexicographically) among all the minions at this timéo node in the system could
ever have had a larger pair, because no interaction canedecagoair. The minions only record the values of
such pairs they encounter, and never increase them, sorthesthave been a contender in the system with
a payoff and level pait; that turned minion by tim&'. Among all such contenders, consider the one that
turned minion the last. It could not have interacted with aiom, because no minion (and no node) in the
system ever held a larger pair. On the other hand, even tietanted with another contender, the contender
also could not have held a larger pair. Thus, it could onlyehageen an interaction with another contender,
that held the same pair and a larger coin value used as astidedr However, that interaction partner would
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remain a contender and and must have turned minion laterachcting our assumption that the interaction
we considered was the last one where a contender with a jggit eliminated.

By the structure of the algorithm, minions can never chahg& mode. In any configuration with— 1
minions, the only non-minion must remain so forever, and the a stable leader, because otherwise we
would getn minions and violate the above argument. O

Lemma D.2. Assume that the maximum number that the parametgsf/ can hold is\/m. Then, the ex-
pected number of interactions until all nodes haw@de = tournament or .mode = minion is O(n log®n).
Moreover, once that happens, with probability at least 5/n3, at most12log n nodes will hold the maxi-
mumpayoff value, which will be at leadbg n/4 and at most 6 log n.

Proof. During the first2n interactions, any given agent is expected to interact twidee probability that
during this period, a given agent interacts more thé&g n times is at most /n*. Taking an union bound,
all agents interact at mostiog n times with probability at least — 1/n3.

Let us call the interactions after the fiest therelevantinteractions. Consider the relevant for any fixed
agent. ByTheorem 4.1during any later interaction, with probability at ledst exp(—n/4), there are at

leastn /3 and at mos®n /3 agents holding each possible coin value. Taking an uniomdhathis holds for
all of the firstn* relevant interactions with probability at ledst —_n"__ From now on, let us assume this

exp(n/4)
high probability event.

During any later interaction, with probability at legst/3 — 1)/n > 1/4 the agent observes and
changes itsnode to the tournament. Hence, the probability that it increatsepayoff more thari2logn
times is at mos{3/4)'21°s™ < 1/n*. Taking the union bound over all the agents gives that theease in
payoffs in the later interactions for all agents are less tlillog n with probability at least — 2/n3. In
total, with probability at least — 3/n3, all agents will have payoffs at mos6 log 7.

Since every agent stays #eding mode for four interactions, we can find at least2 agents, who
move tolottery mode after their firstn interactions. Consider any one of th¢2 agents. By assumption,
the agent will have probability at least4 of finalizing thepayoff and moving totournament mode. The
probability that the payoff of this agent will be larger thiag n/4 is thus at least //n. If the payoff is
indeed larger, we are done, otherwise, we can find anothet ageng the:/2—log n/4 whose interactions
we have not yet considered, and analogously get that withgibty at leastl //n, it would get a payoff at
leastlog n/4. We can continue this process, and will end up with alauitlog n agents, whose interactions
were completely independent, and because of the bias, ¢dcaro had a probability of at leasy//n of

getting a larger payoff thalog n/4. If we described this process as a random variﬂ‘ute( 2n_ L

logn?’ ﬁ) » We
get by the Chernoff Bound that the probability of no node altyugetting more tharog n/4 payoff must
be extremely low (because the expectatio?j5:/ log n), in particular, lower than /n3.

Again, considering all the high probability events from abowe know that the maximum payoff in
the system is betweelogn/4 and 16logn. Consider any fixed payoft in this interval, and let us say
it is the maximum. Then, any agent that reaches this payaf, th flip 0, but they might flipl with
probability at leasti /4. Thus, the probability that at leas® log n agents will stop exactly at payoff is
at most(3/4)41°8™ < 1/n*. Taking the union bound over at makilog n < n payoffs, and the above
high probability events, we get that with probability at mbs- 5/n3, at most12log n agents will have the
maximum payoff, which will be betweelbg n/4 and 16 log n. Next, we look at the expected maximum
payoff.

With probability at mostcxp?%, the maximum payoff in the system can be as higk/as. Otherwise,
all coin flips have the bias ifil/4,3/4] during then? later interactions. Moreover, the same argument
as above shows that the probability that the maximum payuofirgy all agents is larger thanis at most
n - (3/4)% < n.27%/3 This means that with extra probability of at mast*'/3, the maximum payoff in
the system can be as much.@s:. When this does not happen and we have proper bias during'tlager
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interactions, the expected maximum payoff is at médbgn + n - Z;ﬁlﬁlognﬂ 271/ = O(logn). Thus,
the expected maximum payoff is actualy(log n) + v/m - (n* - exp(—n/4) + 27""'/3) = O(log n).

Assuming that the maximum payoff is the expected number of interactions before every node has
left seeding or lottery mode is of at mdst(k + 4) log n. We can count this as the expected number of
interactions until every node has interacted- 4 times, as, once that has happened, no node can be in
seeding or lottery mode. The reason is that seeding only lasts four interacii@n node, and no node did
more thank interactions in lottery, because then they would have afgogyoff. The expected number of
interactions before every node interacts oncé#sn/(n — 1) +n/(n —2) 4+ ... +n < 2nlogn. The
expected number of interactions before every node intekagtl times is at most the amount of interactions
it would take for every node to interact once, then reset auchicinteractions until they would all interact
again, etck + 4 times, which give2n(k + 4)logn. If maximum payoff isk; with probability p;, then
the expected number of interactions until all nodes are entéiirnament or minion mode is then at most
order of > 2p;k;nlog n which is the same a& log n multiplied by the expected maximum payoff, which
we know isO(log n). Thus, we have shown that the expected number of interactintil no node is in the
seeding or lottery mode i9(n log? n). O
Lemma D.3. With probability at leasfl — %, only one contender reaches levek loglg’}r"%, and
for each level up td, it takes at mosO (n - log” n) interactions before some contender gets to a larger level.
Conditioned on this high probability event, the expecteahiper of interactions before having— 1 minions
is O(nlog”n).

Proof. By our assumption om, it holds thats;™— > —21%" s this value of level can always be
ogm og 18+loglogn

reached. We will assume the high probability casesmma D.2 which occurs with probability> 1—5/n3.

Hence, we have to prove that the probability that either ntteae@ one competitor reaches le¥eas at most
2+0(logn)
2+0(ogn)

Consider some competitorwhich just increased the maximum level among competitotkérsystem.
Until some other competitor reaches the same lavaljll turn every interaction partner into its minion.
Furthermore, as in epidemic spreading, these minions igil turn their interaction partners into minions
of the highest level contender Let the.payoff, .level pair of this competitor be. Also, we call a node
whose pair also at leagtanup-to-datenode; the node isut-of-dateotherwise. Initially, only the contender
v that reached the maximum level is up-to-date.

16n(n—1)logn

We will show that if in some configuratiom < n nodes are up-to-date, aftephaseof To(n=2)

interactions, at least 4+ 1 nodes will be up-to-date with probability at leaist- # Up-to-date nodes

may never become out-of-date. On the other hand, an outtefidode becomes up-to-date itself after
an interaction with any up-to-date node. If we haweip-to-date nodes, in each round, the probability
that an out-of-date node interacts with an up-to-date nodeeasing the number of up-to-date nodes to

x+1,is 25((:__5). To upper bound the probability that such an interactioren&appens during a phase of

Yn(n=l)logn y4nds, we can consider a random variabile- Bin (16"("_1)1°g" 2“’”("_“")) and establish

dz(n—1) dz(n—z)  n(n-1)
that:
—4logn 1
Priy <0 <27798" < —
n
An Union Bound over at most phases gives that with probability at ledst 1/n3, after at most
n—1 n—1
Z 16n(n —1)logn < 16(n —1)logn Z <l N 1 > < 16nlog?n
ot dx(n — x) 4 —\r n-ux

rounds, all nodes will have value at leastTaking an union bound over all possible levéls log n, we get
that with probability at least —log n/n?, once a contender reaches some level, unless some othendent
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reaches the same level within the negi log? n interactions, the original node will turn every other node
into minions and become a stable leader.

Once some contender has increased the maximum level, it heetiserve log log n + 12 consecutive
ones to increase a level. W.h.p, the probability at eachtiter is at leas{1/2 — 1/16) for each observed
coin, so the probability that a stretch ®fog log n 4+ 12 consecutive interactions results in a level increase
is at leastd(1/log"™® n). If we consider an interval containing(n log” n) interactions. Then, with high
probability, the node will perform a level increase for adtlog” n/log® n times during such a stretch,
unless it has already become a minion.

For the rest of the argument, we will bound the probabilitgtthny of the other contenders, whose
number is at most6 log n by Lemma D.2 will be able to increment their level during an arbitrargesth
of 6log logn + 12 consecutive interactions. This probability will be low,datinerefore it is likely that the
process will terminate after a level increase.

More precisely, once a new level is reached after a levekment, the nodes hauén log? n interac-
tions to increment to the same level, or they will soon alldmee minions. To do so, they should all have at
least one iteration of observirtjog log n+ 12 consecutive ones, because all contenders have the maximum
payoff from the first stage; by emma D.2 the maximum payoff was at ledsig n /4.

Hence, there can be at mastlog n - ©(log? n/loglogn) such interaction intervals, with probability
at leastl — 1/n3. Each interaction interval has probability at most2 + 1/16)60sloen+12 < 1 /1ogtp
of success. Hence, by taking sufficiently largeve can make the expectation of the number of successful
iterations be less thaty log n divided by a large constant. More precisely, by fixing thestants, we can
show that the probability that even one of the iterationsiexessful is at mo%.

Hence, the probability that there is no second survivor anuamtenders at each level (which would cor-
respond to a stable leader being elected) is at mdstlog n, every time the maximum level is incremented.

The probability that this does not happen forfal 28— levels is then at mos(t181 )g < L.

On the other hand, clearly since with more than constantaglitity a single contender remains after
each level, only constantly many levels will be used in etqgn. Moreover, as we have seen above, any
contender with the maximum level has at le@xt / log”® n) probability at each interval to increase the
level. Therefore, the maximum level is expected to increagyn log® n log log n interactions, and the

maximum reachable level should be attained aftén log® n) interactions. The claim then follows. [

Corollary D.4. The algorithm converges in expected parallel tih@og® n log log n) and with high proba-
bility in parallel time O (log'® n).

Proof. The combination okemma D.2andLemma D.3gives the high probability claim, combined with the
observation that when the second stage of the algorithrts stdl non-contenders become minions within
parallel timeO(log® n) with high probability, because they get exposed to highgofiaalues. The formal
proof of this is exactly the same as the argumenL@émma D.3 that shows that once a contender gets
to a new maximum level, the information about it is propadatethe whole system withi)(n log? n)
interactions with high probability.

To get the bound on expectation, first we sum up the expentatiom both stages, and get the dominant
termO(log” n) parallel time. Then similar to above, we add the expectedlightime after the start of the
second stage to the point when all non-contenders becomemnsjn.e. when all nodes with less than the
maximum payoff learn about a larger value. This také®g n) parallel time due to the following reason.
Call the nodes that know about the maximum payoff valu@-#o-date andout-of-dateotherwise. At time
T, at least one node is up-to-date. Before an arbitrary iatieraround where we have up-to-date nodes,
the probability that an out-of-date node interacts with prtatdate node, increasing the number of up-to-

date nodes to+1, is 2:”((" m)) By a Coupon Collector argument, the expected number ofd®until every

node is up-to-date is them"—} Ar—ll < (n=l) 5ot ( + —) < 2nlogn.

z=1 2z(n—z) —
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Finally, we need to incorporate the expected time in the lmbability event. Notice that the expectation
in Lemma D.4s not conditioned, so we only need to care about the low fiihyeevents that happen during
the second stage. But recall that, during the second stageminions can always eliminate each other in
direct interactions comparing their payoffs, levels, amel¢oin as a tie-breaker. So, for any given two non-
minion nodesr andy, in every interaction round, there is a probability of atskelg'n? that they meet, and
one could eliminate each other for certain if they had d#ifércoin values. If not, then with probability at
least1/n, one of the nodes, say, interacts with some other node in this interaction, and ihemediately
afterward, interacts with, this time with different coin values. Hence, in every twamds, with probability
at leastl /n3, the number of contenders decreases by at least one. Heroeinghe low probability case,
the expectation is at moét(n?), which does not affect the dominant term of théog® n) time. O
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