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Abstract

Population protocols [AAD+06] are a popular model of distributed computing, in which randomly-
interacting agents with little computational power cooperate to jointly perform computational tasks.
Recent work has focused on the complexity of fundamental tasks in the population model, such as
leader election(which requires convergence to a single agent in a special ‘’leader” state), andmajority
(in which agents must converge to a decision as to which of twopossible initial states had higher initial
count). Known upper and lower bounds point towards an inherent trade-off between thetime complexity
of these protocols, and thespace complexity, i.e. size of the memory available to each agent.

In this paper, we explore this trade-off and provide new upper and lower bounds for these two fun-
damental tasks. First, we prove a new unified lower bound, which relates the space available per node
with the time complexity achievable by the protocol: for instance, our result implies that any protocol
solving either of these tasks forn agents usingO(log logn) states must takeΩ(n/polylogn) expected
time. This is the first result to characterize time complexity for protocols which employ super-constant
number of states per node, and proves that fast, poly-logarithmic running times require protocols to have
relatively large space costs.

On the positive side, we show thatO(polylogn) convergence time can be achieved usingO(log2 n)
space per node, in the case of both tasks. Overall, our results highlight a time complexity separation
betweenO(log logn) andΘ(log2 n) state space size for both majority and leader election in population
protocols. At the same time, we introduce several new tools and techniques, which should be applicable
to other tasks and settings.

http://arxiv.org/abs/1602.08032v1


1 Introduction
Population protocols [AAD+06] are a model of distributed computing in which agents with little computa-
tional power and no control over the interaction schedule cooperate to collectively perform computational
tasks. While initially introduced to model animal populations [AAD+06], they have proved a useful ab-
straction for wireless sensor networks [PVV09, DV12], chemical reaction networks [CCDS14], and gene
regulatory networks [BB04].

Specifically, a population protocol consists of a set ofn finite-state agents, interacting in pairs, where
each interaction may update the local state of both participants. The protocol starts in a valid initial con-
figuration, and the goal is to have all agents converge to an output value, representing the output of the
computation, which is a predicate of the initial state of nodes. The set of interactions occurring in each step
is assumed to be decided by aprobabilistic scheduler, which picks the next pair to interact uniformly at
random in each step. The fundamental measure of convergenceis parallel time, defined as the number of
pairwise interactions until convergence, divided byn.

Considerable work has been invested in studying the complexity of certain fundamental tasksin the
population model. One such fundamental task ismajority (consensus)[AAE08b,PVV09,DV12], in which
agents start in one of two input statesA andB, and must converge on a decision as to which state has a higher
initial count. A complementary fundamental task isleader election[AAE08a,AG15,DS15], which requires
the system to converge to states in which asingleagent is in a specialleaderstate. Efficient leader election
is key for fast predicate computation [AAD+06,AAE08a,AAER07], as most known constructions require
a leader to co-ordinate phases of computation. A parallel line of applied research has shown that these tasks
can be implemented at the level of molecules [CDS+13], and that they are connected to computational tasks
solved by living cells in order to function correctly [CCN12].

A progression of deep technical results [Dot14, CCDS14] culminated in showing thatleader elec-
tion in sublinear time is impossiblefor protocols which are restricted to aconstantnumber of states per
node [DS15]. At the same time, it is now known that leader election can besolved inO(log3 n) time via
a protocol requiringO(log3 n) states per node [AG15]. For the majority task, the space-time complexity
gap is even wider: sublinear time is impossible for protocols restricted to having at mostfour states per
node [AGV15], while there exists a poly-logarithmic time protocol which requires a number of states per
node that islinear in n [AGV15].

These results strongly suggest a trade-off between therunning timeof a population protocol and the
space, or number of states, available at each agent. This relationis all the more important since time
efficiency is critical in practical implementations, whiletechnical constraints limit the number of states
currently implementable in a molecule [CDS+13].1 However, the characteristics of the time-space trade-off
in population protocols are currently an open question.

Contribution: In this paper, we take a step towards answering this question by exhibiting a general trade-
off between the number of states available to a population protocol, and its time complexity, as well as
providing new and improved upper bounds for both majority and leader election, which are tight within
poly-logarithmic factors. Along the way, we introduce several new tools and techniques.

Lower Bound: More precisely, when applied to majority, our lower bound proves that there exist constants
c ∈ (0, 1) andK ≥ 1 such that any protocol usingλn ≤ c log log n states must takeΩ(n/(Kλn + ǫn)2))
time, whereǫn is the difference between the initial counts of the two competing states. Specifically, any
protocol usingconstantstates and supporting a constant initial difference necessarily takeslinear time.

For leader election, the bound shows that there exist constants c ∈ (0, 1) andK ≥ 1 such that any pro-
tocol usingλn ≤ c log log n states and electing at mostℓ(n) leaders, requiresΩ(n/(Kλn · ℓ(n)2)) expected
time. Specifically, any protocol electing one leader using≤ c log log n states requiresΩ(n/polylogn) time.

1One such technical constraint is the possibility ofleaks, i.e. spurious creation of states following an interaction. In practice,
the more states a protocol implements, the higher the likelihood of a leak, and the higher the probability of divergence.
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Algorithms: On the positive side, we give new poly-logarithmic-time algorithms for majority and leader
election which useO(log2 n) space. Our majority algorithm, called Split-Join, runs inO(log3 n) time
with high probability, and usesO(log2 n) states per node. The only previosly known algorithm to achieve
sublinear time [AGV15] requiredΘ(n) states per node. Our new leader election algorithm usesO(log2 n)
states, and converges inO(log9 n) expected parallel time. This reduces the state space size bya logarithmic
factor over the best known algorithm [AG15], at the cost of a poly-logarithmic running time increase.

Techniques: The core of the lower bound is a technical argument proving that a hypothetical algorithm
which would converge faster than allowed by the lower bound may reach “stable” configurations2 in which
certain low-count states can be “erased.” This leads to a contradiction, since these low-count states may
be exactly the set of all current leaders (in the case of leader election protocols), or a set of nodes whose
state may sway the outcome of the majority computation. In particular, our argument employs the method of
bounded differences to obtain a stronger version of the maindensity theorem of [Dot14], and develops a new
technical characterization of the stable states which can be reached by a protocol, which does not require
constant bounds on state space size, generalizing upon [DS15]. The argument provides a unified analysis:
the bounds for each task in turn are corollaries of the main theorem characterizing stable configurations.

On the algorithmic side, we introduce a newsynthetic cointechnique, which allows nodes to generate
almost-uniform local coins within aconstantnumber of interactions, by exploiting the randomness in the
scheduler, and in particular the properties of random walkson the hypercube. Synthetic coins are useful in
both our protocols, for instance by allowing nodes to estimate the total number of agents in the system, and
may be of independent interest as a way of generating randomness in a constrained setting. The Split-Join
protocol is based on a new quantized averaging technique, bywhich nodes represent their output opinions
and their relative strength by encoding them as powers of two, and opinions are averaged on each interaction.

Summary: In sum, our results can be seen as bad news for algorithm designers, since they show that
convergence for both exact majority and leader election will be slow even if the protocol is able to implement
a super-linear number of states per node. However, we show that achievable convergence time improves
quickly as the size of the state space nears the logarithmic threshold: in particular, fast, poly-logarithmic
time can be achieved using poly-logarithmic space.

It is interesting to notice that previous work by Chatzigiannakis et al. [MNRS14] identified the space
threshold ofΘ(log log n) for the computational power of a family of population protocols calledpassively
mobile machines.In particular, their results show that variants of such systems in which nodes are limited
to o(log log n) space per node are limited to only computingsemilinear predicates, whereasO(log log n)
space is sufficient for computing non-semilinear predicates, andO(log n) space is sufficient to compute
general symmetric predicates. By contrast, we show acomplexityseparation between algorithms which use
O(log log n) space per node, and algorithms employingΩ(log n) space per node.

2 Preliminaries
Population Protocols: We haven agents (also called cells, or nodes) each executing as a deterministic state
machine with states from a finite setΛ, with a finite set of input symbolsX ⊆ Λ, a finite set of output
symbolsY , a transition functionδ : Λ× Λ→ Λ× Λ, and an output functionγ : Λ→ Y . Each agent starts
with an input from the setX, and keeps updating its state following interactions with other agents, according
to the transition functionδ. For simplicity of exposition, we assume that the agents have identifiers from the
setV = {1, 2, . . . , n}, although these identifiers are not known to agents, and not used by the protocols.

The agents’ interactions proceed according to a directedinteraction graphG without self-loops, whose
edges indicate possible agent interactions. Usually, the graphG is considered to be the complete graph on
n vertices, a convention we also adopt in this work.

2Roughly, a configuration is stable if it may not generate any new types of states.
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The execution proceeds insteps, where in each step a new edge(u,w) is chosen uniformly at random
from the set of edges ofG. Each of the two chosen agents updates its state according tothe functionδ.

A population protocol computes a functiong : XV → Y within ℓ steps with probability1− φ if for all
x ∈ g−1(Y ), the configurationc : V → Λ reached by the protocol afterℓ steps satisfies the following two
properties with probability1− φ: (i) for all v ∈ V , g(x) = γ(c(v)). Specifically, all agents have the correct
output inc; (ii) for every configurationc′ reachable fromc, and for allv ∈ V , g(x) = γ(c′(v)).

Parallel Time: The above setup considers sequential interactions; however, in general, interactions between
pairs of distinct agents are independent, and are usually considered as occurring in parallel. In particular, it
is customary to define one unit ofparallel timeasn consecutive steps of the protocol.

The Majority Problem: In the majority problem, agents start with arbitrary initial states in the input set
X = {A,B}. Let a be the number of agents starting in stateA, andb be the number of agents starting in
stateB, and letǫ = |a− b|/n denote the relative advantage of an initial state. The output set isY = {0, 1}.

A population protocol solves the majority problem withinℓ steps with probability1 − φ, if, for any
configurationc : V → Λ reachable by the protocol after≥ ℓ steps, it holds with probability1− φ that (1) If
a > b for the given input, then for any agenti, γ(c(i)) = 1, and, conversely, (2) Ifb > a for the given input,
then for any agenti, γ(c(i)) = 0. We emphasize that in this paper we consider theexactmajority task, as
opposed toapproximatemajority [AAE08b], which may return the wrong answer with some probability.

Leader Election: In the leader electionproblem, all agents start in the same initial stateA, i.e. the only
state in the input setX = {A}. The output set isY = {Win,Lose}.

A population protocol solves leader election withinℓ steps with probability1 − φ, if it holds with
probability1−φ that for any configurationc : V → Λ reachable by the protocol after≥ ℓ steps, there exists
a unique agenti such that, (1) for the agenti, γ(c(i)) = Win, and, (2) for any agentj 6= i, γ(c(j)) = Lose .

3 Lower Bound
3.1 Preliminaries
We now refine the notation of the previous section, to make it more amenable to proving lower bounds. We
start by making the dependence on parametern explicit. In particular, in this section, a population protocol
P will be a sequence of protocolsP1,P2, . . . with Pn, one for each value ofn, where for eachi ≥ 1 we have
thatPi = (Λi, δi), whereΛi andδi are the set of protocol states and transitions fori agents, respectively.

We say that a protocol ismonotonicif, for all i ≥ 1, (1) |Λi| ≤ |Λi+1|, and (2) If |Λi| = |Λi+1|, then
Λi = Λi+1, andδi = δi+1. This definition allows for different population protocolsfor different number of
states, and captures all protocols where the number of states is given as a parameter to the protocol, and may
be super-constant, e.g. [AG15,AGV15]. We do require that if the number of states used by the population
protocol is the same for agent countsi andj, then the whole protocol must necessarily be the same.

A configurationc of the system is formally a functionc : Λn → N, wherec(s) represents thecount of
s in c. We let |c| stand for the sum, over all statess ∈ Λ, of c(s). For a given task, letI = I1, I2, . . . be
a sequence of sets, where|In| = n andIn is a subset (possibly all) of allowed initial configurationsfor n
agents. In leader election,In consists of a single uniform configuration where all agents are in the same
state. For majority,In contains configurations where each agent is in one of two initial statesA andB.

We say that a configurationy of n agents has astable leader, if for all y′ such thaty =⇒ y′, it holds
that

∑

ℓ∈Ln
y′(ℓ) = 1, whereLn is the set of all leader states inΛn. Analogously, a configurationy has a

stable majority decisionfor initial valueA, if for all y′ with y =⇒ y′, every agent iny′ is in a state that
corresponds to decisionA. We say that a protocolstabilizes, when it reaches a stable output configuration.
The quantity of interest is the expected parallel time for a population protocol to reach a configuration with
a stable leader or with a stable majority decision from an initial configuration. We will also sometimes refer
to this quantity as theconvergence time. If the expected time is finite, then we say that population protocol
stably elects a leader (or stably computes majority decision).
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3.2 Technical Machinery
We now prove a set of technical lemmas, on which the main argument relies. In the following, we assume
n to be fixed;Λn is the set of all states of the protocol, whose size may dependonn. Let S0 be the set of
states in the initial configuration. For all integersk ≥ 1, define inductively the set of states

Sk = Sk−1 ∪ δn(Sk−1, Sk−1).

Assume without loss of generality that all states inΛn actually occur in some configurations reachable
by the protocolPn from some input configuration. Then, it holds thatS|Λn|−1 = S|Λn| = . . . , andS|Λn|−1 =
Λn. We say that a configuration isdenseif all present states have count≥ n/M for some constantM . We
prove the following statement, which generalizes the main result of [Dot14] to super-constant state counts.

Lemma A.1. Letβ = 1/100 be a constant. For all population protocolsA using|Λn| ≤ 1/2 log log n states
and starting in a dense initial configuration, with probability ≥ 1− (1/n)1−β , there exists an integerj such
that the configuration reached afterj steps isn1−β-rich, all states have counts more thann1−β.

Let f : N → R
+ be some function. We say that a transitionα : r1, r2 → p1, p2 is anf -bottleneckfor

configurationc, if c(r1) · c(r2) ≤ f(|c|). If every transition sequence from initial configurations to final
configurations contains a bottleneck, then we get a lower bound on the convergence time. Conversely, the
next lemma shows that, if a protocol converges fast, then it is possible to converge using a bottleneck-free
transition sequence fromn1−β-rich intermediate configurations (which are reachable byLemma A.1).

Lemma A.3. LetP = (Λ, δ) be a population protocol using|Λn| ≤ 1/2 log log n states for all sufficiently
large n, and letI be a sequence of sets of dense initial configurations. Fix a function f . Assume that for
sufficiently largen, P stabilizes in expected timeo( n

f(n)|Λn|2 ) from all in ∈ In. Then, for all sufficiently

large m ∈ N there exists a configurationxm with |xm| = m agents, reachable from somei ∈ Im and
transition sequencepm with the following properties: (1)xm(s) ≥ m1−β for all s ∈ Λm, whereβ = 1/100
is a constant, (2)xm =⇒pm ym, whereym is stable, and (3)pm has nof -bottleneck.

The above lemma establishes the existence of a bottleneck-free transition sequence to convergence from
a sufficiently rich configuration. The nexttransition ordering lemma, due to [CCDS14], proves a property
of such a transition sequence. We can order all states whose counts decrease more than some set threshold
such that, for each of these statesdi, the sequence contains at least a certain number of a specifictransition
that consumesdi, but does not consume or produce any statesd1, . . . , di−1 that are earlier in the ordering.

Lemma A.4. Let b ∈ N and x, y ∈ N
Λn in a system ofn agents, such that∀s ∈ Λn : x(s) ≥ b2 and

x =⇒q y via a transition sequenceq without a(b2)2-bottleneck, whereb2 = |Λn|2 · b+ |Λn| · b. Define

∆ = {d ∈ Λn | y(d) ≤ b}
i.e. the set of states whose count in configurationy is at mostb. Then, there is an order∆ = {d1, d2, . . . , dk},
such that, for alli ∈ {1, . . . , k}, there is a transitionαi of the formdi, si → oi, o

′
i with si, oi, o

′
i 6∈

{d1, . . . , di}, andαi occurs at leastb times inq.

3.3 The Lower Bound Argument
Our framework is based on the lower bound argument of [DS15], but differs from it in a few key points.
Specifically, the crux of the argument in [DS15] is the existence of a setΓ of unbounded states, whose
counts grow unbounded in stable configurations, as the number of agentsn tends to infinity. This property
is then used to construct a leaderless reachable configuration where only states inΓ have non-zero counts.
The unbounded property ofΓ is used multiple times throughout the proof, and together with Dickson’s
Lemma it establishes the existence of a sequence of stable configurations with growing counts for all states
in Γ. In turn, this implies that the leaderless configuration must be stable, as stability is closed downward3,
completing the contradiction argument.

3A configurationc must be stable if another configurationc′ is stable with counts of all states not less than inc.
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This argument breaks in our case: Dickson’s Lemma does not apply for non-constant state counts, and
even the definition ofΓ becomes problematic. A notational issue is that we considersequence of population
protocolsPn for different valuesn, without requiring that they use the same state space. Even if they did,
the setΓ according to its original definition could just be empty4.

Instead, given a family of population protocolsP = P1,P2, . . . whose number of states grow as a
function ofn, for any fixedn, configurationc ∈ N

Λn and functiong : N → N
+, we defineΓg(c) = {s ∈

Λ|c| | c(s) > g(|c|)} and∆g(c) = {s ∈ Λ|c| | c(s) ≤ g(|c|)}, where|c| is the number of agents in the
system in this configuration. Notice thatΓg(c) = Λn −∆g(c).

The proof strategy is to first show that if a protocol converges “too fast,” then it can also reach configu-
rations where all agents are in states inΓg(c). These configurations are useful because of the following.

Lemma A.5. Consider a population protocol in a system with any fixed number of agentsn, and an arbitrary
fixed functionh : N → N

+ such thath(n) ≥ 2|Λn|. Leth′(n) = 2|Λn|. For all configurationsc, c′ ∈ N
Λn ,

such that all agents inc are in states inΓh(c) (i.e. ∀d ∈ ∆h(c) : c(d) = 0) andΓh(c) ⊆ Γh′(c′), any state
producible fromc is also producible fromc′. Formally, ifc =⇒ y : y(s) > 0 for somes ∈ Λn andy ∈ N

Λn ,
then there also existsy′ ∈ N

Λn such thatc′ =⇒ y′ andy′(s) > 0.

Next, we prove the main theorem.

Theorem 3.1. LetP be a monotonic population protocol using at most|Λn| ≤ 1/2 log log n states for all
sufficiently largen. Letg : N→ N

+ be a function such thatg(n) ≥ 2|Λn| for all n and6|Λn| · |Λn|2 ·g(n) =
o(n1−β) = o(n0.99). Let I be the sequence of sets of dense initial configurations forP with the property
that∀i1 ∈ In1

, i2 ∈ In2
, if |Λn1

| = |Λn2
| = |Λn1+n2

|, theni1 + i2 ∈ In1+n2
.

If P stabilizes ino
(

n
(6|Λn |·|Λn|3·g(n))2

)

expected time for any initial configuration, then we can find

infinitely manym, such that for eachm there exists an initial configurationi ∈ I2m, and a stable final
configurationy ofm agents, reachable from an initial configuration inIm, such that

(1) i =⇒ z, wherez ∈ N
Γg(y) (i.e. all agents in configurationz are in states fromΓg(y)).

(2) i + cg =⇒ z′, wherez′ ∈ N
Γg(y) and cg is configuration consisting ofg(m)/2 + 1 agents in some

states ∈ ∆g(y) : y(s) ≤ g(m)/2 − 1 (for any such states, if such a state exists).

Proof. For simplicity, setb(n) = (6|Λn| + 2|Λn|) · g(n), b2(n) = |Λn|2 · b(n) + |Λn| · b(n), andf(n) =

(b2(n))
2. The condition in the theorem statement implies that the protocol stabilizes ino

(

n
f(n)|Λn|2

)

time.

Then, byLemma A.3, for all sufficiently largem we can findim, xm, ym ∈ N
Λm , all configurations withm

agents, withim ∈ Im such that:
• im =⇒ xm =⇒pm ym, whereym is a stable final configuration and the transition sequencepm does

not contain anf -bottleneck (i.e. a(b2)2-bottleneck).
• ∀s ∈ Λm : xm(s) ≥ b2(m), whereβ = 1/100. (Here, we use the assumption on the functiong.)
Moreover, because|Λn| ≤ 1/2 log log n for sufficiently largen, for infinitely manym it also addition-

ally holds that|Λm| = |Λm+1| = . . . = |Λ3m| which according to our definitions means that population
protocolsPm,Pm+1, . . . ,P3m are all the same. Otherwise|Λn| would grow at least logarithmically inn.

Consider any suchm. Then, we can invokeLemma A.4with xm, ym, transition sequencepm and
parameterb = b(m). The definition of∆ in the lemma statement matches∆b(ym), andb2 matchesb2(m).
Thus, we get an ordering of states∆b(ym) = {d1, d2, . . . , dk} and a corresponding sequence of transitions
α1, α2, . . . , αk, where eachαi is of a formdi, si → oi, o

′
i with si, oi, o

′
i 6∈ {d1, d2, . . . , di}. Finally, each

transitionαi occurs at leastb(m) = (6|Λm| + 2|Λm|) · g(m) times inpm.
We will not perform a set of transformations on the transition sequencepm, calledsurgeries, with the

goal of converging to a desired type of configuration. The next two claims specify these transformations,
which are similar to the surgeries used in [DS15], with the key difference that counts in∆ were bounded

4Consider for instance when the stable configurations for largern increase the counts for the newest states.
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while the counts inΓ grew without limit, allowing the gap to get arbitrarily large. This is no longer the case
here, so we need to carefully bound the counts of agents in certain states, and adopt the second transforma-
tion and its proof to get the desired counts. The proofs are provided in the appendix.

Let cg as defined in the theorem statement be a configuration ofg(m) agents each in some states ∈ Λm

with ym(s) = 0. The configurationy in the theorem statetement will beym. For brevity, we useΓg =
Γg(ym), ∆g = ∆g(ym), Γb = Γb(ym) and∆b = ∆b(ym).

Claim A.6. There exist configurationse, e′ ∈ N
Λm andz1, z′1 ∈ N

Γg , such thate + xm =⇒ z1, e′ + cg +
xm =⇒ z′1. Moreover, we have an upper bound on the counts of states ine and e′: ∀s ∈ Λm : e(s) ≤
2|Λm| · g(m) ande′(s) ≤ 2|Λm| · g(m).

The configurationse+ xm ande′ + cg + xm have at most2|Λm| · g(m) · |Λm|+ g(m) +m agents, which is
less than3m for sufficiently largem. In the end, when we constructi, i′, z, z′ and the transition sequences,
it will also be in the system of at most3m agents, corresponding to the exact same protocol as form agents.

For any configuratione ∈ N
Λm, let e∆ be its projection onto∆, i.e. a configuration consisting of only

the agents in states∆. We can defineeΓ analogously. By definition,eΓ = e− e∆.

Claim A.7. Let e be any configuration with the property that∀s ∈ Λm : e(s) ≤ 2|Λm| · g(m). There exist
configurationsp ∈ N

∆b andw ∈ N
Γg , such thatp + xm =⇒ p + w + e∆g . Moreover, for counts inp, we

have that∀s ∈ Λm : p(s) ≤ b(m) and for counts inwΓg , we have∀s ∈ Γg : w(s) ≥ 2|Λm| · g(m).

Let our initial configurationi be im + im, which according to the Theorem assumptions, must also be
a dense initial configuration fromI2m. Then, trivially i =⇒ xm + xm. Let us applyClaim A.7 with e as
defined inClaim A.6, but use onexm instead ofp. This is possible because∀s ∈ Λm : x(s) ≥ b2(m) ≥
b(m) ≥ p(s). Hence, we getxm + xm =⇒ xm + w + e∆g = xm + e + (w − eΓg ). The configuration
w − eΓg is well-defined because bothw andeΓg contain agents in states inΓg, with each count inw being
larger or equal to the respective count ineΓg , by the bounds from the claims.

Finally, by Claim A.6, we havexm + e + (w − eΓg) =⇒ z1 + (w − eΓg ). We denote the resulting
configuration (with all agents in states inΓg) by z, and havei =⇒ z, as desired. The proof fori+ cg is fully
analogous, by simply using the respective clause ofClaim A.6 to get fromcg + xm + e + (w − eΓg ) =⇒
z′1 + (w − eΓg ) in the last step of the argument. We letz′ be the resulting configuration.

This theorem implies the following lower bounds.

Corollary 3.2. Any population protocol that uses|Λn| ≤ 1/2 log log n states for for all sufficiently large

number of agentsn and stably elects at least one and at mostℓ(n) leaders, must takeΩ
(

n
144|Λn |·|Λn|6·ℓ(n)2

)

expected parallel time to convergence.

Proof. We setg(n) = 2|Λn| · ℓ(n). Input configurations for leader election consist of all agents in the same
dedicated starting state. Hence, the sum of two input configurations of the same population protocol for
leader election is also an input configuration, and all theseconfigurations are dense.

Assume, to the contrary, that the protocol converges in parallel time o
(

n
144|Λn|·|Λn|6·ℓ(n)2

)

. For all n,

let In contain the only initial configuration withn agents in the initial state. UsingTheorem 3.1, we can
find infinitely many configurationsi andz of 2m agents, such that (1)i =⇒ z, (2) i ∈ I2m is an initial
configuration with2m agents, (3) the same protocol is used for all number of agentsbetweenm and2m,
implying |Λm| = |Λ2m|, and (4) inz all agents are in states inΓg(y), i.e. the states that each have counts at
least2|Λm| · ℓ(m) in some stable final configurationy (of |y| = m elements).

Becausey is a stable final configuration of a protocol that elects at most ℓ(m) leaders, none of these
states inΓg(y) that are present in strictly larger counts (2|Λm| · ℓ(m) > ℓ(m)) in y andz can be leader
states. Therefore, the configurationz does not contain a leader. This is not sufficient for a contradiction,
because a leader election protocol may well pass through a leaderless configuration before converging to a
stable configuration with at mostℓ(m) leaders. We prove below that any configuration reachable from z
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must also have zero leaders. This implies an infinite time of convergence from a valid initial configurationi
(asi =⇒ z) and completes the proof by contradiction.

If we could reach a configuration fromz with an agent in a leader state, then byLemma A.5, from a
configurationc′ that consists of2|Λm| agents in each of the states inΓg(y), it is also possible to reach a
configuration with a leader, let us say through transition sequenceq. Recall that the configurationy contains
at least2|Λm| · ℓ(m) agents in each of these states inΓg(y), hence there exist disjoint configurationsc′1 ⊆ y,
c′2 ⊆ y, etc, . . . , c′ℓ(m) ⊆ y contained iny and corresponding transition sequencesq1, q2, . . . , qℓ(m), such

that qi only affects agents inc′i and leads one of the agents inc′i to become a leader. Configurationy
is a final configuration so it contains at least one leader agent already, which does not belong to anyc′i
because as mentioned above,c′i’s only contain agents in non-leader states. Therefore, it is possible to reach
a configuration fromy with ℓ(m)+1 leaders via a transition sequenceq1 on thec′1 component ofy, followed
by q2 on c′2, etc,qℓ(m) on c′ℓ(m), contradicting thaty is a stable final configuration.

The proof of the majority lower bound follows similarly, andis deferred to the Appendix.

Corollary A.8. Any population protocol that uses|Λn| ≤ 1/2 log log n states for for all sufficiently large
number of agentsn and stably computes majority decision among two initial states with majority advantage

ǫn, must takeΩ
(

n
36|Λn|·|Λn|6·max(2|Λn|,ǫn)2

)

expected parallel time to convergence.

4 Synthetic Coin Flips
The state transition rules in population protocols are deterministic, i.e. the interacting nodes do not have
access to random coin flips. In this section, we introduce a general technique that extracts randomness
from the schedule and after only constant parallel time, allows the interactions to rely on close-to-uniform
synthetic coin flips. This turns out to be an useful gadget fordesigning efficient protocols.

Suppose that every node in the system has a boolean parametercoin, initialized with zero. This extra
parameter can be maintained independently of the rest of theprotocol, and only doubles the state space.
When agentsx andy interact, they bothflip the values of their coins. Formally,x′.coin ← 1− x.coin and
y′.coin ← 1− y.coin , and the update rule is fully symmetric.

The nodes can use thecoin value of the interaction partner as a random bit in a randomized algorithm.
However, these bits are not independent and uniform. However, we prove that with high probability, very
quickly, the distribution ofcoin becomes close to uniform and remains that way. We use the concentration
properties of random walks on the hypercube, analyzed previously in various other contexts, e.g. [AR15].
We also note that a similar algorithm is used by Laurenti et al. [LCK16] to generate the uniform distribution
in chemical reaction networks.

Theorem 4.1. Supposek ≥ αn for a fixed constantα ≥ 2. LetXi be the number of ones in the system after
i interactions. For all sufficiently largen, we have thatPr[|Xk − n/2| ≥ n/24α] ≤ 2 exp(−αn/8).

Proof. Let us number the nodes from1 to n, and represent their coin values by a binary vector of sizen.
Suppose we knew a fixed vectorv representing the coin values of the nodes after the interaction k − αn.
For example, ifk = αn, we knowv is a zero vector, because of the way the algorithm is initialized. For
1 ≤ t ≤ αn, define byYt the pair of nodes that are flipped during interactionk − αn + t. Then,Xk is a
deterministic function ofY1, . . . , Yαn, (whereby the function encodes the fixed starting vectorv). Moreover,
Yj are independent random variables and changing any oneYj only changesXk by at most4. Hence, we
can apply McDiarmid’s inequality withXk = fv(Y1, . . . , Yαn).

Claim 4.2 (McDiarmid’s inequality). Let Y1, . . . , Ym be independent random variables and letX be their
functionX = f(Y1, . . . , Ym), such that changing variableYj only changes the function value by at mostcj .

Then, we have thatPr[|X − E[X]| ≥ ǫ] ≤ 2 · exp(− 2ǫ2
∑

c2
j

).
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Settingǫ = α
√
n we getPr[|Xk − E[Xk|] ≥ α

√
n] ≤ 2 · exp(−αn/8), given that the coin values after

interactionk−αn are fixed and represented by vectorv. Fixing v also fixes the number of ones among coin
values in the system at that moment, which we will denote byx, i.e. x =

∑n
j=1 vj = Xk−αn. We can now

prove the following.

Claim C.1. E[Xi+m | Xi = x] = n/2 + (1− 4/n)m · (x− n/2).

By Claim C.1we haveE[Xk | Xk−αn = x] = n/2 + (1 − 4/n)αn · (x − n/2), which as0 ≤ x ≤ n and
(1 − 4/n)αn ≤ exp(−4α), impliesn/2 − n/24α+1 ≤ E[Xk | Xk−αn = x] ≤ n/2 + n/24α+1. For each
fixed v, we can apply McDiarmid inequality as above, and get an upperbound on the probability thatXk

(given the fixedv), diverges from the expectation by at mostα
√
n. But as we just established, for anyv,

the expectation we get in the bound will be at mostn/24α+1 away fromn/2. Combining these and using
n/24α+1 ≥ α

√
n for all sufficiently largen gives the desired bound.

Approximate Counting: Synthetic coins can be used to estimate the number of agentsin the system, as
follows. Each node counts the number of consecutive1 synthetic flips it observes, until the first0. The
agents then exchange their values, always recording the maximum. The agents will converge to a number
which is a constant-factor approximation oflog n. This property is made precise in the proof ofLemma D.2.

5 The Lottery Leader Election Algorithm
We now present a leader election protocol usingO(log2 n) states, converging in expectedO(log9 n) parallel
time. The protocol starts from the leader-minion mechanismof [AG15], and uses synthetic coin flips to
reduce the size of the state space. More precisely, a node’s state in the algorithm is determined by six
parameters:coin , mode , payoff , level , counter , andones . All agents start in the same state, in which
initial values are zero for all parameters.

Variables: coin admits binary values and is initialized to0. mode describes the mode of operation of the
agent, and assumes one of the four values:seeding, lottery, tournament, or minion. Its initial value is
seeding. payoff ← 0, level ← 0 andcounter ← 4 are all positive integers andones = true is a boolean.
We will assume thatn ≥ 196, as needed for the synthetic coin flips. We fix a parameterm such that
(18 log n)2 ≤ m ≤ exp(n/2)

n8 , and the number of states per node will beO(m) (16 for the four modes and
binary parametersones andcoin , and7m/3 for the other three parameters combined).

Seeding Mode: All agents start inseeding mode. Whileseeding an agent decreases itscounter on every
interaction until it reaches0. When thecounter reaches0, the agent changes tolottery mode. The idea is to
make sure that the values of the agents’ coins diverge sufficiently from the initial all-zero assignment before
the majority of the agents start the rest of the protocol.

Lottery Mode: In lottery mode, an agent starts counting in its ownpayoff the number of consecutive
interactions until observing0 as thecoin value of an interaction partner. When the agent first meets a0, or
if the agent reaches the maximum possible value thatpayoff can hold (set to

√
m), the agentx keeps its

payoff in variablepx, and changes itsmode to tournament.

Tournament Mode: In tournament mode, the agents start at thelevel 0, and make repeated attempts to in-
crease their level. Each agentx keeps track ofphases, each consisting ofΘ(log px) consecutive interactions.
For each phase, if all coin values of interaction partners are1, then the agent’s levelx.level is incremented;
otherwise, it stays the same. An agent that reaches the maximum possiblelevel (set at

√
m/3 logm) remains

in tournament mode, but stops increasing its level.
Whenever two agentsx andy in tournament mode meet, they compare states(x.payoff , x.level , x.coin)

and(y.payoff , y.level , y.coin). If the former is larger, then agentx eliminates agenty from the tournament.
Practically, agenty sets itsmode to minion. Note that agents with higher lottery payoff always have
priority; if both payoff andlevel are equal, thecoin value is used as a tie-breaker.
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Minion Mode: An agent inminion mode keeps a record of the maximum.payoff , .level pair ever en-
countered in any interaction in its ownpayoff and level parameters. Ifx.mode = minion andy.mode =
tournament, and(x.payoff , x.level) > (y.payoff , y.level), then the agent in statey will be eliminated from
contention, and turned into a minion. Intuitively, as in [AG15], minions help leaders with high payoffs and
levels to eliminate other contenders by spreading information. Importantly, minions do not use the coin
value as a tie-breaker (as this could lead to a leader eliminating itself).

The intuition behind this process is that the agent with the highest lottery payoff eventually becomes the
leader. This is an agent that manages to reach a high level, and will turn other competitors into its minions,
which further propagate the information about the highest payoff and level through the system.

Analysis Overview: Recall that only nodes withmode = minion are non-leaders, and once a node becomes
a minion it remains a minion. Therefore, we start by proving that not all nodes can be minions at the same
time, and if there aren − 1 minions in the system, then there is a stable leader. Later, we will establish a
finite convergence bound on expected time until only one nodeis not a minion, which proves correctness.

Lemma D.1. In any reachable configuration, at least one node is not a minion. Furthermore, a configuration
withn−1 minions must have a stable leader, meaning that the non-minion node will never become a minion,
while all minions will remain minions.

Lemma D.2. Then, the expected number of interactions until all nodes have .mode = tournament or
.mode = minion is O(n log2 n). Moreover, once that happens, with probability at least1 − 5/n3, at most
12 log n nodes will hold the maximumpayoff value, which will be at leastlog n/4 and at most16 log n.

Once all agents have left theseeding and lottery modes, thesecond stageof the algorithm begins. In
this second stage, all nodes are in eithertournament or minion modes. For any agent, if its payoff is
p, it will now use thecounter parameter to observe6 log p + 12 consecutive coin values of interaction
partners and increase itslevel if they all happen to be one. The maximum allowedcounter value is thus
6 logm/2 + 12 ≤ 7 logm, but it only counts up to6 log p + 12, sincep is the actual payoff as opposed

to the maximum possible payoff
√
m. We will set the maximum possible value oflevel to

√
m

3 logm , which
when combined with

√
m possible values ofpayoff and7 logm for counter , gives7m/3 for these three

parameters combined.
Next, we focus on the second stage. Below, let us callcontendersthe nodes that have the highestpayoff

after the first stage and are intournament mode.

Lemma D.3. With probability at least1− O(logn)
n3 , only one contender reaches levelℓ = 3 logn

log 18+log logn , and

for each level up toℓ, it takes at mostO(n log9 n) interactions before some contender gets to a larger level.
Conditioned on this high probability event, the expected number of interactions before havingn−1 minions
isO(n log9 n).

The above technical lemma implies the global convergence bound.

Corollary D.4. The algorithm converges in expected parallel timeO(log9 n) and with high probability in
parallel timeO(log10 n).

6 The Split-Join Majority Algorithm
Description: We now give an algorithm for exact majority usingO(log2 n) states per node.

Each algorithm state corresponds to a pair of integersx andy, represented by〈x, y〉, whereby both
integers come fromx, y ∈ {0, 1, 2, 22 , . . . , 2⌈log n⌉}. Not all possible pairs are valid states, in particular,
for all states of the algorithm,x 6= y and2 · min(x, y) 6= max(x, y) hold. For technical reasons, we have
two additionalweak statesrepresented as pairs〈0, 0〉+ and 〈0, 0〉−. Therefore, ifx andy are equal, the
pair 〈x, y〉 must be either〈0, 0〉+ or 〈0, 0〉−. We will refer to states and their corresponding value pairs
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State Space:
StrongStates = {〈x, y〉|x, y ∈ {0, 1, 2, 22, . . . , 2⌈logn⌉}, x 6= y, 2 ·min(x, y) 6= max(x, y)},
WeakStates = {〈0, 0〉+, 〈0, 0〉−}
Input: States of two nodes,〈x1, y1〉 and〈x2, y2〉
Output: Updated states〈x′

1, y
′
1〉 and〈x′

2, y
′
2〉

1 Reduce(u, v) =











[0, 0] if u = v
[u− v, 0] if u = 2v
[0, v − u] if 2u = v
[u, v] otherwise.

2 procedure cancel(x1, y1, x2, y2)
3 [x′

1, y
′
2]← Reduce(x1, y2)

4 [x′
2, y

′
1]← Reduce(x2, y1)

5 procedure join(x1, y1, x2, y2)
6 if (x1 − y1 > 0 andx2 − y2 > 0 andy1 = y2) then y′1 ← y1 + y2 andy′2 ← 0
7 else y′1 ← y1 andy′2 ← y2
8 if (x1 − y1 < 0 andx2 − y2 < 0 andx1 = x2) then x′

1 ← x1 + x2 andx′
2 ← 0

9 else x′
1 ← x1 andx′

2 ← x2

10 procedure split(〈x1, y1〉, 〈x2, y2〉)
11 if (x1 − y1 > 0 or x2 − y2 > 0) and max(x1, x2) > 1 and min(x1, x2) = 0 then
12 x′

1 ← max(x1, x2)/2 andx′
2 ← max(x1, x2)/2

13 else x′
1 ← x1 andx′

2 ← x2

14 if (x1 − y1 < 0 or x2 − y2 < 0) and max(y1, y2) > 1 and min(y1, y2) = 0 then
15 y′1 ← max(y1, y2)/2 andy′2 ← max(y1, y2)/2
16 else y′1 ← y1 andy′2 ← y2
17 procedure normalize(x, y, v)
18 [x̂, ŷ]← Reduce(x, y)
19 if x = 0 andy = 0 then
20 if v ≥ 0 then 〈x′, y′〉 ← 〈0, 0〉+
21 else 〈x′, y′〉 ← 〈0, 0〉−
22 else 〈x′, y′〉 ← 〈x, y〉
23 procedure interact(〈x1, y1〉, 〈x2, y2〉)
24 if x1 = y1 = x2 = y2 = 0 then [〈x′

1, y
′
1〉, 〈x′

2, y
′
2〉]← [〈x1, y1〉, 〈x2, y2〉]

25 else
26 [x̂1, ŷ1, x̂2, ŷ2]← split(join(cancel(x1, y1, x2, y2)))
27 〈x′

1, y
′
1〉 ← normalize(x̂1, ŷ1, x̂2 − ŷ2)

28 〈x′
2, y

′
2〉 ← normalize(x̂2, ŷ2, x̂1 − ŷ1)

Figure 1: The state update rules for the Split-Join majorityalgorithm.

interchangeably.
Nodes start in one of two special states. By convention, nodes starting in stateA have the initial pair

〈2⌈log n⌉, 0〉, and the nodes starting in stateB have the initial pair〈0, 2⌈log n⌉〉. We define avalueof a state
corresponding to a pair〈x, y〉 asvalue(〈x, y〉) = x − y. Then, the output functionγ maps each state to
the output based the sign of its value (treating〈0, 0〉+ as positive and〈0, 0〉− as negative). To show that the
algorithm solves exact majority, we prove that all nodes converge to the values of the same sign as the initial
majority (positive forA, negative forB), and that the convergence is fast with high probability.

The algorithm, specified inFigure 1, consists of a set of simple deterministic update rules for the node
state. In the pseudocode, a pair〈x, y〉 always stands for a state, while[x, y] just means a tuple of integer
values (without refering to a state). Hence, theReducehelper function takes two values and returns two
values. The main interaction rule between the states〈x1, y1〉 and〈x2, y2〉 of two interacting nodes is de-
scribed by the functioninteract. The states after the interaction are〈x′1, y′1〉 and〈x′2, y′2〉. All nodes start in
the designated initial states and continue to interact according to theinteract rule.

If both of the interacting states are weak, nothing changes (line 24). Otherwise, three elementary reac-
tions,cancel, join, andsplit are applied, in this order. The reactioncanceltakes four valuesx1, y1, x2, y2
and returns (possibly updated) valuesx′1, y

′
1, x
′
2, y
′
2. These values are then fed as inputs to thejoin reaction,

that also returns four values which are then fed tosplit. The four outputs ofsplit arex̂1, ŷ1, x̂2, ŷ2, which
are then normalized to form the output states (because〈x̂1, ŷ1〉 may not be a valid state).

The elementary reactions are each described as a function offour inputsx1, y1, x2, y2 and four outputs
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x′1, y
′
1, x
′
2, y
′
2 We say that acancel, split or join reaction issuccessfulif xi 6= x′i or yi 6= y′i for i ∈ {0, 1}.

Correctness and Convergence: The first observation is that the sum of values in the system is constant
throughout the execution. Since the initial sum is of the majority sign, the algorithm is guaranteed to be
correct. The proof of convergence follows by carefully tracking the maximum value in the system, and
showing that minority values get cancelled out and switch sign quickly. Due to space limitations, we only
state the main claim here, and defer the complete proof to theAppendix.

Theorem B.1. The Split-Join algorithm will never converge to the minority decision, and is guaranteed to
converge to the majority decision withinO(log3 n) parallel time, w.h.p.

7 Conclusion
We studied the trade-off between time and space complexity in population protocols, and showed that a
super-constant state space is necessary to obtain fast, poly-logarithmic convergence time for both leader
election and exact majority. On the positive side, we gave algorithms which achieve poly-logarithmic ex-
pected convergence time usingO(log2 n) states per node for both tasks.

Our findings are not necessarily good news from the practicalstandpoint, as even small constant state
counts are currently difficult to implement [CDS+13]. It is interesting to note how nature appears to have
overcome this impossibility: algorithms solving majorityat the cell level do soapproximately, allowing
for a positive probability of error, using small constant states per node and converging in poly-logarithmic
time [AAE08b].

We open several avenues for future work. The first is to tightly characterize the time-space trade-off,
betweenlog log n andpolylogn states. This question appears challenging, and will likelyrequire the devel-
opment of analytic techniques parametrized by the number ofstates that an algorithm employs. A second
direction is to explore the space-time trade-off in the caseof approximately correct algorithms.
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A Lower Bound
Lemma A.1 (Density Lemma). Letβ = 1/100 be a constant. For all population protocolsA using|Λn| ≤
1/2 log log n states and starting in a dense initial configuration, with probability ≥ 1 − (1/n)1−β , there
exists an integerj such that the configuration reached afterj steps isn1−β-rich.

Proof. We begin by defining, for integersk ≥ 0, the function

f(k) = n51−2
k+1.

Alternatively, we have thatf(k)2 = f(k + 1)n/51.
Let c = 1/2, andβ = 1/100. Given the above, we notice that, for our choice ofc andβ, it holds that, for
sufficiently largen ≥ 2,
• 3(c log log n)2/n ≤ (1/n)1−β , and
• for 0 ≤ k ≤ c log log n, we have thatf(k) ≥ max(n1−β , 50

√
n log n).

We divide the execution into phases of indexk ≥ 0, each containingn/2 consecutive interactions. For
each0 ≤ k ≤ |Λn| − 1, we denote byCk the system configuration at the beginning of phasek.
Inductive Claim.: We use probabilistic induction to prove the following claim: assuming that configuration
Ck is f(k)-rich with respect to the set of statesSk, with probability1− 3|Λn|/n, the configurationCk+1 is
f(k + 1)-rich with respect toSk+1.
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For generalk ≥ 0, let us fix the interactions up to the beginning of phasek, and assume that configuration
Ck is f(k)-rich with respect to the set of statesSk. Further, consider a stateq ∈ Sk+1. We will aim to prove
that, with probability1−O(1/n), the configurationCk+1 satisfies contains stateq with count≥ f(k).

First, we define the following auxiliary notation. For any node r and set of nodesI, and define this
counts the number of interactions betweenr and nodes in the setI, i.e.

intcount(I, r) = |{ interactionj in phasek : there existsi ∈ I such thatej = (i, r) }|.
Next, we define the set of nodes in a states at the beginning of phasek as

W (s) = {v : v ∈ V andCk(v) = s}.
Finally, we isolate the set of nodes in states at the beginning of phasek whichdid not interactduring phase
k as

W ′(s) = {v : v ∈W (s) and intcount(V, v) = 0}.
Returning to the proof, there are two possibilities for the stateq. The first is whenq ∈ Sk, that is, the

state is already present at the beginning of phasek. But then, by assumption, stateq has count≥ f(k) at the
beginning of phasek. To lower bound its count at the end of phasek, it is sufficient to examine the size of
the setW ′(q). For a nodev ∈W (q), the probability thatv ∈W ′(q) is

(

1− 1

n

)n/2

≥ 1/2,

by Bernoulli’s inequality. Therefore the expected size ofW ′(q) is at least|W (q)|/2. Changing any interac-
tion during phasek may change|W ′(q)| by at most1, and therefore we can apply the method of bounded
differences to obtain that

Pr

[

|W ′(q)| < |W (q)|
2

−
√

n log n

]

≤ exp

(

−n log n

n

)

=
1

n
.

Since, by assumption,|W (q)| ≥ f(k) ≥ 10
√
n log n, it follows that

Pr

[

|W ′(q)| < 2

5
f(k)

]

≤ 1

n
.

Since2f(k)/5 ≥ f(k + 1), we have thatPr[#q(Ck+1) ≥ f(k + 1)] ≥ 1 − 1/n, which concludes the
proof of this case.

It remains to consider the case whenq ∈ Sk+1 − Sk. Here, we know that there must exist statesqi and
qr in Sk such thatδ(qi, qr) = q. We wish to lower bound the number of interactions between nodes in state
qi and nodes in stateqr throughout phasek. To this end, we isolate the setR of nodes which are in stateqr
at the beginning of phasek, and only interact once during the phase, i.e.

R = {v : v ∈W (qr) andintcount(V, v) = 1},
and the set of nodesR′, which are inR, and only interacted once during phasek, with a node in the set

W ′(qi), i.e.
R′ = {v : v ∈ R andintcount(W ′(qi), v) = 1}.

Notice that any node in the setR′ is necessarily in stateq at the end of phasek+1. In the following, we
lower bound the size of this set.

First, a simple probabilistic argument yields thatE[|R|] ≥ |W (qr)|/4. Since each interaction in this
phase affects the size ofR by at most2 (since it changes the count of both interaction partners), we can
again apply the method of bounded differences to obtain that

Pr

[

|R| < |W (qr)

4
− 2

√

n log n

]

≤ 1

n
,

implying that

Pr

[

|R| < 1

20
f(k)

]

≤ 1

n
.

To lower bound the size ofR′, we apply again the method of bounded differences. We have that
|W ′(q)| ≥ (2/5)f(k), and that|R| ≥ (1/20)f(k), we have that
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Pr

[

|R′| ≤ 1

50

(

f(k − 1)2

n

)

−
√

n log n

]

≤ 1

n
.

At the same time, we have that
1

50

(

f(k)2

n

)

−
√

n log n ≥ 51

50
f(k + 1)− 1

50
f(k + 1) = f(k + 1),

which concludes the claim in this case as well. Finally, we can apply a union bound on the set of states to
obtain that, with probability≥ 1− 3|Λn|/n,
Final Argument.: According to the lemma statement, we are considering an initial configuration in which
all states which are present have count≥ n/M , for some constantM ≥ 0. Let k0 be the first positive
integer such thatn/M ≥ f(k0). We have that the initial configuration isf(k0)-rich with respect to the set
of initial statesS0. By a variant of the previous inductive claim, we obtain that, for any integer0 ≤ ℓ ≤ |Λn|
satisfyingf(k0 + ℓ) ≥ max(n1−β, 10

√
n log n), at the beginning of phaseℓ, configurationCℓ is f(k0 + ℓ)-

rich with respect toSℓ.
It therefore follows that, with probability at least

(1− 3|Λn|/n)|Λn| ≥ 1− 3(c log log n)2/n ≥ 1− 1/n1−β ,
there exists an integerj such that the configuration reached afterj steps isn1−β-rich.

Claim A.2. In a system ofn nodes, letγ > 0, f : N → R
+, c ∈ N

Λn , and X,Y ⊆ N
Λn such that

Pr[c =⇒ X] ≥ γ, and every transition sequence from everyx ∈ X to somey ∈ Y has anf -bottleneck.
ThenT [c =⇒ Y ] ≥ γ n−1

2f(n)|Λn|2 .

Proof. We will prove that for anyx ∈ X, T [x =⇒ Y ] ≥ n−1
2f(n)|Λn|2 holds, which implies the desired

claim. By definition, every transition sequence fromx to a configurationy ∈ Y contains anf -bottleneck,
so it is sufficient to lower bound the expected time for the first f -bottleneck transition to occur fromx
before reachingY . In any configurationc reachable fromx, for any pair of statesr1, r2 ∈ Λn such that
r1, r2 → p1, p2 is af -bottleneck transition inc, the definition implies thatc(r1) · c(r2) ≤ f(n). Thus the
probability that the next pair of agents selected to interact are in statesr1 andr2, is at most 2f(n)n(n−1) . Taking an

union bound over all|Λn|2 possible such transitions, the probability that the next transition isf -bottleneck

is at most|Λn|2 2f(n)
n(n−1) . Bounding by a geometric variable with success probability2f(n)|Λn|2

n(n−1) , the expected

number of interactions until the firstf -bottleneck transition is at leastn(n−1)
2f(n)|Λn|2 . The expected parallel time

is this quantity divided byn, completing the argument.

Lemma A.3. LetP = (Λ, δ) be a population protocol such that|Λn| ≤ 1/2 log log n states for all suffi-
ciently largen, and letI be a sequence of sets of dense initial configurations. Assumethat there exists aQ,
such that for all sufficiently largen, P Q-stabilizes in expected timeo( n

f(n)|Λn|2 ) from all in ∈ In. Then,

for all sufficiently largem ∈ N there exists a configurationxm with |xm| = m agents, reachable from some
i ∈ Im and transition sequencepm with the following properties,
• xm(s) ≥ m1−β for all s ∈ Λm, whereβ = 1/100 is a constant.
• xm =⇒pm ym, whereym isQ-stable, and
• pm has nof -bottleneck.

Proof. Recall that, as defined earlier,Q is a sequence of subset of transitions from the respective elements
of δ, i.e. Qn ⊆ δn holds for alln. Also, In is a set of some legal initial configurations forn agents, which
are all given to be dense. We kno that the expected time to reach aQ-stable configuration fromi is finite.
Hence ifi =⇒ xm for i ∈ Im, then aQ-stable configurationym must be reachable fromxm through some
transition sequencepm, but we also needxm andpm to satisfy the first and third requirements.

We know |Λn| ≤ 1/2 log log n for all large enoughn. Hence, byLemma A.1, for a constantβ =
1/100, starting in any dense configurationin ∈ In, with probability at least1 − (1/n)1−β , ann1−β-rich

14



configuration is reachable. Son > 2, we get thatPr[in =⇒ Xn] ≥ 1/2 whereXn = {x | in =⇒ x and
(∀s ∈ Λn)x(s) ≥ n1−β}.

Let Yn be a set of allQ-stable configurations withn agents. Suppose that every transition sequence
from every configurationx ∈ Xn to somey ∈ Y has anf -bottleneck. Then, usingClaim A.2, the expected
time toQ-stabilize fromi ∈ In is T [in =⇒ Y ] ≥ 1

2 · n−1
2f(n)|Λn|2 = Θ( n

f(n)|Λn|2 ). But we know that the

protocolQ-stabilizes fromi ∈ In in timeo( n
f(n)|Λn|2 ), implying that for all sufficiently largem, we can find

xm ∈ Xm from which it is possible to reach aQ-stable configuration inY without anf -bottleneck. First
requirement is satisfied by the definition ofXm, and we letpm be the transition sequence fromxm to some
y ∈ Y without anf -bottleneck.

Lemma A.4. Let b ∈ N and x, y ∈ N
Λn in a system ofn agents, such that∀s ∈ Λn : x(s) ≥ b2 and

x =⇒q y via a transition sequenceq without a(b2)2-bottleneck, whereb2 = |Λn|2 · b+ |Λn| · b. Define

∆ = {d ∈ Λn | y(d) ≤ b}
i.e. the set of states whose count in configurationy is at mostb. Then, there is an order∆ = {d1, d2, . . . , dk},
such that, for alli ∈ {1, . . . , k}, there is a transitionαi of the formdi, si → oi, o

′
i with si, oi, o

′
i 6∈

{d1, . . . , di}, andαi occurs at leastb times inq.

Proof. The argument is identical as in [CCDS14,DS15] and is described below for the sake of completeness.
Let k = |∆| and define∆k = ∆. We will construct the ordering in reverse, i.e. we will determinedi for

i = k, k − 1, . . . , 1 in this order. At each step, we will define the next∆i−1 as∆i − {di}.
We start by settingi = k. For all i we defineΦi : N

Λn → N based on∆i asΦi(c) =
∑

d∈∆i
c(d), i.e.

the number of agents in states from∆i in configurationc. Notice that once∆i is well-defined, so isΦi.
The following works for alli ≥ 1 and lets us construct the ordering. Becausey(d) ≤ b for all states in

∆, it follows thatΦi(y) ≤ i · b ≤ |Λn| · b. On the other hand, we know thatx(d) ≥ b2 for all d ∈ ∆i, hence
Φi(x) ≥ b2 ≥ |Λn| · b ≥ Φi(y). Let c′ be the last configuration alongq from x to y whereΦi(c

′) ≥ b2,
andr be the suffix ofq afterc′. Then,r must contain a subsequence of transitionsu each of which strictly
decreasesΦi, with the total decrease over all ofu being at leastΦi(c

′)− Φi(y) ≥ b2 − |Λn| · b ≥ |Λn|2 · b.
Let α : r1, r2 → p1, p2 be any transition inu. α is in u so it strictly decreasesΦi, and without loss of

generalityr1 ∈ ∆i. Transitionα is not a(b2)2-bottleneck, sinceu (andq) do not contain such bottlenecks,
and all configurationsc alongu havec(d) < b2 for all d ∈ ∆i by definition ofr. Hence, we must have
c(r2) > b2 meaningr2 6∈ ∆i. Exactly one state in∆i decreases its count in transitionα, but α strictly
decreasesΦi, so it must be that bothp1 6∈ ∆i andp2 6∈ ∆i. We takedi = r1, si = r2, oi = p1 ando′i = p2.

There are|Λn|2 different types of transitions. As each transition inu decreasesΦi by exactly one and
there are at least|Λn|2 · b such instances, at least one transition type must repeat inu at leastb times,
completing the proof.

Lemma A.5. Consider some population protocol in a system with any fixed number of agentsn, and an
arbitrary fixed functionh : N → N

+ such thath(n) ≥ 2|Λn|. Let h′(n) = 2|Λn|. For all configurations
c, c′ ∈ N

Λn , such that all agents inc are in states inΓh(c) (i.e. ∀d ∈ ∆h(c) : c(d) = 0) andΓh(c) ⊆ Γh′(c′),
any state producible fromc is also producible fromc′. Formally, if c =⇒ y : y(s) > 0 for somes ∈ Λn and
y ∈ N

Λn , then there also existsy′ ∈ N
Λn such thatc′ =⇒ y′ andy′(s) > 0.

Proof. Sinceh(n) ≥ 2|Λn|, for any state fromΓh(c), its count inc is at least2|Λn|. As Γh(c) ⊆ Γh′(c′),
the count of each of these states inc′ is also at leasth′(n) = 2|Λn|. We say two agents have the same type
if they are in the same state inc. We will prove by induction that any state that can be produced by some
transition sequence fromc, can also be produced by a transition sequence in which at most 2|Λn| agents of
the same type participate (ever interact). Configurationc only has agents with types (states) inΓh(c), and
configurationc′ also has at least2|Λn| agents for each of those types, the same transition sequencecan be
performed fromc′ to produce the same state as fromc, proving the desired statement.
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The inductive statement is the following. There is ak ≤ |Λn|, such that for eachi = 0, 1, . . . , k we can
find setsS0 ⊂ S1 ⊂ . . . ⊂ Sk whereSk contains all the states that are producible fromc. Let Ai be a set
consisting of2i agents of each type inΓh(c), out of all the agents in configurationc (we could also usec′),
for the total of2i · |Γh(c)| agents. There are enough agents of these types inc (and inc′) asi ≤ k ≤ |Λn|.
Then, for each0 ≤ i ≤ k and each states ∈ Si, there exists a transition sequence fromc in which only the
agents inAi ever interact and in the resulting configuration, one of these agents fromAi ends up in states.

We do induction oni and for the base casei = 0 we takeS0 = Γh(c). The setA0 as defined contains
one (20) agent of each type inΓh(c) = S0

5. All states inS0 are immediately producible by agents inA0 via
an empty transition sequence (without any interactions).

Let us now assume inductive hypothesis for somei ≥ 0. If Si contains all the producible states from
configurationc, thenk = i and we are done. We will havek ≤ Λn, becauseS0 6= ∅ andS0 ⊂ S1 ⊂ . . . Sk

imply thatSk contains at leastk different states, and there are|Λn| total. Otherwise, there must be some
states 6∈ Si that can be produced after an interaction between two agentsboth in states inSi, let us say by
a transitionα : r1, r2 → s, p with r1, r2 ∈ Si. Also, asSi contains at leasti states out of|Λn| total, and
there is the states 6∈ Si, i < |Λn| holds and the setAi+1 is well-defined. Let us partitionAi+1 into two
disjoint setsB1 andB2 where each contain2i agents fromc for each type. Then, by induction hypothesis,
there exists a transition sequence where only the agents inB1 ever interact and in the end, one of the agents
b1 ∈ B1 ends up in the stater1. Analogously, there is a transition sequence for agents inB2, after which an
agentb2 ∈ B2 ends up in stater2. Combining these two transition and adding one instance of transitionα
in the end between agentsb1 andb2 (in statesr1 andr2 respectively) leads to a configuration where one of
the agents fromAi+1 is in states. Also, all the transitions are between agents inAi+1. Hence, we can set
Si+1 = Si ∪ {s}, completing the inductive step.

Claim A.6. There exist configurationse, e′ ∈ N
Λm andz1, z′1 ∈ N

Γg , such thate + xm =⇒ z1, e′ + cg +
xm =⇒ z′1. Moreover, we have an upper bound on the counts of states ine and e′: ∀s ∈ Λm : e(s) ≤
2|Λm| · g(m) ande′(s) ≤ 2|Λm| · g(m).

Proof. The proof is analogous to [DS15], but we consider a subsequence of the ordered transitions∆b =
{d1, . . . , dk} obtained earlier byLemma A.4. Sinceb(m) ≥ g(m), we can represent∆g = {di1 , . . . , dil},
with i1 ≤ . . . ≤ il. We iteratively add groups of transitions at the end of transition sequencepm, (pm is the
transition sequence fromxm to ym), such that, after the first iteration, the resulting configuration does not
contain any agent indi1 . Next, we add group of transitions and the resulting configuration will not contain
any agent agent indi1 or di2 , and we repeat thisl times. In the end, no agents will be in states from∆g.

The transition ordering lemma provides us with the transitions to add. Initially, there are at mostg(m)
agents in statedi1 in the system. So, in the first iteration, we add the same amount (at mostg(m)) of
transitionsdi1 , si1 → oi1 , o

′
i1

, after which, assi1 , oi1 , o
′
i1
6∈ {d1, . . . di1}, the resulting configuration will not

contain any agent in configurationdi1 . If there are not enough agents in the system in statesi1 already to
add all these transitions, then we add the remaining agents in state insi1 to e (or e′). For the first iteration,
we may need to add at mostg(m) agents.

For the second iteration, add transitions of typedi2 , si2 → oi2 , o
′
i2

to the resulting transition sequence.
Therefore, the number of agents indi2 that we may need to consume is at most3 ·g(m), g(m) of them could
have been there inym, and we may have added2 · g(m) in the previous iteration, if for instance bothoi1 and
o′i1 weredi2 . Otherwise, the iteration is analogous, and we may add3 · g(m) extra agents toe (or e′).

If we repeat these iterations for all remainingj = 3, . . . , l, in the end we will end up in a configurationz
(or z′) that contains all agents in states inΓ as desired, because of the property of transition ordering lemma
thatsij , oij , o

′
ij
6∈ {d1, . . . , dij}. For anyj, the maximum total number of agents we may need to add toe at

iterationj is (2j − 1) · g(m). The worst case is whenoi1 ando′i1 are bothdi2 , andoi2 , o
′
i2

are bothdi3 , etc.

5In c, all the agents are in one of the states ofΓh(c), so as long asn > 0 there must be at least one agent per state (type). Also,
if Γh(c) = ∅, thenn must necessarily be0, so nothing is producibleA0 = ∅, k = 0 and we are done
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Finally, it must hold thatl < |Λm|, because the final configuration containsm agents in states inΓg and
none in{di1 , . . . , dil}, soΓg cannot be empty. Therefore, the total number of agents addedto e (or e′) are
g(m) ·∑l

j=1 2
l − 1 < 2l+1 · g(m) ≤ 2|Λm| · g(m). This completes the proof becausee(s) for any states

can be at most the number of agents ine, which is at most2|Λm| · g(m).

Claim A.7. Let e be any configuration with the property that∀s ∈ Λm : e(s) ≤ 2|Λm| · g(m). There exists
configurationsp ∈ N

∆b andw ∈ N
Γg , such thatp + xm =⇒ p + w + e∆g . Moreover, for counts inp, we

have that∀s ∈ Λm : p(s) ≤ b(m) and for counts inwΓg , we have∀s ∈ Γg : w(s) ≥ 2|Λm| · g(m).

Proof. The following proof has some significant differences from its counterpart in [DS15]. Also, as in the
proof of Claim A.6, we define a subsequence (i1 ≤ il), ∆g = {di1 , . . . , dil} of ∆b = {d1, . . . , dk} that
we obtained earlier byLemma A.4. We again start by the transition sequencepm from configurationxm to
ym, and perform iterations forj = 1, . . . k. At each iteration, we modify the transition sequence, possibly
add some agents to configurationp, which we will define shortly, and consider the counts of all agents not
in p in the resulting configuration. Configurationp acts as a buffer of agents in certain states that we can
temporarily borrow. For example, if we need5 agents in a certain state with count0 to complete some
iterationj, we will temporarily let the count to−5 (add5 agents top), and then we will fix the count of the
state to its target value, which will also return the “borrowed” agents (sop will also appear in the resulting
configuration). As in [DS15], this allows us let the counts of certain states temporarily drop below0.

We will maintain the following invariants on the count of agents, excluding the agents inp, in the
resulting configuration after iterationj:

1) The counts of all states (not inp) in ∆g ∩ {d1, . . . , dj}match to the desired counts ine∆.
2) The counts of all states in{d1, . . . dj} −∆g are at least2|Λm| · g(m).
3) The counts in any state diverged by at most(3j − 1) · 2|Λm| · g(m) from the respective counts inym.
These invariants guarantee that we get all the desired properties after the last iteration. Let us consider

the final configuration after itarationk. Due to the first invariant, the set of all agents (not inp) in states∆g

is exactlye∆g . All the remaining agents (also excluding agents inp) are inw, and thus, by definition, the
counts of states in∆g in configurationw will be zero, as desired. The counts of agents in states∆b −∆g

that belong tow will be at least2|Λm| · g(m), due to the second invariant. Finally, the counts of agents in Γb

that belong tow will also be at leastb(m)− 3|Λm| · 2|Λm| · g(m) ≥ 2|Λm| · g(m), due to the third invariant
and the fact that the states inΓb had counts at leastb(m) in ym. Finally, the third invariant also implies
the upper bound on counts inp. The configurationp will only contain the agents in states∆b, because the
agents inΓb have large enough starting counts inym borrowing is never necessary.

In iterationdj , we fix the count of statedj . Let us first consider the case whendj belongs to∆g. Then,
the target count is the count of the statedj in e∆g , which we are given is at most2|Λm| · g(m). Combined
with the third invariant, the maximum amount of fixing required may be is3j · 2|Λm| · g(m). If we have to
reduce the number ofdj , then we add new transitionsdj , sj → oj, o

′
j , similar toClaim A.6 (as discussed

above, not worrying about the count ofsj possibly turning negative). However, in the current case, we may
want to increase the count ofdj . In this case, we remove instances of transitiondj, sj → oj, o

′
j from the

transition sequence. The transition ordering lemma tells us that there are at leastb(m) of these transitions
to start with, so by the third invariant, we will always have enough transitions to remove. We matched the
count ofdj to the count ine∆g , so the first invariant still holds, and so does the second one. The third
invariant also holds, because we performed at most3j · 2|Λm| · g(m) transition additions or removals, each
affecting the count of any other given state by at most2, and hence the total count differ by at most

(3j − 1) · 2|Λm| · g(m) + 2 · 3j · 2|Λm| · g(m) = (3j+1 − 1) · 2|Λm| · g(m).

Now assume thatdj belongs to∆b − ∆g. If the count ofdj is aleady larger than2|Λm| · g(m), than
we do nothing and move to the next iteration, and all the invariants will hold. If the count is smaller than
2|Λm| · g(m), then we set the target count to2|Λm| · g(m) and add or remove transitions like in the previous
case, thus the first two invariants will again hold after the iteration. Becausedj is in Γg, the its initial
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count in ym was at leastg(m), it diverged by at most(3j − 1) · 2|Λm| · g(m), and ended up less than
2|Λm| · g(m) which we are fixing to2|Λm| · g(m). Therefore, the maximum amount of fixing required is
(3j − 1) · 2|Λm| · g(m) + (2|Λm| · g(m)− g(m)), which is at most3j · 2|Λm| · g(m), as in the previous case,
we will have enough transitions to remove and the third invariant will also hold.

Corollary A.8. Any population protocol that uses|Λn| ≤ 1/2 log log n states for for all sufficiently large
number of agentsn and stably computes majority decision among two initial states with majority advantage

ǫn, must takeΩ
(

n
36|Λn|·|Λn|6·max(2|Λn|,ǫn)2

)

expected parallel time to convergence.

Proof. We setg(n) = max(2|Λm|+1, 4ǫn). For majority computation, initial configurations consistof agents
in one of two states, corresponding to two opinions, with themajority opinion holding anǫn advantage in
the counts. Therefore, the sum of two initial configurationsof the same protocol is also a valid input
configuration. The bound is nontrivial only in a regimeǫn ∈ o(

√
n), which we will henceforth assume

without loss of generality. The initial configurations we consider inIn will all have advantageǫn, and
therefore will all be dense.

Let us prove that for all sufficiently largem, in any final stable configurationy, strictly less than2|Λm| ≤
g(m)/2 agents will be in the initial minority statesB. The reason is that ifc is the initial configuration of all
m agents in statesB, the protocol must converge fromc to a final configuration where the states correspond
to decisionsB. By Lemma A.5, from any configuration that contains at least2|Λm| agents insB it would
also be possible to reach a configuration where some agent supports decisionsB. Therefore, all stable final
configurationy have at mostg(m)/2 − 1 agents in initial minority statesB. This allows us to letcg be a
configuration ofg(m)/2 + 1 ≥ 2ǫm+ 1 agents in statesB.

Assume, to the contrary, that the protocol converges in parallel time o
(

n
36|Λn |·|Λn|6·max(2|Λn|,ǫn)2

)

. Re-

call thatI is the sequence of sets of dense initial configurationsIn. For alln, we letIn contain configurations
with (1+ǫ)n

2 agents in statesA and (1−ǫ)n
2 agents in statesB, i.e. having majority opinionsA with advantage

ǫn6. Using Theorem 3.1, we can find infinitely many configurationsi andz′ of at most3m agents, such
that (1) i + cg =⇒ z′, (2) i ∈ I2m is an initial configuration for2m agents, with majority opinionsA
and advantage2ǫm. (3) the same protocol is used for all number of agents between m and3m, implying
|Λm| = |Λ2m| = |Λ2m+|cg ||, and (4) inz′ all agents are in states inΓg(y), i.e. the states that have counts at
leastg(m) in some stable final configurationy of m elements, reachable from an initial configuration inIm.

To get the desired contradiction we will prove two things. First,z′ is actually a stable final configuration
for decisionsA (majority opinion ini), and second,i + cg is a valid initial configuration for the majority
problem, but with majority opinionsB (majority of agents insB). This will imply that the protocol converges
to a wrong outcome, and complete the proof by contradiction.

If we could reach a configuration fromz′ with any agent in a state corresponding to the decision forsB,
then byLemma A.5, from a configurationy (which contains2|Λm| agents in each of the states inΓg(y)) it is
also possible to reach a configuration with an agent supporting sB. This is impossible, as configurationy is
a final stable configuration for an initial configuration inIm, which has a majority ofsA.

Configurationi ∈ I2m contains2ǫm more sA states thansB. Configurationcg consists of at least
2ǫm+ 1 agents all in statesB. Hence,i+ cg is a legal initial configuration with a majority ofsB.

B Analysis of the Majority Algorithm
The update rules inFigure 1are chained, i.e. a cancel is followed by a join and a split. This is an opti-
mization, applying as many possible reactions as possible.However, for the analysis we consider a slight
modification, where we only apply split only if both join and cancel were unsuccessful.

For presentation purposes, we assume thatn is a power of two, and when necessary, we assume that it
is sufficiently large. Throughout this proof, we denote the set of nodes executing the protocol byV . We

6To clarify, In has to contain some dense initial configurations forn agents, but not necessarily all such configurations.
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measure execution time in discrete steps (rounds), where each time stept corresponds to an interaction. The
configurationat a given timet is a functionc : V → Q, wherec(v) is the state of the nodev at timet. (We
omit the explicit timet when clear from the context.)

Recall that a value of a state〈x, y〉 is defined asx− y and we will also refer tomax(x, y) as thelevelof
this node. We call〈x, y〉 a mixedstate if bothx andy are non-zero, and apurestate otherwise. A mixed or
pure node is a node in a mixed or a pure state, respectively.

The rest of this section is focused on proving the following result.

Theorem B.1. The Split-Join algorithm will never converge to the minority decision, and is guaranteed to
converge to the majority decision withinO(log3 n) parallel time, w.h.p.

Correctness: We first prove that nodes never converge to the sign of the initial minority (safety), and that
they eventually converge to the sign of the initial majority(termination).

The first statement follows since given the interaction rules of the algorithm, the sum of the encoded
values stays constant as the algorithm progresses. The proof follows by the structure of the algorithm.

Invariant B.2. The sum
∑

v∈V value(c(v)) never changes, for all reachable configurationsc of the protocol.

This invariant implies that the algorithm may never converge to a wrong decision value. For instance, if
the initial sum is positive, then positive values must always exist in the system. Therefore we only need to
show that the algorithm converges to a state where all nodes have the same sign, which we do via a rough
convergence bound, assuming an arbitrary starting configuration.

Lemma B.6. Let c be an arbitrary starting configuration. We define the (initial) sum of values asS :=
∑

v∈V value(c(v)). By assumption,S 6= 0. With probability1, the algorithm will reach a configuration̂c
such that i)sgn(ĉ(v)) = sgn(S) for all nodesv ∈ V , and, ii) no node changes its sign in configurationsce
reachable from̂c, i.e. ∀ce reachable fromc andv ∈ V : sgn(ce(v)) = sgn(ĉ(v)). For sufficiently largen,
the convergence time tôc is at mostn5 expected communication rounds, i.e. parallel timen4.

Convergence Time: Next, we bound the time until all nodes converge to the correct sign.

Claim B.3. Consider a configuration wherenδ out of then nodes are in a mixed state, forδ ≥ 2(log n−1)
n . In

the next interaction round, the number of mixed nodes strictly decreases with probability at least δ2

2(log n−1) .

Proof. Considerlog n − 1 buckets corresponding to values1, 2, 4, . . . , n/4. Let us assign mixed nodes to
these buckets according to their states, where node in state〈x, y〉 goes into bucketmin(x, y). All nodes fall
into one of thelog n− 1 buckets because of the definition of (mixed) states.

If two nodes in the same bucket interact, either cancel or join will be successful, and since we consider
the algorithm where split is not applied in this case, and thenumber of mixed nodes will strictly decrease.
Thus, if there ared1, d2, . . . , dlogn−1 nodes in the buckets, the number of possible interactions that decrease

the number of mixed nodes is at least
∑logn−1

i=1
di(di−1)

2 =
(
∑

d2i )−nδ
2 .

By the Cauchy-Schwartz inequality,
∑

d2i ≥ n2δ2

logn−1 . Combining this with the above and usingnδ ≥
2(log n−1) we get that the there are at leastn

2δ2

4(logn−1) pairs of nodes whose interactions decrease the number
of mixed nodes. The total number of pairs isn(n− 1)/2, proving the desired probability bound.

Claim B.4. Supposef is a function such thatf(n) ∈ O(poly(n)). For all sufficiently largen, the probability
of having less than n

211 logn pure nodes in the system at any time during the firstf(n) communication rounds

is at most1− 1/n5.

Proof. Assume that this number became less thann211 logn for the first time at timeT after some number of
communication rounds. Lett be the last time when the number of pure nodes was at leastn

29 logn
(such a
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time exists since the initial number of pure nodes isn) and letα be the number of communication rounds
betweent andT . The number of mixed nodes increases by at most two in each round, soα ≥ n

211 logn
.

By definition of t andT , at all times during theα communication rounds betweent andT , at least
n(29 logn−1)

29 logn ≥ n
2 nodes are mixed. Thus, byClaim B.3in each of these communication rounds, the number

of mixed nodes decreases by at least one with probability at least 1
8 logn . Let us describe by a random

variableX ∼ Bin(α, 1
8 logn) at least how often the number of mixed nodes decreased. Each node is pure

or mixed, and by Chernoff Bound, the probability that the number of pure nodes increased less thanα16 logn

times isPr
[

X ≤ α
16 logn

]

= Pr
[

X ≤ α
8 logn (1− 1/2)

]

≤ exp
(

− α
8 logn·22·2

)

≤ exp
(

− n
217 log2 n

)

On the other hand, in each of theseα rounds, the number of pure nodes can decrease only if one of
the interacting nodes was in a pure state. By definition oft andT , the number of such pairs is at most

n2

218 log2 n
+2n2(29 logn−1)

218 log2 n
≤ 2n2

29 logn
. This implies that in each round the probability that the number of pure

nodes will decrease is at most 1
26 logn

. Let us describe the (upper bound on the) number of such rounds by

a random variableY ∼ Bin(α, 1
26 logn

). Since in each such round the number of pure nodes can decrease
by at most2, using Chernoff bound the probability that the number of pure nodes decreases by more than

α
16 logn during theα communication rounds is at mostPr [Y ≥ α/(32 log n)] ≤ exp

(

− n
219 log2 n

)

In order for the number of pure nodes to have decreased fromn
29 logn

at time t to n
211 logn

at timeT ,
either the number of mixed nodes must have increased by at most α

16 logn , or the number of pure nodes must
have decreased by at leastα16 logn during theα communication rounds betweent andT . Otherwise, the
increase in mixed nodes would be more than the decrease in pure nodes. However, by union bound, the

probability of this is at mostexp
(

− n
217 log2 n

)

+ exp
(

− n
219 log2 n

)

.

We can now take union bound over the number of communication rounds until the number of pure nodes
drops below n

211 logn (time T ). For at mostf(n) ∈ O(poly(n)) rounds, we get that the probability of the

number of pure nodes ever being less thann
211 logn

is at most1/n5 for all large enoughn.

Consider the high probability case of the above claim, wherea fraction of pure nodes are present in
every configuration in the execution prefix. We call a round anegative-roundif, in the configurationc at the
beginning of the round, there are at leastn

211 logn
pure nodes and at leasthalf of the pure nodes encode a

non-positive value. Analogously, we call a round apositive-roundif there are at least n
211 logn

pure nodes, at
least half of which encode a non-negative value. A round can be simultaneously negativeand positive, for
instance when all pure nodes encode value0. Next claim establishes the speed at which the maximum level
in the system decreases. The proof, given in full in the Appendix, follows by bounding the probability that
a node with the maximum level meets a pure node with value0 or a value of the opposite sign. This results
in a split (or cancel) reaction decreasing the level of the node, and we use Chernoff and Union Bounds to
bound the probability that the node avoids such a meeting forsignificant time.

We get a condition for halving the maximum level (among positive or negative values) in the system
with high probability. The initial levels in the system isn, which can only be halvedlog n times for each
sign. Combining everything results in the following claim:

Claim B.8. There exists a constantβ, such that if during the first2βn log3 n rounds the number of pure
nodes is always at least n

211 logn
, then with probability at least1 − 2 logn

n5 , one of the following three events
occurs at some point during these rounds:

1. Nodes only encode values in{−1, 0, 1};

2. There are less than n
212 logn

nodes with non-positive values, all encoding0 or −1,

3. There are less than n
212 logn

nodes with non-negative values, all encoding0 or 1.
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Final Argument: To see how this claim can be used to obtain the convergence upper bound, let us assume
without loss of generality that the initial majority of nodes was inA (positive) state, i.e.a > b.

Settingβ as inClaim B.8, by Claim B.4, with high probability, we have at least n
211 logn

pure nodes

during the first2βn log3 n rounds. Thus, w.h.p. during these rounds the execution reaches a configuration
where one of the three events fromClaim B.8holds. Consider this pointT in the execution.

By our assumption about the initial majority andInvariant B.2,
∑

v∈V value(c(v)) = ǫn2 holds in every
reachable configurationc. The third event is impossible, because the total sum would be negative. In the
first event, the total sum isǫn2 ≥ n of n encoded values each being−1, 0 or 1. Therefore, in this case, all
nodes must be in state〈1, 0〉 and we are done.

In the second event implies there are at leastn(212 logn−1)
212 logn ≥ 2n

3 nodes encoding strictly positive values.

Hence, at timeT during the first2βn log3 n rounds there are at leastn/3 more strictly positive than strictly
negative values. Moreover,−1’s are the only strictly negative values of the nodes at pointT , and this will
be the case for the rest of the execution because of the updaterules. After timeT , we have

Claim B.9. Consider a configuration where all nodes with strictly negative values encode−1, while at
least 2n3 nodes encode strictly positive values. The number of roundsuntil convergence isO(n log n) in
expectation andO(n log2 n) with high probability.

Using this, and by Union Bound overClaim B.4and Claim B.8, with probability1− logn+1
n5 the number

of communication rounds to convergence is thus2βn log3 n+O(n log2 n) = O(n log3 n).
In the remaining low probability event, with probability atmost logn+1

n5 , the remaining number of rounds
is at mostO(n5) by Lemma B.6. Therefore, the sameO(n log3 n) bound also holds in expectation,

Claim B.5. There are at most2n2 split reactions in any execution.

Proof. A level of a node in states = 〈x, y〉 is defined aslevel(s) = max(x, y). Consider a node in a state
with level l. Then, we say that thepotential of the nodeis φ(l) = 2l for l > 0 andφ(0) = 1. In any
configurationc, thepotential of the systemisΦ(c) =

∑n
i=1 φ(level(si)).

Then, the potential of the system in the initial configuration is
∑

(2n) = 2n2, and it can never fall
below

∑

(1) = n. By the interaction rules of the algorithm, potential of thesystem never increases after an
interaction, and it decreases by at least one after each successfulsplit interaction. This implies the claim.

Lemma B.6. Let c be an arbitrary starting configuration. DefineS :=
∑

v∈V value(c(v)) 6= 0. With
probability 1, the algorithm will reach a configuration̂c such thatsgn(ĉ(v)) = sgn(S) for all nodesv ∈
V . Moreover, in all later configurationsce reachable from̂c, no node can ever have a different sign, i.e.
∀v ∈ V : sgn(ce(v)) = sgn(ĉ(v)). For sufficiently largen, the convergence time tôc is at mostn5 expected
communication rounds, i.e. parallel timen4.

Proof. Assume without loss of generality that the sumS is positive.
We estimate the expected convergence time by splitting the execution into three phases. The first phase

starts at the beginning of the execution, and lasts until either i) no node encodes a strictly negative valueor
ii) each node encodes a value in{−1, 0, 1}, i.e. all nodes are in states〈1, 0〉, 〈0, 0〉+. 〈0, 0〉− or 〈0, 1〉.

Due toInvariant B.2, at least one node encodes a strictly positive value. Also, by definition, during the
first phase there is always a node encoding a strictly negative value. Moreover, there is a node in state〈x, y〉
with max(x, y) > 1. Assume thatx > y for this node. Then, if there is another node in state〈0, y2〉 for any
y2, then with probability at least1/n2 these two nodes interact in the next round resulting in a split reaction.
Otherwise, every node〈x1, y1〉 that encodes a strictly negative value must havemin(x1, y1) > 0. At least
one such node exists and if there is another node in state〈x2, 0〉 for anyx2, then again with probability at
least1/n2 a split reaction occurs in the next round. The case ofx < y is analogous and we get that during
the first phase, if there is no pair whose interaction would result in a split reaction, all nodes must be in
states〈x, y〉 with min(x, y) > 0, i.e. in mixed states. ByClaim B.3, with probability at least 1

2(log n−1)
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a pure node appears after the next communication round and bythe above argument, if the first phase
has not been completed, in the subsequent round a split reaction will occur with probability at least1/n2.
Therefore, during the first phase, the expected number of rounds until the next split reaction is at most
4n2(log n − 1). By Claim B.5, there can be at most2n2 split reactions in any execution, thus the expected
number of communication rounds in the first phase is at most8n4(log n− 1).

The second phase starts immediately after the first, and endswhen no node encodes a strictly negative
value. Note that if this was already true when the first phase ended, then the second phase is trivially
empty. Consider the other case when all nodes encode values−1, 0 and1 at the beginning of the second
phase. Under these circumstances, because of the update rules, no node will ever be in a state〈x, y〉 with
max(x, y) > 1 in any future configuration. Also, the number of nodes encoding non-zero values can only
decrease. In each round, with probability at least1/n2, two nodes with values1 and−1 interact, becoming
〈0, 0〉+ and〈0, 0〉−. Since this can only happenn/2 times, the expected number of communication rounds
in the second phase is at mostn3/2.

The third phase lasts until the system converges, that is, until all nodes with value0 are in state〈0, 0〉+.
By Invariant B.2, S > 0 holds throughout the execution, so there is at least one nodewith a positive sign
and non-zero value. There are also at mostn − 1 conflictingnodes with negative sign, all in state〈0, 0〉−.
Thus, independently in each round, with probability at least 1/n2, a conflicting node meets a node with
strictly positive value and becomes〈0, 0〉+, decreasing the number of conflicting nodes by one. The number
of conflicting nodes can never increase and when it becomes zero, the system has converged to the desired
configurationĉ. Therefore, the expected number of rounds in the third phaseis at mostn3.

Combining the results and using the linearity of expectation, the total expected number of communica-
tion rounds before reachinĝc is at mostn3(8n(log n − 1) + 1/2 + 1) ≤ n5 for sufficiently largen. Finite
expectation implies that the algorithm converges with probability 1. Finally, when two nodes with positive
sign meet, they both remain positive, so any configurationce reachable from̂c has the correct signs.

Claim B.7. Letw > 1 be the maximum level among the nodes with a negative (resp., positive) sign. There
is a constantβ, such that afterβn log2 n positive-rounds (resp., negative-rounds) the maximum level among
the nodes with a negative (resp., positive) sign will be at most ⌊w/2⌋ with probability at least1− 1

n5 .

Proof. We will prove the claim for nodes with negative values. (The converse claim follows analogously.)
Fix a roundr, and recall thatw > 1 is the maximum level of a node with a negative value at the beginning
of the round. LetU be the set of all nodes with negative values and the same levelw at the beginning of the
round, and letu = |U |. We call these nodestarget nodes.

By the structure of the algorithm, the number of target nodesnever increases and decreases by one in
everyeliminatinground where a target node meets a pure node with a non-negative value, due to a split or
cancel reaction. Consider a set ofαn log n consecutive positive-rounds afterr, for some constantα > 212.
In each round, if there are still at least⌈u/2⌉ target nodes, then the probability of this round being eliminating
is at least ⌈u/2⌉

212n logn
(since in a positive round at least half of n

211 logn
pure nodes have non-negative value).

Let us describe the process by considering a random variableZ ∼ Bin(αn log n, ⌈u/2⌉
212n logn), where each

success event corresponds to an eliminating round. By a Chernoff Bound, the probability of havingαn log n
iterations with at most⌈u/2⌉ eliminations is at most:

Pr [Z ≤ ⌈u/2⌉] = Pr

[

Z ≤ α⌈u/2⌉
212

(

1− α− 212

α

)]

≤ exp

(

−α⌈u/2⌉(α − 212)2

213α2

)

For sufficiently largeα andu ≥ log n, the probability of this event is at most1
n6 for αn log n positive-rounds.

Applying the same rationale iteratively as long asu ≥ log n, we obtain by using a Union Bound that the
number of target nodes will become less thanlog n within αn log n(log n− log log n) positive-rounds, with
probability at least1− logn−log logn

n6 .
Finally, we wish to upper bound the remaining number of positive-rounds until no target node remains.

Again for sufficiently largeα, but whenu < log n, we get from the same argument as above that the number
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of target nodes is reduced to⌊u/2⌋ within αn log2 n
u consecutive positive-rounds with probability1/n6. So

we consider increasing numbers of consecutive positive-rounds, and obtain that no target nodes will be left
after at mostαn log n+2αn log n+ . . .+αn log2 n ≤ 2αn log2 n positive-rounds, with probability at least
1− log logn

n6 , where we have taken the union bound overlog log n events. The original claim follows by setting
β = 3α, taking Union Bound over the above two events (u ≥ log n andu < log n) andlog n ≤ n.

Claim B.8. There exists a constantβ, such that if during the first2βn log3 n rounds the number of pure
nodes is always at least n

211 logn
, then with probability at least1 − 2 logn

n5 , one of the following three events
occurs at some point during these rounds:

1. Nodes only encode values in{−1, 0, 1};

2. There are less than n
212 logn nodes with non-positive values, all encoding0 or −1,

3. There are less than n
212 logn nodes with non-negative values, all encoding0 or 1.

Proof. We take a constantβ that works forClaim B.7. Since there are at least n
211 logn

pure node at all

times during the first2βn log3 n rounds, each round during this interval is a negative-round, a positive-
round, or both. We call maximum positive (resp. negative) level the maximum level among all the nodes
encoding non-negative (resp. non-positive) values. Unless the maximum positive level in the system is≤ 1,
by Claim B.7, a stretch ofβn log2 n negative-rounds halves the maximum positive level, with probability at
least1− 1

n5 . The same holds for stretches ofβn log2 n positive-rounds and the maximum negative level.
Assume that none of the three events hold at any time during the first2βn log3 n rounds. In that case,

each round can be classified as either:
• a negative-round where the maximum positive level is strictly larger than1, or
• a positive-round where the maximum negative level is strictly larger than1.

To show this, without a loss of generality consider any positive-round (we showed earlier that each round is
positive-round or a negative-round). If the maximum negative level is> 1 then the round can be classified
as claimed, thus all non-positive values in the system must be 0 or −1. Now if there are less than n

212 logn

such nodes, then we have the second event, so there must be more than n
212 logn

nodes encoding0 and−1.
However, all these nodes are pure, so the round is simultaneously a negative-round. Now if the maximum
positive level is> 1 then the round can again be classified as claimed, and if the maximum positive level is
at most1, then all nodes in the system are encoding values−1, 0 or 1 and we have the first event.

Thus, each round contributes to at least one of the stretchesof βn log2 n rounds that halve the maximum
(positive or negative) level, w.h.p. However, this may happen at most2 log n times. By applyingClaim B.7
2 log n times and the Union Bound we get that after the first2βn log3 n rounds, with probability at least
1 − 2 logn

n5 only values−1, 0 and1 may remain. However, this is the same as the first event above.Hence,

the probability that none of these events happen is at most2 logn
n5 .

Claim B.9. Consider a configuration where all nodes with strictly negative values encode−1, while at
least 2n3 nodes encode strictly positive values. The number of roundsuntil convergence isO(n log n) in
expectation andO(n log2 n) with high probability.

Proof. In any configuration, let us callconflictingany node that encodes−1, andtargetnode any node that
has a strictly positive value. Because of the structure of the algorithm, and that in configurationc the only
nodes with non-positive sign encode−1 or 0, in all configurations reachable fromc nodes with negative
values will also only encode−1 or−0. Moreover, the number of conflicting nodes can never increase after
an interaction. Observe that the number of conflicting nodesdecreases by one after an interaction where
a target node (with a stritly positive value) meets a node with value−1, while the number of target nodes
may also decrease by at most1. This is because a split reaction happens on the positive component of the
target node (since the positive component of the conflictingnode is0) and both nodes get value≥ 0 after
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the interaction. There are at leastn/3 more target nodes than conflicting nodes inc, therefore, in every later
configuration, there must always be at leastn/3 target nodes.

Let us estimate the number of rounds until each conflicting node has interacted with a target node, at
which point no more conflicting nodes may exist. Let us say there werex conflicting nodes in configuration
c. The expected number of rounds until the first conflicting node meets a target node is at most3n

x , since the
probability of such an interaction happening in each round is at leastxn · n

3n . The expected number of rounds
for the second node is then3n(x−1) , and so on. By linearity of expectation, the expected numberof rounds
until all conflicting nodes are eliminated isO(n log x) ≤ O(n log n).

At this point, all nodes that do not have a positive sign must be in state〈0, 0〉−. If we redefineconflicting
to describe these nodes, it is still true that an interactionof a conflicting node with a target node brings the
conflicting node to state〈0, 0〉+, decreasing the number of conflicting nodes. As we discussedat leastn/3
target nodes are still permanently present in the system. Bythe structure of the algorithm no interaction
can increase the number of conflicting nodes, and the system converges when all conflicting nodes are
eliminated. This takes expectedO(n log n) rounds by exactly the same argument as above.

To get the high probability claim, simply observe that when there arex conflicting nodes in the system,
a conflicting node will interact with a target node within3nO(logn)

x rounds, with high probability. The same
applies for the next conflicting node, etc. Taking Union Bound over these events gives the desired result.

C Synthetic Coins
Claim C.1. E[Xi+m | Xi = x] = n/2 + (1− 4/n)m · (x− n/2).

Proof. If two agents both with coin values one are selected, the number of ones decreases by two. If both
coin values are zero, it increases by two, and otherwise stays the same. Hence, we have that
E[Xi+m | Xi+m−1 = t] = (t− 2) · Pr[Xi+m = t− 2] + t · Pr[Xi+m = t] + (t+ 2) · Pr[Xi+m = t+ 2]

= (t− 2) · t(t− 1)

n(n− 1)
+ t · 2t(n − t)

n(n− 1)
+ (t+ 2) · (n − t)(n − t− 1)

n(n− 1)

= t+
2

n(n− 1)
·
(

n2 − 2nt− n+ 2t
)

= t ·
(

1− 4

n

)

+ 2

Thus, we get a recursive dependenceE[Xi+m] = E[Xi+m−1] · (1− 4/n) + 2, that gives

E[Xi+m] = 2 ·
m−1
∑

j=0

(

1− 4

n

)j

+ E[Xi] ·
(

1− 4

n

)m

=
n

2
+

(

1− 4

n

)m
(

x− n

2

)

by telescoping.

D Analysis of the Leader Election Algorithm
Lemma D.1. All nodes can never be minions. A configuration withn−1 minions must have a stable leader,
meaning that the non-minion node will never become a minion,while minions will remain minions.

Proof. Assume for contradiction that all nodes are minions at some time T , and letu be a maximum
(.payoff , .level) pair (lexicographically) among all the minions at this time. No node in the system could
ever have had a larger pair, because no interaction can decrease a pair. The minions only record the values of
such pairs they encounter, and never increase them, so theremust have been a contender in the system with
a payoff and level pairu that turned minion by timeT . Among all such contenders, consider the one that
turned minion the last. It could not have interacted with a minion, because no minion (and no node) in the
system ever held a larger pair. On the other hand, even if it interacted with another contender, the contender
also could not have held a larger pair. Thus, it could only have been an interaction with another contender,
that held the same pair and a larger coin value used as a tie-breaker. However, that interaction partner would
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remain a contender and and must have turned minion later, contradicting our assumption that the interaction
we considered was the last one where a contender with a pairu got eliminated.

By the structure of the algorithm, minions can never change their mode. In any configuration withn− 1
minions, the only non-minion must remain so forever, and thus be a stable leader, because otherwise we
would getn minions and violate the above argument.

Lemma D.2. Assume that the maximum number that the parameterpayoff can hold is
√
m. Then, the ex-

pected number of interactions until all nodes have.mode = tournament or .mode = minion isO(n log2 n).
Moreover, once that happens, with probability at least1− 5/n3, at most12 log n nodes will hold the maxi-
mumpayoff value, which will be at leastlog n/4 and at most16 log n.

Proof. During the first2n interactions, any given agent is expected to interact twice. The probability that
during this period, a given agent interacts more than4 log n times is at most1/n4. Taking an union bound,
all agents interact at most4 log n times with probability at least1− 1/n3.

Let us call the interactions after the first2n therelevantinteractions. Consider the relevant for any fixed
agent. ByTheorem 4.1, during any later interaction, with probability at least1 − exp(−n/4), there are at
leastn/3 and at most2n/3 agents holding each possible coin value. Taking an union bound, this holds for
all of the firstn4 relevant interactions with probability at least1− n4

exp(n/4) . From now on, let us assume this
high probability event.

During any later interaction, with probability at least(n/3 − 1)/n > 1/4 the agent observes0 and
changes itsmode to the tournament. Hence, the probability that it increasesits payoff more than12 log n
times is at most(3/4)12 logn ≤ 1/n4. Taking the union bound over all the agents gives that the increase in
payoffs in the later interactions for all agents are less than 12 log n with probability at least1 − 2/n3. In
total, with probability at least1− 3/n3, all agents will have payoffs at most16 log n.

Since every agent stays inseeding mode for four interactions, we can find at leastn/2 agents, who
move tolottery mode after their first2n interactions. Consider any one of then/2 agents. By assumption,
the agent will have probability at least1/4 of finalizing thepayoff and moving totournament mode. The
probability that the payoff of this agent will be larger thanlog n/4 is thus at least1/

√
n. If the payoff is

indeed larger, we are done, otherwise, we can find another agent among then/2−log n/4whose interactions
we have not yet considered, and analogously get that with probability at least1/

√
n, it would get a payoff at

leastlog n/4. We can continue this process, and will end up with about2n/ log n agents, whose interactions
were completely independent, and because of the bias, each of them had a probability of at least1/

√
n of

getting a larger payoff thanlog n/4. If we described this process as a random variableBin
(

2n
logn ,

1√
n

)

, we

get by the Chernoff Bound that the probability of no node actually getting more thanlog n/4 payoff must
be extremely low (because the expectation is2

√
n/ log n), in particular, lower than1/n3.

Again, considering all the high probability events from above, we know that the maximum payoff in
the system is betweenlog n/4 and16 log n. Consider any fixed payoffk in this interval, and let us say
it is the maximum. Then, any agent that reaches this payoff, has to flip 0, but they might flip1 with
probability at least1/4. Thus, the probability that at least12 log n agents will stop exactly at payoffk is
at most(3/4)4 logn ≤ 1/n4. Taking the union bound over at most16 log n < n payoffs, and the above
high probability events, we get that with probability at most 1− 5/n3, at most12 log n agents will have the
maximum payoff, which will be betweenlog n/4 and16 log n. Next, we look at the expected maximum
payoff.

With probability at most n4

exp(n/4) , the maximum payoff in the system can be as high as
√
m. Otherwise,

all coin flips have the bias in[1/4, 3/4] during then4 later interactions. Moreover, the same argument
as above shows that the probability that the maximum payoff among all agents is larger thank is at most
n · (3/4)k ≤ n · 2−k/3. This means that with extra probability of at most2−n

4/3, the maximum payoff in
the system can be as much as

√
m. When this does not happen and we have proper bias during then4 later
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interactions, the expected maximum payoff is at most16 log n+ n ·∑n4

i=16 logn+1 2
−i/3 = O(log n). Thus,

the expected maximum payoff is actuallyO(log n) +
√
m · (n4 · exp(−n/4) + 2−n

4/3) = O(log n).
Assuming that the maximum payoff isk, the expected number of interactions before every node has

left seeding or lottery mode is of at most2n(k + 4) log n. We can count this as the expected number of
interactions until every node has interactedk + 4 times, as, once that has happened, no node can be in
seeding or lottery mode. The reason is that seeding only lasts four interactions per node, and no node did
more thank interactions in lottery, because then they would have a larger payoff. The expected number of
interactions before every node interacts once is1 + n/(n − 1) + n/(n − 2) + . . . + n ≤ 2n log n. The
expected number of interactions before every node interactsk+4 times is at most the amount of interactions
it would take for every node to interact once, then reset and count interactions until they would all interact
again, etc,k + 4 times, which gives2n(k + 4) log n. If maximum payoff iski with probability pi, then
the expected number of interactions until all nodes are in the tournament or minion mode is then at most
order of

∑

2pikin log n which is the same as2n log n multiplied by the expected maximum payoff, which
we know isO(log n). Thus, we have shown that the expected number of interactions until no node is in the
seeding or lottery mode isO(n log2 n).

Lemma D.3. With probability at least1− O(logn)
n3 , only one contender reaches levelℓ = 3 logn

log 18+log logn , and

for each level up toℓ, it takes at mostO(n · log9 n) interactions before some contender gets to a larger level.
Conditioned on this high probability event, the expected number of interactions before havingn−1 minions
isO(n log9 n).

Proof. By our assumption onm, it holds that m
3 logm ≥

3 logn
log 18+log logn , so this value of level can always be

reached. We will assume the high probability case inLemma D.2, which occurs with probability≥ 1−5/n3.
Hence, we have to prove that the probability that either morethan one competitor reaches levelℓ is at most
2+O(logn)

n3 .
Consider some competitorv which just increased the maximum level among competitors inthe system.

Until some other competitor reaches the same level,v will turn every interaction partner into its minion.
Furthermore, as in epidemic spreading, these minions will also turn their interaction partners into minions
of the highest level contenderv. Let the.payoff , .level pair of this competitor beu. Also, we call a node
whose pair also at leastu anup-to-datenode; the node isout-of-dateotherwise. Initially, only the contender
v that reached the maximum level is up-to-date.

We will show that if in some configurationx < n nodes are up-to-date, after aphaseof 16n(n−1) logn
4x(n−x)

interactions, at leastx + 1 nodes will be up-to-date with probability at least1 − 1
n4 . Up-to-date nodes

may never become out-of-date. On the other hand, an out-of-date node becomes up-to-date itself after
an interaction with any up-to-date node. If we havex up-to-date nodes, in each round, the probability
that an out-of-date node interacts with an up-to-date node increasing the number of up-to-date nodes to
x+ 1, is 2x(n−x)

n(n−1) . To upper bound the probability that such an interaction never happens during a phase of
16n(n−1) logn

4x(n−x) rounds, we can consider a random variableY ∼ Bin
(

16n(n−1) logn
4x(n−x) , 2x(n−x)n(n−1)

)

and establish

that:

Pr [Y ≤ 0] ≤ 2−4 logn <
1

n4
,

An Union Bound over at mostn phases gives that with probability at least1− 1/n3, after at most
n−1
∑

x=1

16n(n − 1) log n

4x(n − x)
≤ 16(n − 1) log n

4

n−1
∑

x=1

(

1

x
+

1

n− x

)

≤ 16n log2 n

rounds, all nodes will have value at leastu. Taking an union bound over all possible levelsℓ < log n, we get
that with probability at least1− log n/n3, once a contender reaches some level, unless some other contender
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reaches the same level within the next16n log2 n interactions, the original node will turn every other node
into minions and become a stable leader.

Once some contender has increased the maximum level, it needs to observe6 log log n+12 consecutive
ones to increase a level. W.h.p, the probability at each iteration is at least(1/2 − 1/16) for each observed
coin, so the probability that a stretch of6 log log n + 12 consecutive interactions results in a level increase
is at leastΘ(1/ log7.8 n). If we consider an interval containingO(n log9 n) interactions. Then, with high
probability, the node will perform a level increase for at least log9 n/ log8 n times during such a stretch,
unless it has already become a minion.

For the rest of the argument, we will bound the probability that any of the other contenders, whose
number is at most16 log n by Lemma D.2, will be able to increment their level during an arbitrary stretch
of 6 log log n + 12 consecutive interactions. This probability will be low, and therefore it is likely that the
process will terminate after a level increase.

More precisely, once a new level is reached after a level increment, the nodes have16n log2 n interac-
tions to increment to the same level, or they will soon all become minions. To do so, they should all have at
least one iteration of observing6 log log n+12 consecutive ones, because all contenders have the maximum
payoff from the first stage; byLemma D.2, the maximum payoff was at leastlog n/4.

Hence, there can be at most16 log n · Θ(log2 n/ log log n) such interaction intervals, with probability
at least1 − 1/n3. Each interaction interval has probability at most(1/2 + 1/16)6 log logn+12 ≤ 1/ log4 n
of success. Hence, by taking sufficiently largen, we can make the expectation of the number of successful
iterations be less than1/ log n divided by a large constant. More precisely, by fixing the constants, we can
show that the probability that even one of the iterations is successful is at most 1

18 logn .
Hence, the probability that there is no second survivor among contenders at each level (which would cor-

respond to a stable leader being elected) is at most1/18 log n, every time the maximum level is incremented.

The probability that this does not happen for allℓ = 3 logn
log 18+log logn levels is then at most

(

1
18 logn

)ℓ
≤ 1

n3 .

On the other hand, clearly since with more than constant probability a single contender remains after
each level, only constantly many levels will be used in expectation. Moreover, as we have seen above, any
contender with the maximum level has at leastΘ(1/ log7.8 n) probability at each interval to increase the
level. Therefore, the maximum level is expected to increaseeveryn log8 n log log n interactions, and the
maximum reachable level should be attained afterO(n log9 n) interactions. The claim then follows.

Corollary D.4. The algorithm converges in expected parallel timeO(log9 n log log n) and with high proba-
bility in parallel timeO(log10 n).

Proof. The combination ofLemma D.2andLemma D.3gives the high probability claim, combined with the
observation that when the second stage of the algorithm starts, all non-contenders become minions within
parallel timeO(log2 n) with high probability, because they get exposed to higher payoff values. The formal
proof of this is exactly the same as the argument inLemma D.3, that shows that once a contender gets
to a new maximum level, the information about it is propagated to the whole system withinO(n log2 n)
interactions with high probability.

To get the bound on expectation, first we sum up the expectations from both stages, and get the dominant
termO(log9 n) parallel time. Then similar to above, we add the expected parallel time after the start of the
second stage to the point when all non-contenders become minions, i.e. when all nodes with less than the
maximum payoff learn about a larger value. This takesO(log n) parallel time due to the following reason.
Call the nodes that know about the maximum payoff value aup-to-date, andout-of-dateotherwise. At time
T , at least one node is up-to-date. Before an arbitrary interaction round where we havex up-to-date nodes,
the probability that an out-of-date node interacts with an up-to-date node, increasing the number of up-to-
date nodes tox+1, is 2x(n−x)

n(n−1) . By a Coupon Collector argument, the expected number of rounds until every

node is up-to-date is then
∑n−1

x=1
n(n−1)
2x(n−x) ≤

(n−1)
2

∑n−1
x=1

(

1
x + 1

n−x

)

≤ 2n log n.
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Finally, we need to incorporate the expected time in the low probability event. Notice that the expectation
in Lemma D.2is not conditioned, so we only need to care about the low probability events that happen during
the second stage. But recall that, during the second stage, non-minions can always eliminate each other in
direct interactions comparing their payoffs, levels, and the coin as a tie-breaker. So, for any given two non-
minion nodesx andy, in every interaction round, there is a probability of at least 1/n2 that they meet, and
one could eliminate each other for certain if they had different coin values. If not, then with probability at
least1/n, one of the nodes, sayx, interacts with some other node in this interaction, and then immediately
afterward, interacts withy, this time with different coin values. Hence, in every two rounds, with probability
at least1/n3, the number of contenders decreases by at least one. Hence, even in the low probability case,
the expectation is at mostO(n3), which does not affect the dominant term of theO(log9 n) time.

28


	1 Introduction
	2 Preliminaries
	3 Lower Bound
	3.1 Preliminaries
	3.2 Technical Machinery
	3.3 The Lower Bound Argument

	4 Synthetic Coin Flips
	5 The Lottery Leader Election Algorithm
	6 The Split-Join Majority Algorithm
	7 Conclusion
	A Lower Bound
	B Analysis of the Majority Algorithm
	C Synthetic Coins
	D Analysis of the Leader Election Algorithm

