DNA Screening Technical Note

Cryptographic Aspects of DNA
Screening

Carsten Baum
Hongrui Cui
Ivan Damgard
Kevin Esvelt
Mingyu Gao
Dana Gretton
Omer Paneth
Ron Rivest
Vinod Vaikuntanathan
Daniel Wichs
Andrew Yao
Yu Yu

This publication is available free of charge from:
https://securedna.org

Cryptographic Aspects of DNA
Screening

Carsten Baum !

Hongrui Cui 2
lvan Damgard 1
Kevin Esvelt 3
Mingyu Gao *
Dana Gretton 3
Omer Paneth3>
Ron Rivest 3
Vinod Vaikuntanathan 3
Daniel Wichs®®
Andrew Yao #
Yu Yu24

1 Aarhus University

2Shanghai Jiao Tong University
3Massachusetts Institute of Technology
4Tsinghua University

>Northeastern University

Institute for Interdisciplinary Information Sciences
Tsinghua University

This publication is available free of charge from:
https://securedna.org

Jan 2020

DNA Screening Technical Note
Tech. Note , 27 pages (Jan 2020)

This publication is available free of charge from: https://securedna.org

Foreword

To prevent the construction of hazardous biological agents from synthetic DNA without
disclosing information on potential bioweapons, a screening method that compares query
sequences against a database of potential bioweapon sequences must achieve some level
of provable security guarantee. To encourage universal adoption, the privacy of clients’
queries should be protected. Thus, we describe in this document the cryptographic aspects
of the screening protocol we propose. While we will provide characterization of security
guarantees and rigorous mathematical proofs, this document also includes explanations
concerning the reasoning behind our choice of cryptographic components and security
guarantees for an audience without an extensive background in cryptography. Neverthe-
less, familiarity with basic mathematical notations is helpful throughout this report.

Abstract

Securely screening synthetic DNA orders is crucial to minimizing the number of individ-
uals and groups capable of accessing biological weapons of mass destruction, but it must
be accomplished without disclosing information on potential bioweapons. Accomplishing
this goal requires: 1) screening orders against a database of hazardous sequences, whose
secrecy should be protected at the highest possible level while preserving usability; 2)
protecting the privacy of the client synthesizer’s queries. In this document, we propose
a cryptographic screening protocol that accomplishes these objectives, providing accurate
complexity-theoretical assumptions, precise security guarantees, and rigorous mathemati-
cal proofs. In addition to technical details, we also explain the reasoning behind our proto-
col design for the benefit of non-cryptographers.

Key words

DNA Screening, Cryptography, Multiparty Computation.

Table of Contents

Introduction
1.1 Motivation
1.2 Problem-Specific Challenges
1.3 Formulation
1.4 Technical Details of the Implementation
1.5 Other Cryptographic Solutions
1.5.1 PSl-based Solutions
1.5.2 Oblivious RAM

The Screening Functionality
2.1 Notations
2.1.1 Mathematical Symbols
2.1.2 Parties
2.1.3 Provable Security
2.2 Security Requirement and Ideal Functionality
2.2.1 Initialization
2.2.2 Adding a New Sequence
2.2.3 Making a Query
2.2.4 Refreshing Key Shares

The Screening Protocol

3.1 The Oblivious Threshold PRF Protocol
3.1.1 PRF Key Generation
3.1.2 Oblivious Evaluation of the PRF
3.1.3 Refreshing PRF Key Shares

3.2 Screening Protocol in the .%,+-hybrid Model
3.2.1 Initialization Protocol
3.2.2 Adding New Sequence Protocol
3.2.3 Querying Protocol
3.2.4 Key Share Refreshing Protocol

Security Analysis

Performance Evaluation
5.1 Testing Setup
5.2 Performance Evaluation

Quantum Resistance

6.1 Rationale for Exploring Quantum-Resistant Approaches
6.2 PRF with Information-Theoretic Security.

6.3 PRF Evaluation using MPC.

Splitting the Database
7.1 Rationale
7.2 Secret-Sharing the Database

il

O 00 I A NN BB W -

—_ —
S O o

e e e T T e T e T e S O =Y
NNk WD NO RO

[
R

NN N
D — =

NN NN
DWW

NN
AN O™

References

List of Tables

Table 1 The choice of parameters for the OT-based PSI Protocol from [12]
Table 2 Theoretical Curve Performance
Table 3 Experimental Curve Performance

List of Figures

Fig. 1 The Initialization Protocol ITj;

Fig.2 The New Sequence Adding Protocol ITy4q
Fig. 3 The Querying Protocol ITgyery

Fig. 4 The Key Share Refreshing Protocol Iiefresh

il

26

22
23

15
16
17
18

1. Introduction

This technical note provides a detailed but non-specialist-friendly presentation of the DNA
screening protocol, including a brief note on its motivations, a formal description of the
protocol, and some experimental results on a preliminary implementation.

We will begin by presenting the cryptographic formulation of DNA screening, followed
by a high-level idea of the current version of screening protocol. We also include some
preliminary comparisons between different cryptographic techniques and explain why the
project chooses the current version as its privacy-enforcing means.

1.1 Motivation

While cheap, accessible DNA synthesis has revolutionized molecular biology since its first
practical availability in the early 2000s, it also presents a serious risk to the health and
safety of people everywhere. Accidental or malicious use of DNA synthesis to create self-
replicating pathogens could lead to global pandemics. It is imperative to introduce an
effective screening system for all DNA synthesizers that checks sequence orders against a
database of known hazardous sequences to prevent users from “printing out” destructive
bioweapons. The global hazard database should be up-to-date, secure against attackers
seeking to learn its contents, and capable of keeping screened sequences confidential.

Present DNA screening efforts are slow, expensive, and suffer incomplete adoption
among DNA providers. Much of the time and money consumed by today’s DNA screening
protocols is spent on “fuzzy matching” between orders and hazard sequences. In contrast
with exact-match screening, which concerns whether a sequence appears in its entirety in
a database, fuzzy matching assesses the degree of similarity between a query sequence
and a database. In screening protocols that use fuzzy matching, a threshold of similarity is
established for DNA sequences that are deemed too close to hazards. Due to the high degree
of variability among DNA sequences, even those that have the same biological function, it
is widely assumed that this inexact matching is critical to catch subtle variants on known
hazards.

However, fuzzy matching comes with costs that make it untenable as a candidate for
global screening. Many innocuous sequences look similar to parts of hazards, leading them
to be identified incorrectly as malicious, an event we refer to as a “false positive.” All false
positives produced by modern screening systems must be forwarded to a human expert
who can examine the sequences to determine whether they are dangerous. Since nearly all
synthesis orders are not bioweapons, this expert intervention is almost completely wasted
effort. Furthermore, screening protocols with a human component cannot scale to meet the
demands of an ever growing global DNA synthesis market.

Instead, we phrase DNA synthesis screening as an exact match problem between short
(e.g. 42 base pair) windows selected from the orders and the hazard sequences. These
windows are constant-length strings of the DNA bases A, T, C, and G. If a small sequence
window from an order exactly matches some window from a hazard, the order is not syn-
thesized. To contend with variability in genetic sequences, we include a selection of likely

variations on these windows in the database. The effectiveness of this approach is sup-
ported by the observation that all pathogens have many critical regions in their genomes,
and that extensive changes in all such regions simultaneously will almost certainly yield an
inactive agent. As we will demonstrate, an exact-match screening system can be fast, fully
automated, and secure. Exact-match screening can also keep the rate of false positives low
enough that global adoption is feasible.

In this document, we examine the DNA screening problem in the exact-match set-
ting. Details on the sequence, window, and variation selection strategies used to construct
the database are not discussed, as the cryptographic treatment is independent of any such
choices.

1.2 Problem-Specific Challenges

As a query of the form, “Does any sequence window in the order appear in the hazard
database?”, exact-match DNA screening amounts to set membership testing, where both
the query and the database are private. Private set membership testing is an extensively
studied topic in cryptographic literature that already has solutions under a variety of privacy
constraints. Nevertheless, we found that no single existing technique will overcome the
unique challenges posed by the DNA screening problem due to the precise details of its
intended application. These challenges are:

* Small maximum element size. Short sequence windows, which are the elements of
the database set, are limited in length. This constraint makes it extremely difficult
to maintain database privacy, given arbitrary set membership queries, because it may
be possible to guess short sequences.

The window size limitation comes from the physical characteristics of DNA.
Long strands of DNA are routinely assembled from short overlapping pieces
by ligation. Since exact-match screening cannot screen sequences up to, but
short of, the window size in length, the window size must be short enough that
unscreened pieces cannot be assembled. For DNA, this limit is around 50-60
base pairs due to thermodynamic properties of DNA binding. Sequence windows
must not exceed this limit.

The challenge could be restated as: The input space has low entropy.

* High query rate. The present global synthesis market is estimated at around a tril-
lion bases per year. By 2029, queries are expected to exceed 10! queries per year,
or over 10 million per second. Many orders consist of quasi-random sequences for
DNA libraries.

This challenge has two main repercussions:

1. Much of the input space of short windows is effectively searched each year,

raising the minimum false positive rate.

2. The performance demands on such a global networked screening system
are immense, requiring many servers and robustness to server failure.

To ensure that the servers hosting the hazard database cannot be hacked to obtain its
dangerous contents, we store the database as hashes, or results of a pseudorandom function
(PRF) applied to the hazard sequences.

The only way to address the low entropy of the input space to the PRF is to limit
evaluation of the PRF itself. We accomplish rate limiting by requiring the participation of
multiple trusted third parties each time the PRF is evaluated.

To enable the required level of distribution and robustness to server downtime, we re-
quire some, but not all, of the trusted “key-holder” third parties to participate, a property
known as “threshold evaluation.” We settled on the distributed pseudorandom function as
the core component.

Our method is private in that no party, whether the querier, database holder, or key-
holder, ever learns the input sequence strings for the query or the database elements, a
very strong property. It has imperfect privacy in a strict cryptographic sense, in that it
is possible for a server to deduce that the same query was executed twice by a particular
client, a relatively weak concession that we make for performance reasons.

In the rest of this section, we first fix the notations to be used in this document. Then,
we briefly summarize the formal security requirements for DNA screening, which frames
further specification of the ideal functionalities to be realized with provable security. Fi-
nally, we provide rationales for our choices of cryptographic building blocks wherever
these diverge from established norms, mainly due to scalability issues.

1.3 Formulation

At the core of the DNA screening problem is the private membership query, in which a
server P® maintains a database D and a client P¢ makes queries of the form “Is x in D!,
with the privacy of both server and client respected. In addition to P* and P¢, our solution
additionally includes some key-holders P¥" to facilitate an efficient solution.

In this framework, a solution can be specified by:

1. An oblivious distributed pseudorandom function F (DPRF) where the key-holders
P*" first generate a shared key k = (ky,kz,...,ky), so that F;(x) can be computed by
the client P¢ when at least 7 key holders (z being a security parameter) supply certain
information a(k;,x) to it.

2. A two-party protocol P between client P¢ (also known as the receiver) and server P*
(the sender) for membership query.

IReaders interested in technical details can refer to Sec. 2 for a complete list of notations in this report.

Initially, P*" generate a shared secret key k, and then set up a database D to contain all

Fi(y) for the known harmful strings y (in encrypted form). For P€ to ask a query x, it first
interacts with ¢ keyholders P¥" to obtain Fj(x), and then uses the two-party protocol P to
obtain the answer to whether Fj(x) is in D.

1.4 Technical Details of the Implementation

We begin with a high level view of our initial implementation, which uses a highly effi-
cient protocol with imperfect privacy of client queries. We then describe why the approach
is superior for the purpose of DNA synthesis screening to alternatives based on different
paradigms.

A basic model:

1. For the DPRF, we use the Naor-Pinkas-Reingold [10] scheme which is based on the
hardness assumption of DDH (Decisional Diffie-Hellman). The DDH assumption is
well-studied and used in many deployed cryptographic systems.

2. For security and privacy, we represent each string x by a one-way hashed image H (x).
The membership query simply does a binary search for F(H (x)) against the database
containing Fy(H(y)) of all known harmful strings y.

Two remarks:

1. It is assumed that H(x) is a random oracle. Even then, the client’s privacy is not
perfect, as the server can detect when two queries x, y are the same (as H(x) = H(y)).

2. This DPREF is not quantum resistant. There exist DPRFs designed for post-quantum
security, but they are presently too inefficient for practical use. We discuss our ap-
proach to making the system quantum-resistant in Sec. 6.

We refer to Sec. 2 through Sec. 5 of this report for the details about the preliminary
design of the screening protocol.

1.5 Other Cryptographic Solutions

We believe the privacy tradeoff of revealing identical queries is necessary for an application
of our scale: we estimate that the size of a single client request and database size are
around 10 and 10° entries respectively. Our approach to DNA screening can be viewed
as private membership testing or, more generally, private set intersection(PSI), which has
received considerable attention in the field of practical secure multiparty computation. As
an alternative to PSI, one could also employ a technique which is called oblivious RAM
(ORAM). We will now survey the state of both PST and ORAM and point out why either of
these methods, albeit providing stronger security guarantees, would lead to an unacceptable
performance deterioration.

1.5.1 PSI-based Solutions

A Private Set Intersection (PSI) protocol runs between two parties which each hold sets
and securely computes the intersection of these two sets without revealing the any values
outside of the intersection to each other. It is immediate that such a PSI protocol implies a
privacy-preserving screening protocol. By running the PSI protocol, the client learns if his
query intersects (matches) with (any record in) the database or not. By its definition using
such a PSI protocol as a building block would additionally hide repeated queries.

There is a rich literature about the PSI problem (in the semi-honest setting in particular),
e.g., the state-of-the-art FHE-based PSI [3] in the asymmetric setting and OT-based PSI
in the symmetric setting [12], where the receiver’s input set is significantly smaller and
roughly the same as the sender’s input set respectively. Our scenario is clearly asymmetric
since the server’s database stores up to N = 10 sequences and the client makes a single
query each time. In order to better amortize the cost, we assume that each client makes 10°
queries per minute (the input size is 10%). The length of the sequence is 57 base pairs (114
bits). We analyze the cost of the two PSI protocols in this setting.

OT-based PSI protocols. We follow the OT-based PSI protocol in [12] with the concrete
parameter choice in Tab. 1. Altogether, the sender and the receiver perform (b + s) invoca-
tions of /-bit 29-choose-1 random oblivious transfer(OT) protocol instances. In addition,
the server sends (k- N +s-N) -1 bits to the receiver. Using the OT extension protocol of
[8], this translates to the receiver sending 424 - (b + s) bits to the server. Thus, in terms of
communication cost, the amortized communication cost per query is about 400 MB. As for
the computation cost, the server needs to perform 5,000,000 PRF evaluations per query.
Even on a high-end server CPU, one can easily expect that these PRF queries would take
approximately 1s to complete using SHA-256 and not considering the cost of memory ac-
cesses?. We believe that a communication complexity of 400 MB for a single request is too
high for any practical deployment.

Table 1. The choice of parameters for the OT-based PSI Protocol from [12]

Symbol | Value | Meaning
M 10° Set size of the receiver
N 10° Set size of the sender
b 2.4 x 10° | Hash table slot number
k 2 Hash function number
s 3 Cuckoo hashing stash size
l 77 Mask length
o 58 Item representation length
A 30 Hashing failure parameter

2Compare e.g. to [6] for a single thread on a modern AMD EPYC 7702 CPU at 2000 MHz for 64 byte blocks.

5

FHE-based PSI Protocols. The PSI protocol from [3] uses fully homomorphic encryp-
tion and cuckoo hashing, which is relatively efficient when the receiver’s set size is sig-
nificantly smaller than the sender’s. Based on the performance evaluation in [3], we use
linear interpolation to estimate the performance for our setting. In particular, when the
receiver’s set size is M = 10% and the sender’s set size is N = 10°, the sender’s processing
time would be more than 5 hours, and the total communication cost would be around 74
MB. In particular the running time will be a bottleneck of this approach.

1.5.2 Oblivious RAM

Oblivious RAM protocols allow a party to securely read information from and store data in
an database held by a server (or a number of servers). For this server it will be impossible
to identify the actual read/write pattern that the client has performed. A recent work by Do-
erner and shelat [5] gives a novel design called FloRAM that performs membership query
as a binary search on ORAM quite efficiently. Experimentally, it clocks per query 0.79s
(for N = 219), 2.04s (for N = 229), and 14.37s (for N = 2%) per membership query. Simi-
lar to the PSI approaches this technique would require a substantial amount of fundamental
research before it would support the workload that we anticipate.

2. The Screening Functionality

In this section we introduce the mathematical formulation of the efficient (but with imper-
fect privacy) screening protocol, which is presented in the form of ideal functionalities.
These functionalities capture the actions of a virtual trusted third party that a cryptographic
protocol seeks to simulate. We first list all the notations to be used in this report in Sec.
2.1, and then present the functionalities in Sec. 2.2.

2.1 Notations

This section summarizes all the symbols we use in the white paper.

2.1.1 Mathematical Symbols

We use [n] to denote the set of integers {1,...,n}. S = (x1,...,x,) denotes an ordered list,
S[i] refers to the i entry of S, and |S| denotes the number of entries in S. In particular, we
use DB to denote the set of all database entries.

We use Z, to represent the set {0,1,...,¢— 1}, and we denote by x & S sampling
an element from the finite set S uniformly at random. We use poly(-) to refer to some
polynomial function.

We use k to denote the security parameter. Let p and ¢ be two prime numbers such
that the length of ¢ is at least k bits and ¢|p — 1. Let G denote a multiplicative subgroup of
Z, of order g, and we use g to denote a generator in that subgroup. The Decisional Diffie-
Hellman assumption for group G holds if for all probabilistic polynomial-time algorithms

D, the distinguishing advantage
Prla,b & 7, D(g,8% ¢",8") = 1] — Prla,b,c & Z, : D(g,5",g".g°) = |
rla,b < Z,:D(g,g",8",8") = 1] = Prla,b,c < Z,;:D(g,8° 8", 8°) = 1]

is negligible in the security parameter K.

We use “sequence” to denote a string of base pairs which make up a biological DNA
sequence. We denote by Q the genetic alphabet Q = {A,T,C,G}, and we use |x| to denote
the length of a sequence x. Our protocol mainly considers a sequence of fixed length w,
and we use Q" to denote the set that consists of all sequences of length w.

We use H to denote a random oracle that maps any sequence of length w to a group
element in G. A random oracle is a popular cryptographic heuristic that emulates a truly
random function and is typically instantiated by a cryptographic hash function.

2.1.2 Parties

Since screening is essentially a multi-party computation task, we need to model different
roles in screening as separate parties. There are four types of parties in our protocol.

Clients. Synthesizers who query the database with their input to find out whether it
matches any of the entries in the database or not.

Server. Cloud servers that hold a database of encrypted DNA sequences.

Key holders. Parties that hold the key shares of the main key.

Administrator. The trustworthy party who owns the entries in cleartext. To add an
entry to the database, he first interacts with key holders to get the entry encrypted
and then stores the encrypted value in the database.

We can further divide clients into two groups: 1) large commercial DNA synthesis
providers (e.g. BGI) who typically share dedicated and fast network connection with other
parties (i.e. the server and key holders); 2) desktop clients who make queries less frequently
with restricted bandwidth connections and are more likely to be compromised. We model
client, server, and key holders as semi-honest for now, and extend our protocol to handle
malicious clients (drawing from existing work on maliciously secure oblivious DPRFs) in
the next version.

We use superscript to distinguish the roles of the parties, and subscript to index different
parties of the same class. We use P¢ to denote client, P* to denote the server, P{-‘h to denote
key holders and P%™ to denote the administrator. Throughout this note, we restrict our
discussion to the setting of one client, one administrator, one server and n key holders,
although our construction can be easily extended to the multiple server setting.

The server holds a database where all entries are encrypted under the main secret key.
As a slight abuse of terminology, encryption refers to the evaluation of a pseudorandom
function (under the main secret key) on the cleartext to produce the corresponding output.

Strictly speaking, it is not an encryption as its inverse operation, decryption, may not exist
and neither is it needed in our protocol. In order to protect the main key, we run Shamir’s
(t,n)-secret sharing among the n key holders, where any ¢ (or more) parties can efficiently
reconstruct the secret key from their shares, and any less than ¢ parties cannot. Further,
the administrator (or client) runs a protocol with any ¢ key holders in an oblivious manner
such that he gets his input encrypted under the main key without revealing any information
about his query to the key holders. The administrator (resp., client) then adds his encrypted
entry to the database (resp., runs an exact matching with the database).

2.1.3 Provable Security

Following the conventions and notations of multiparty computation, we use .# to denote
an ideal functionality to be realized and use II to denote a multiparty protocol. We use
subscript to further specify the functionality or protocol.

We consider security against a static, semi-honest adversary. More specifically, the ad-
versary chooses the parties to corrupt prior to the protocol execution and the corruption
status does not change throughout the course of protocol execution. The corrupted par-
ties follow the protocol specification exactly. However, the adversary tries to learn more
information than allowed by looking at the transcript of messages that it received and the
internal state of corrupted parties.

A protocol that is secure in the presence of semi-honest adversaries guarantees that
there is no inadvertent leakage of information; when the parties involved essentially trust
each other but want to make sure that no record of their input is found elsewhere, then this
can suffice. Beyond this, protocols that are secure for semi-honest adversaries are often
designed as the first step towards achieving stronger notions of security.

2.2 Security Requirement and Ideal Functionality

To support efficient and secure screening, we need four ideal functionalities.

Initialization. Register and assign key shares to all the key holders and initialize the
database;

Adding a new sequence. Add a new sequence to the database;

* Querying a sequence. Decide whether a sequence being queried exists in the database
or not;

Refreshing key shares. Update the key shares of the key holders.

Notice that these ideal functionalities do not correspond to the actual operations exe-
cuted by the protocol, but instead they specify the functionalities to be realized. As new
sequences will be added to the database and possibly queried subsequently, the function-
ality is by nature reactive, which means that a trusted third party must maintain state in
order to realize this functionality. Therefore, we consider the security of a session where

8

the initialization functionality is first invoked followed by addition, querying, and key share
refreshing operations. Indeed, the sid field in all the messages presented below is used to
distinguish different sessions.

In the following, the server keeps two lists S; and S5 that are of the same size at all
times. S; keeps a record of the sequences that have appeared (either queried by client or
input by the data owner) in the view of the server, while S, indicates whether such sequence
has been actually added or not. More specifically, let i be an index in S| and S», then
(S1[i] = x, S2[i] = 0) indicates that x has already been queried, but it does not exist in the
database, whereas (S;[i] = x, S>[i] = 1) indicates that x has been added. While seemingly
unnecessary, the former case is useful in the simulation-based proof (to simulate queries
in a consistent manner). We use “append” to denote the operation of adding an element (a
sequence for S or a bit for $7) to the end of a list.

2.2.1 Initialization

The key holders and the server participate in the initialization functionality .%,;;, which
proceeds as follows:

Functionality .Zjp;

1. Upon receiving (init,P¥" sid) from P for all i € [n], and (init, P%,sid) from the
server, the functionality chooses a new key id kid and record (sid,kid,S; = (),S» =

0)-

2. The functionality sends to all key holders their respective (init.receipt, Pi.‘h, sid, kid),
and to the server (init.receipt, P*, sid).

2.2.2 Adding a New Sequence

The administrator, server and key holders participate in the new sequence adding function-
ality .%,4qq, which proceeds as follows:

Functionality .7 ,4q

1. Upon receiving (add,P%™ sid, x) from the administrator, (add, P, sid,kid) from ¢
different key holders, and (add, P*,sid) from the server, the functionality checks if
sid and kid agrees with the stored (sid, kid,S;,S>) pair. Otherwise, it terminates and
outputs ‘1’.

2. If x € S, the functionality appends x to Sy, and 1 to S,. If x € S| and S,[i] = 0, where
i is the index of x in S}, it sets Sp[i] to 1. It then sends (add.receipt, P¥" sid) back
to the key holders, (add.receipt,P?,sid,i) to the server, where i is the index of the
sequence x in Sy.

2.2.3 Making a Query

We consider the querying functionality, which involves a client, a server and any ¢ key
holders. The querying functionality .%query is described below, which preserves the input
privacy by definition.

Functionality .7 query

1. Upon receiving (query, P¢, sid, x) from the client P¢, (query, P*, sid) from the server,
and (query, P¥" sid, kid) from t key holders, the functionality checks whether all the
(sid,kid) pairs match with the stored (sid, kid,S;,S) pair. Otherwise, it terminates
and outputs ‘1’.

2. It then checks if x appears in the set S| or not. If not, it appends x to S| and O to S,.

3. Finally, the functionality sends (query.receipt,P¢,sid,S;[i]) to the client,
(query.receipt, P sid,i) to the server and (query.receipt, Pfh,sid) to the key
holders, where i is the index such that S [i] = x.

2.2.4 Refreshing Key Shares

In order to achieve proactive security, we refresh the key shares periodically to mitigate the
risk of leaking ¢ or more key shares in a single epoch, compared to the case with no time
limit at all (where no key share refreshing is in place). This operation is formally captured
by the key refreshing functionality .% cfesn, Which proceeds as follows:

Functionality .Z efresh

1. Upon receiving (refresh, PX" sid, kid) from all n key holders, and (refresh, P*, sid)
from the server, the functionality checks whether all the (sid, kid) values match with
the stored (sid, kid) value. If not, it outputs ‘L’ and terminiates.

2. It chooses an unused key id kid’, and updates (sid,kid,S;,S,) to (sid,kid',S,S>),
and then sends (refresh.receipt,P¥" sid kid’) to the key holders, and
(refresh.receipt, P*, sid) to the server.

3. The Screening Protocol

In this section we present the screening protocol. We first introduce a helper function-
ality %, for oblivious threshold evaluation of a pseudorandom function and a protocol
that implements this functionality in the semi-honest model. The screening protocol is
then introduced in the .%,+-hybrid model, which facilitates the modular presentation of the
protocol and as well as security analysis.

10

3.1 The Oblivious Threshold PRF Protocol

First we present an ideal functionality that defines the oblivious threshold evaluation of
a pseudorandom function. The pseudorandom function we consider here is a variant of
(with minor adaption to) the Naor-Pinkas-Reingold PRF introduced in [10]. The PRF F :
Zg x Q" — G is defined as

F(a,x) = fo(x) = H(x)%,

where G is a multiplicative group of order g used in the DDH assumption, and H is a
random oracle that maps a sequence to a group element.

Two types of parties participate in this protocol, namely the key holders Pfh and a
receiver P". For convenience, we assume that the key holders in the protocol are the same
as those in the screening protocol and thus inherit the notations for the key holders. Each
key holder holds his respective (¢,n)-Shamir secret share of the PRF master key, and the
receiver evaluates the PRF on his input under the master secret key by interacting with ¢
key holders.

The functionality consists of three functions, the PRF secret key generation, oblivious
evaluation of the PRF under the secret key and refreshing the key shares of key holders.

Functionality .7 ¢

The functionality keeps a mapping F that maps sequences to elements in G. Initially, it
sets F' to an empty mapping.

 Upon receiving (gen, sid, Pﬁ-‘h) from all key holders, the functionality chooses a new
key id kid and sends (gen.receipt, sid, P*" kid) to Pf.‘h. It ignores any subsequent calls

l
under the same sid.

* Upon receiving (eval,sid,Pf?jh,kid) from ¢ distinct key holders P",... ,P¥ and
(eval,sid,P",x) from the receiver, the functionality checks if x appears in F. If
x has already been added to F, let y be the corresponding value in F (i.e., y =

F(x)). Otherwise, it samples y & G and adds (x,y) to F. The functionality sends

(eval.receipt, sid, P¢,y) to the receiver, and (eval.receipt, sid, Pf‘h) to the 7 key hold-
J

ers.

* Upon receiving (refresh, sid, Pfh, kid) from all key holders, the functionality samples
an unused key id kid' and sends (refresh.receipt, sid,P¥" kid') to the respective key
holders.

We present a protocol Iy that securely computes the functionality .7, in the semi-
honest model. Since the functionality consists of key generation, evaluation and refreshing,
we present three sub protocols accordingly.

11

3.1.1 PRF Key Generation

The key generation protocol I, .gen uses the additive homomorphic property of Shamir’s
(t,n)-threshold secret sharing.

PRF Key Generation Protocol IT;f.gen
 Parties: All key holders P’l‘h, .., PKR

» Common Parameters: Group description (G,q,g).

1. Round 1:
Each key holder P¥" generates a uniformly random (r — 1)-degree polynomial in

Zg[x]/(x" + 1). Specifically, for i € [n], P¥ chooses a; & Z4 for each j € [0, — 1],
and computes

1

filx) =aio+ai1x+...+ai,—1xX~" modg.

Then, each P¥* computes and sends f;(j) to every other P’]?h for j € [n].

2. Output:

Each key holder Pﬂ-‘h now has f;(i) for all j € [n] and thus he computes and stores
o; = Y5, fj(i), which corresponds to the evaluation of the following function on
input i:

1

709= % i) = Yot

——
=q

n n
aiix+...+ Zaw_l)f*l mod g .
=1 i=1

This jointly forms the (¢,n)-secret sharing of the uniformly random key ¢ =Y | a; 0
mod ¢, namely the constant term of the above polynomial.

3.1.2 Oblivious Evaluation of the PRF

In subprotocol Ipyfeval, the receiver first computes H (x) and masks it by raising it to a
random power f. It then sends this masked value H(x)? to ¢ key holders Pf?lh e Pﬁh. Each

such key holder computes its respective H (x)ﬁ %j where o ;18 Pi-‘jh’s key share. On receiving
the computed values from the 7 key holders, the receiver outputs

mod g

, B
fa(x) = (HH(x)ﬁai‘jlij>)
=

for the appropriate Lagrange coefficient A; ; such that Z’jZI Ai ;0i; = o modgq.

12

Oblivious PRF Evaluation Protocol ITp,f.eval
* Parties: 1 key holders Pflh e, Pfih (1<i; <...<i; <n)and receiver P".

« Common Parameters and Oracle: Group description (G, g, g) and a random oracle
H:Q0"—G.

* Internal State: For each key holder Pf-‘jh (1 < j <), the state information is his share
Qi (of the PRF secret key).

 Input: The receiver P’s private input x.
 Output: The receiver outputs y = fy ().

1. Round I:

The receiver chooses a random element from the group Z,, i.e. 8 & Zqg, raises H(x)
to the power of 8, and sends this value to the key holders P, ... PA.

2. Round 2:

Upon receiving the value H (x)ﬁ, the key holder Pﬁ-‘jh raises it to the power of @;; and
sends this value back to the receiver.

3. Output:

Upon receiving the value from ¢ key holders, the receiver computes

mod ¢

t B!
falx) = (Ijlmx)’*“v%) ,

where 7L,-J. is the appropriate Lagrange coefficient such that 23:1 7L,-j @, =a modgq.”
and outputs fy(x).

“Note that the values of coefficients {l,'j } jel) actually depend on the subset of key holders participating in the
PRF evaluation protocol, but they should be known to the receiver who chooses the subset of key holders.

3.1.3 Refreshing PRF Key Shares

In order to achieve proactive security, the key shares need to be “refreshed” periodically,
which is achieved by the key share refreshing protocol It refresh- The protocol re-randomizes
the shares of the key holders by generating a new random polynomial with zero constant
term (but uniformly random values for other terms), and masking the original polynomial
with the new one.

13

Key Share Refreshing Protocol It refresh
« Parties: All n key holders P¥ ... Pk,

* Internal State: For the key holders, the state information is their respective shares
o; of the PRF key o for i € [n].

« Common Parameters: Group description (G, q,g).
* Outputs: Each key holder’s new share ¢ of the master PRF secret key o.
1. Round 1:

Each key holder Pfh generates a uniformly random (¢ — 1)-degree polynomial with

constant term 0 in Z4[x]/(x" + 1). Specifically, for i € [n], P¥" chooses a; ; & Zy for
J € [t — 1], and computes

filx) =ai1x+... -l-ai,,,lx’_] mod g.
Then, each key holder Pf-‘h computes and sends f;(j) to P’;h for j € [n].

2. Output:

Upon receiving £;(i) for every j € [n], P computes o] = o+ Y5 fi(i) modg,
and produces it as output.

3.2 Screening Protocol in the .7,+-hybrid Model

Now we present the screening protocol in the .7, ¢-hybrid model, which consists of the
following sub-protocols, namely database initialization, adding a new entry to the database,
making database queries and refreshing key shares.

3.2.1 Initialization Protocol

The initialization protocol IT;,;; implements the functionality .%;,;;, and is executed among
all key holders and the server. The protocol is explained in detail in Fig. 1.

14

Initialization Protocol ITjy;¢
* Parties: All n key holders P’fh, e Pﬁh and the server P*

* Oracle: The ideal functionality .7 .

1. Round I:
Each key holder Pﬁ-‘h sends (gen, sid, Pf‘h) to the functionality 7.

2. Output:

Upon receiving the response (gen.receipt, sid, Pé‘h,kid), key holder Pfh outputs kid.
The server sets up two empty lists S1,5, = ().

Fig. 1. The Initialization Protocol ITjp;

3.2.2 Adding New Sequence Protocol

Adding new sequence involves evaluating the pseudorandom function (under the main se-
cret key) on the sequence to be added, and storing the encrypted value in the database. The
detailed process is explained in Fig. 2. Note that this sub-protocol involves only ¢ key
holders, the administrator and the server. The protocol follows a two-step process: the first
step is an oblivious evaluation of the pseudorandom function (by invoking the ideal func-
tionality .%,,f) between the administrator Pdm and t key holders where the administrator
plays the role receiver in .#s. Then the administrator sends y (the result returned from
Zpit) to the server P*, who stores it in the database.

15

Add New Sequence Protocol 11,44

* Parties: ¢ key holders Piflh, e Pi'(,h (1<i; <...<i; <n), the administrator P%“" and
the server P°.

* Internal States: For the server, the state information is the lists S;,S;. For the key
holders, the state information is the key id kid.

* Input: For the administrator, the private input is the sequence x to be added.

* Oracle: The ideal functionality .7 .

1. Round I:
Key holder Pfjh sends (eval, sid, Pf-‘jh, kid) to ideal functionality ., and the adminis-
trator P44™ gends (eval,sid, P94™ x) to the ideal functionality Fprf-

2. Round 2:

Upon receiving the response (eval.receipt, sid, P%™ y) from the ideal functionality,
the administrator P%" sends y to the server P.

3. Output:

Upon receiving y from the administrator, the server searches in Sy for y.

- If y € Sy, let i be the index such that S;[i] = x, then if S;[i] = 0, the server sets
Sy[i] = 1.

- If y ¢ Sy, the server appends y to S; and 1 to S5.

Fig. 2. The New Sequence Adding Protocol IT,4q

3.2.3 Querying Protocol

The querying protocol involves a client, ¢ key holders and the server. The protocol is
similar to the two-step new sequence adding protocol except that this time the client acts
as the receiver as in the ideal functionality .7 in the first step and acquires y (the result
returned from .%p¢). Then, it sends y to the server, who checks whether the received value
is in the database or not. Finally, the server sends to the client a Boolean value indicating
whether the matching query exists or not.

16

Query Protocol ITgyery

Parties: ¢ key holders Pﬁ-‘lh, e, Pih (1 <i;<...<i; <n),the server P* and the client
Pe.

Internal States: For the server, the state information is the lists S;,S,. For the key
holders, the state information is the key id kid.

Private Inputs: For the client, the private input information is the sequence x to be
queried.

Oracle: The ideal functionality .7 pf.

Output: The client outputs a bit b indicating whether x is in the database or not.

. Round 1:

Key holder Pfjh sends (eval, sid, Pf.‘jh, kid) to ideal functionality .7 and the client P
sends (eval, sid,P¢, x) to the ideal functionality .Z .

. Round 2:

Upon receiving the response (eval.receipt, sid, P¢,y) from the ideal functionality, the
client P¢ sends y to the server P°.

. Round 3:

Upon receiving y from the client, the server searches in S; for y.

- If y € Sy, let i be the index such that S;[i] =y, the server sets b = S,[i].
- If y ¢ Sy, the server appends y to S| and O to S;, and sets b = 0.

The server sends b to the client.

Output:

Upon receiving b from the server, the client outputs b.

3.24

Fig. 3. The Querying Protocol Igyery

Key Share Refreshing Protocol

In order to achieve proactive security, the key shares need to be “refreshed” periodically,
which is achieved by the key share refreshing protocol. Now that the ideal functionality
Z it already supports key share refreshing operation, this protocol simply invokes it. The
details of this protocol is specified in Fig. 4.

17

Key Share Refreshing Protocol Il efresh
« Parties: All key holders P, ... P,
* Internal States: For the key holders, the state information is the key id kid.

* Oracle: The ideal functionality .7 .

1. Round 1:
Each key holder P sends (refresh, sid, P¥" kid) to the ideal functionality P ot

2. Output:

Upon receiving (refresh.receipt, sid, P, kid') from Fpref» key holder Pfh updates its

l
key id from kid to kid'.

Fig. 4. The Key Share Refreshing Protocol I efresh

4. Security Analysis

We analyze the security of our screening protocols presented in Sec. 3. In particular, we
prove that in a session where the initialization protocol is called first followed by subse-
quent invocations to all other sub protocols, the four sub-protocols securely compute the
corresponding ideal functionalities (defined in Sec. 2.2) in the semi-honest model. In cryp-
tography, the simulation paradigm (see a tutorial in [9]) comes in handy to argue security
statement such as “the adversary learns no substantial information beyond knowledge K,
by showing that there exist efficient simulators who take as input K and produce a fake
view, which looks indistinguishable from the real view of the adversary in the protocol.
More specifically, we prove that in such a session, the view of any static, semi-honest ad-
versary .o/ corrupting the client, the server and ¢+ — 1 key holders (or any subset of these
parties) can be efficiently simulated in the ideal world (where the simulator has access to
the ideal functionality).

Firstly, we state that under the Decisional Diffie-Hellman assumption the function de-
fined in protocol Il is a pseudorandom function.

Lemma 1. Assume that DDH holds for group G of order q and that H : Q% — G is a
random oracle, then the function F : Z, x Q" — G defined as

F(o,x) = fo(x) = H(x)"
is a pseudorandom function.

Proof sketch. The authors of [10] proved that the function f, := x* is a weak pseudo-
random function (i.e., on uniformly random input x). The random input condition can be
enforced by applying a random oracle prior to exponentiation, which gives rise up to a
standard pseudorandom function (with key homomorphism). 0

18

Next, we prove that the protocol II,;s in Sec. 3.1 securely computes the functionality
Z et in the semi-honest model, where the adversary .27 corrupts the receiver P" and 1 — 1
key holders (or any subset of these parties). This is formally stated as the following lemma:

Lemma 2. Assuming that H is a random oracle, the protocol I, securely computes the

unctionality %, in the semi-honest model, where a static adversary &/ can corrupt either
prf ry p

the receiver P" and any t — 1 key holders Pf.‘lh, e Pfi}il (or less).

Proof Sketch. The case when .7 only corrupts key holders is trivial, since the only view of
the adversary consists of uniformly random elements in G and they are independent of the

input x and the PRF key o. Therefore, the simulator can simply sample § & G and output
it as &7’s view. The simulation is perfect.

As for the case where .o/ corrupts the receiver and key holders, it suffices to consider
that 7 corrupts the receiver P and ¢ — 1 key holders P th

We first describe the simulator, and then prove the 1ndlst1ngu1shab11ty of the simulation.
Firstly, the simulator fixes the random tape of the corrupted parties Pflh, ceey Pf‘fi - For the

simulation of the key generation protocol, the simulator samples &;,,..., &, | <i Zg, and
then chooses the incoming messages of Pf.‘lh, ey Pi‘t’z , randomly on condition that the out-
puts of corrupted key holders in the key generation protocol would be &;,,...,&;, , (thisis
trivial in the semi-honest model since all parties faithfully follow the protocol instructions).

Simulation for the evaluation sub-protocol proceeds as follows. The simulator gets the
evaluation result y on x from the ideal functionality .%,¢. The simulator derives the random
mask 8 from the receiver’s random tape, and outputs H (x)ﬁ as the view of corrupted key
holders. As for the view of the receiver, the simulator computes H (x)ﬁ % (recall the re-
ceiver’s view consists of ¢ group elements from respective key holders of the form H (x)P%
where f3 is the random mask and ¢ is the key share of P;‘h) by

i 1 G
H(x)ﬁ.al :yﬁ% . HH(x)ﬁ ij~(xij7

where [€ [n] and Ao, 4;,,..., A, are the appropriate Lagrange coefficients such that
-1
=X+ Y A0,
j=1
where o, ..., 0 | are (¢z,n)-Shamir shares of the secret 0.

Simulation for the share refreshing protocol proceeds similar to the key generation pro-
tocol. The simulator chooses the corrupted key holders’ incoming messages randomly on
condition that they sum to zero.

The indistinguishability for the key generation and share refreshing phase is straight-
forward, since no private input is involved in these two sub-protocols. For the evaluation
phase, the view generated by the aforementioned simulator would be identical to the real

19

view of &7 except that we replace the truly random value y with H(x)%*, where « is the ran-
dom PREF key used in the real execution. By the property of (¢,n)-secret sharing, condition
on the view of the adversary who holds at most # — 1 shares, the PRF key « is uniformly
random. Recall that a PRF fy(-) (see Lem. 1) keyed by uniformly random o behaves
like a truly random function in the computational sense. Therefore, the real view and the
simulated view are computationally indistinguishable. [

Now, we state the main theorem whose proof is significantly simplified thanks to the
modularity of the security analysis (by working in the .7 p-hybrid model).

Theorem 1 (main theorem). Assume that DDH holds for group G and that H : Q" —
G is a random oracle (as defined in pseudorandom function fy), we have that the four
subprotocols in Sec. 3.2 securely compute the corresponding functionalities in Sec. 2.2 in
the Z,p-hybrid model where a static semi-honest adversary </ can corrupt the server P,
the client P¢ and any t — 1 key holders P¥" ..., P{.‘ﬁl (or less).

i

Proof sketch. We first consider the cases for corrupting the server P* or the client P€ or ¢ — 1
key holders separately, and show that the corresponding view can be efficiently simulated.
We then prove that when corrupting any combination of the above, the joint view still can
be simulated efficiently.

Corrupted Server. The simulator for the corrupted server needs to generate the view
of P* in new sequence adding protocol Il,qq and querying protocol Ilguery. In the ideal
functionalities (that correspond to the two protocols), the server receives an index which
allows the simulator to distinguish whether the sequence being added or queried has already
been added or queried. This is crucial for the consistency of the simulation, for instance,
if at some point in the simulation, the administrator adds a sequence that has been queried
before, these two values, as part of the server’s view, should be identical.

In real protocol executions, the messages P’ receives is uniformly random values (since
the protocol is defined in the .7 -hybrid model where the PRF is replaced by an idealized
functionality), these messages can be efficiently simulated. Specifically, the simulator for
P? keeps a list Si. Upon receiving the response message (add.receipt, PY, sid, i) from .Z,4q
or (add.receipt, P*, sid, i) from Fgyery, if i > |§1|, the simulator samples a new random

element y & G, appends it to S| and outputs it as P*’s view. Otherwise, the simulator
outputs y = S| [i] as P*’s view.

Corrupted Key Holders. The simulation for r — 1 corrupted server is straightforward,
since in .Z,-hybrid model, the key holders only receive key id’s, which can be trivially
simulated.

Corrupted Client. The client’s view is restricted to the querying subprotocol, and there-
fore the simulator only needs to generate the corresponding view. The simulator simulates

20

Z et by sampling random elements for the client’s queries and outputs the querying re-
sult obtained from .Zquery. Since the actual protocol is based on ﬂprf—hybrid model, the
simulation here is perfect.

Corrupted Server and Key Holders. In this case, the simulator combines the simulation
of the two respective cases. In short, the simulator keeps a list of random values to simulate
the view of the corrupted server. The server’s messages are identically distributed to those
in the real execution, and so are the key holders” messages. The simulated view is therefore
indistinguishable from the real view.

Corrupted Client and Key Holders. The simulation for this case is also a combined
simulation of the two respective cases. Since the two simulation have no correlations, the
joint simulation is therefore perfect as well.

Corrupted Client and Server. The simulator needs to simulate the adding new sequence
protocol and querying protocol. The simulation for this case can be built upon the simu-
lation for a corrupted server alone. Specifically, the ideal functionality .%query returns an
index to the server. If this index indicates the queried value has not appeared in the server’s
view, its corresponding random value can be sampled uniformly at random. Or else, it
has already been sampled, and therefore should be extracted from previous simulations for
adding new sequence protocol or querying protocol.

Corrupted Client, Server and Key Holders. In this case, we can base the simulation on
that of the previous case. Since the key holders’ view only consists of key id’s that are not
correlated to any other messages, the jointly simulated view is indistinguishable from the

real view.
O

5. Performance Evaluation

5.1 Testing Setup

There are many elliptic curves recommended by NIST [7] and more implemented by
OpenSSL [13]. Our performance evaluation and comparison are based on the OpenSSL
1.1.1 implementation on a laptop equipped with Intel® Core™ i5-7400 CPU @ 3.00GHz
x4 and the Ubuntu 18.04.2 LTS 64bit OS.

21

Table 2. The performance of various curves in terms of the number of base and random
multiplications (i.e., the operations of s- P and ¢ - Q respectively) per second and the number of
s+ P+1-Q operations per second, where s,t € Z,, q is the order of the curve, P is the generator,

and Q is an arbitrary element.

curve name bit sec. | #.base mul/s | #.random mul/s | #.s*P+t*Q/s
secpl12rl 112 3305 6889 8982
wap-wsg-idm-ecid-wtls6 112 7692 7485 9175
sectl13rl 113 12343 12290 6079
wap-wsg-idm-ecid-wtls1 113 13731 13142 6660
secpl128rl 128 6572 6676 8953
sect131rl 131 7097 6998 3473
secpl60k1 160 4063 4066 5340
wap-wsg-idm-ecid-wtls7 160 4257 4124 5683
brainpoolP160r1 160 4000 3854 5212
sect163k1 163 5339 5547 2687
wap-wsg-idm-ecid-wtls3 163 5569 5513 2783
c2pnbl176v1 176 5429 5277 2621
c2tnb191v3 191 6019 5895 2917
prime192vl 192 3400 3347 4710
sect193rl 193 5154 5151 2565
secp224rl 224 26932 10703 7830
wap-wsg-idm-ecid-wtls12 | 224 2346 2332 3377
brainpoolP224r1 224 2147 2188 3064
secp256k1 256 1859 1859 2681
prime256v1 256 101937 20462 17406
brainpoolP256r1 256 1912 1920 2753
c2pnb272wl 272 2368 2324 1167
brainpoolP512r1 512 548 550 855
secp521rl 521 5322 2765 2032

5.2 Performance Evaluation

Let us mention that the PRF key generation Iy gen and key refreshing operations Iyt refresh
(and the corresponding Initialization and Key Share Refreshing Protocols that invoke them)
involve only a few additions and multiplications, and they do not constitute the bottleneck

of performance.

Obliviously, the main computationally intensive operation is the Oblivious PRF Evalu-
ation ITpyfeyar, Which is invoked by querying and adding new sequence protocols. It takes
quite some group multiplications and exponentiation operations. An exponentiation opera-

22

tion can be computed by log g multiplications where ¢ is the order of group. Thus, a client
needs 2logg + ¢ multiplications and each key holder requires logg multiplications. As
shown in Table 1, we compare the performance on various elliptic curves and highlight the
(relatively) good ones in red. The evaluation of the PRF is interactive and thus it depends
on the bandwidth too. Concretely, to handle 10° queries in the 256-bit security setting, the
communication cost between client and server is approximately 14MB, which should not
affect the performance too much.

In summary, the performance bottleneck is the basic operations over the elliptic curves
despite many other less dominant factors. As illustrated in Table 3, our testing runs on an
off-the-shelf (actually out-of-date) personal laptop, which takes about 27 minutes to answer
10° queries. We estimate that a high performance server should easily accomplish the task
in less than a minute.

Table 3. The estimated numbers of basic protocol operations per second on our laptop
implementing those curves highlighted in red in Table 1. Note that “bit Sec.” uniquely identifies
the corresponding red curve from Tab. 2.

bit Sec. | operation | #.operation/s
113 init 200
113 add 60
113 query 60
113 refresh 200
256 init 200
256 add 60
256 query 60
256 refresh 200
521 init 200
521 add 15
521 query 15
521 refresh 200

6. Quantum Resistance

In this section, we detail why the possibility of efficient quantum computation is relevant
to the long-term security of our proposal, and our approach to securing our established
privacy properties, especially of the hazard database, against future quantum attacks.

6.1 Rationale for Exploring Quantum-Resistant Approaches

There is considerable debate as to whether quantum computation will become a serious
threat to certain techniques in non-quantum, or “classical,” cryptography in the foresee-
able future. Regardless of the strength of the arguments on each side, we must accept that

23

there is some chance that any cryptographic primitive in our proposal whose hardness as-
sumptions rely on a classical computation setting could be broken by a quantum-capable
adversary. One example of a hardness assumption that is considered secure under classi-
cal computation, but not quantum computation, is DDH (Decisional Diffie-Hellman). Our
oblivious DPRF construction relies on DDH for its security. Under quantum computation,
an adversary could efficiently evaluate the oblivious DPRF on arbitrary inputs without in-
volving the threshold number of participating servers. Free DPRF evaluation would permit
oracle access to set membership in the database; due to the low entropy of the input se-
quence space, the database contents could be exfiltrated quickly, constituting a catastrophic
failure of the screening system.

We have considered several possible extensions of our basic protocol to address such
weaknesses with respect to future quantum attacks. For our purposes, it is sufficient to se-
cure the database contents against a quantum adversary, for now setting aside query privacy,
which is much less crucial. Our extensions fall into two categories: information-theoretic
DPRF and MPC-embedded encryption.

6.2 PRF with Information-Theoretic Security.

Having obtained the result of the oblivious DPRF Fj (), the client may participate in another
round of PRF evaluation with multiple (possibly the same) parties to compute Gyq (Fj(-))
before participating in the two-party membership query protocol P. If this round is made
quantum secure, e.g. by using fast block cipher based PRFs, query privacy is still preserved
under classical computation and the database is secure against a quantum adversary.

The following approaches, with increasing sophistication, each achieve information-
theoretic security (and thus quantum security) by requiring key information from extra
sources:

1. In its simplest form, a single trusted server P€ holds k9, the key for the quantum-
secure PRF. The client sends its computed result F;(x) to P2 and receives Gyq (Fi(x)).

2. Slightly more securely, several servers Pl.Q each hold pieces of k7 = (kg ,k?, k).
The quantum-secure “distributed” PRF is computed as the XOR of the independent
keyed PRFs, Gya() = G4(") ©@ G 4(-) ® -+ @ Gi4(-). Evaluation of this Gya(-) re-

0 1 n

quires all servers PiQ to be online, a robustness concern.

3. In keeping with threshold, rather than obligatory, participation by trusted third par-
ties being a desirable property, the keys for the second round can be distributed by
replication. Using (’Z) keys replicated across the servers PlQ such that every subset of
size n —t servers is assigned one unique key, any 7 + 1 servers are guaranteed to have
at least one copy of all n key pieces between them. Gyq(-) is then computed by XOR
of the individually communicated G;é, (+) as above. This approach is only feasible for

small 7, and does not scale well for ¢ as a constant fraction of n. Still, even with many
keys, an implementation utilizing block ciphers could achieve sufficient throughput.

24

One concern is that this approach also requires high communication overhead due to
transmission of many redundant intermediate results.

4. Excessive communication overhead may be avoided by specifying some local com-
putation on each server Pl.Q as in [4] to combine the PRF evaluations over all of its
(';:11) keys into one value before sending, such that the information transmitted to
the querier collectively forms a Shamir secret sharing of the result Gq (Fy(x)).

6.3 PRF Evaluation using MPC.

It may be possible to replace the DPRF from Naor-Pinkas-Reingold (NPR [10]), utilized
throughout this document, with a secure multiparty computation (MPC) of a function that
serves the same purpose, but that has better security properties in a quantum setting. Like
NPR, the query sequences remain private to the client. Unlike NPR, in which each key-
holding server only communicates with the client directly and not with other key-holders,
MPC requires multiple rounds of communication between the computing parties.

MPC protocols may be quantum-insecure or quantum-secure. Even if a quantum-
insecure MPC protocol is used, the MPC could be used to evaluate a quantum-secure func-
tion, such a block cipher (e.g. AES-256), for the client.

In this setting, the client holds sequence x, and key holders have their respective
secret shares of a secret key k. They jointly run a (classical or quantum) secure MPC that
reconstructs the secret key k and then outputs e.g. Fi(x) := AES-256(k,x), i.e. it encrypts
the oblivious DPRF input x under the key k using the symmetric encryption scheme AES-
256.

This approach will be slower than the proposed design as it requires interaction among
the key-holding servers, but in particular for small numbers of servers it is highly efficient.
For example, in the 3-server setting, [2] achieved 1 million secure AES evaluations per
second. Whether the extra MPC communication represents too great a slowdown for our
application remains to be tested.

When using an information-theoretically secure MPC protocol it is safe to conjecture
that the encrypted database is quantum-secure against exposure due to the use of AES-
256. Furthermore, the entries are now encrypted under a standard algorithm (AES) and can
be decrypted if this ever was required by stakeholders. Finally, recently proposed MPC-
friendly ciphers such as LowMC [1] can be employed to achieve higher throughput than by
relying on e.g. AES.

th

The optimal choice of a quantum-secure solution ultimately depends on the choices
of n and t in the final implementation. If (;’) is small, the PRF with replicated keys
and information-theoretic security is likely indicated. Otherwise, the extra communication
overhead of a PRF evaluation using MPC may represent the right trade-off. We are con-
fident that at least one of the above schemes will be sufficient to achieve database privacy
against a quantum-capable adversary.

25

7. Splitting the Database

Our current setup consists of one server P* which holds the database of encrypted DNA. We
now discuss the potential problems which this setting poses as well as mitigation methods.

7.1 Rationale

Our current high-level design distributes the database between the server P* and the key
holders P]fh, ey Pﬁh such that, unless ¢ keyholders and the server collude, they cannot learn
anything about the contents. This is because P* holds oblivious DPRF outputs while the key
holders Pf?h have shares of the key. However, the current implementation only achieves this
under computational assumptions that are broken in the quantum setting (as was already
outlined in Section Sec. 6). Furthermore, if the secret key & that is shared among the key
holders P¥" is ever stolen, then only a single machine must be corrupted to obtain the whole
database. It is therefore potentially necessary to get a solution where the database server is
distributed further among parties, perhaps using information-theoretic secret sharing such
as Shamir’s scheme that we already use in our DPRF construction.

7.2 Secret-Sharing the Database

With the current implementation, P* holds the hashed values of all the ~ 10° harmful frag-
ments. That is, the (hashed) values H (x;) are sorted, and a membership query H(y) will be
answered by P by binary search (and thus in logarithmic time). We do not attempt to hide
the search path from P*. Under this level of privacy, it is fine to replace P* by a distributed
set of m servers P{,...,P; , maintaining the order of the (hashed) item values, while each
value H (x;) is broken into m secret shares. The membership query H(y) can naturally be
done in logarithmic number of steps, where each step involves running a secure compu-
tation among the m database servers P{,...,P; that distributively makes a comparison:
H(y) > H(x;)? and branches accordingly.

The efficiency of this approach depends on the following task: Given two x, y (each
with secret shares distributed among the servers), securely compute the Boolean value
z=[y > x?] with all m servers getting the output value z. This can either be done by convert-
ing this function into a circuit and using an off-the-shelf MPC scheme among P3, ... P;,.
Alternatively, we can use methods that were designed specifically for this particular task
such as [11]. The concrete slowdown due to this approach remains to be investigated.

References

[1] M. R. Albrecht, C. Rechberger, T. Schneider, T. Tiessen, and M. Zohner. Ciphers
for MPC and FHE. In E. Oswald and M. Fischlin, editors, Advances in Cryptology
— EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer Science,
pages 430454, Sofia, Bulgaria, Apr. 26-30, 2015. Springer, Heidelberg, Germany.

26

[2] T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-
honest secure three-party computation with an honest majority. In Weippl et al. [14],
pages 805-817.

[3] H. Chen, Z. Huang, K. Laine, and P. Rindal. Labeled PSI from fully homomorphic
encryption with malicious security. In D. Lie, M. Mannan, M. Backes, and X. Wang,
editors, ACM CCS 2018: 25th Conference on Computer and Communications Secu-
rity, pages 1223—-1237, Toronto, ON, Canada, Oct. 15-19, 2018. ACM Press.

[4] R. Cramer, I. Damgard, and Y. Ishai. Share conversion, pseudorandom secret-sharing
and applications to secure computation. In Theory of Cryptography Conference, pages
342-362. Springer, 2005.

[5] J. Doerner and a. shelat. Scaling ORAM for secure computation. In B. M. Thuraising-
ham, D. Evans, T. Malkin, and D. Xu, editors, ACM CCS 2017: 24th Conference on
Computer and Communications Security, pages 523-535, Dallas, TX, USA, Oct. 31 —
Nov. 2, 2017. ACM Press.

[6] eBASH team. ebacs: Ecrypt benchmarking of cryptographic systems. http://bench.
cr.yp.to/results-hash.html. accessed 1/22/2020.

[7] C. F. Kerry, A. Secretary, and C. R. Director. Fips pub 186-4 federal information
processing standards publication digital signature standard (dss), 2013.

[8] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched oblivious
PRF with applications to private set intersection. In Weippl et al. [14], pages 818—829.

[9] Y. Lindell. How to simulate it - a tutorial on the simulation proof technique. Cryptol-
ogy ePrint Archive, Report 2016/046, 2016. https://eprint.iacr.org/2016/046.

[10] M. Naor, B. Pinkas, and O. Reingold. Distributed pseudo-random functions and
KDCs. InJ. Stern, editor, Advances in Cryptology — EUROCRYPT’99, volume 1592
of Lecture Notes in Computer Science, pages 327-346, Prague, Czech Republic,
May 2-6, 1999. Springer, Heidelberg, Germany.

[11] T. Nishide and K. Ohta. Multiparty computation for interval, equality, and compar-
ison without bit-decomposition protocol. In International Workshop on Public Key
Cryptography, pages 343-360. Springer, 2007.

[12] B. Pinkas, T. Schneider, and M. Zohner. Scalable private set intersection based on ot
extension. ACM Transactions on Privacy and Security (TOPS), 21(2):7, 2018.

[13] The OpenSSL Project. OpenSSL: The open source toolkit for SSL/TLS. www.
openssl.org, April 2003.

[14] E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors. ACM
CCS 2016: 23rd Conference on Computer and Communications Security, Vienna,
Austria, Oct. 24-28, 2016. ACM Press.

27

http://bench.cr.yp.to/results-hash.html
http://bench.cr.yp.to/results-hash.html
https://eprint.iacr.org/2016/046
www.openssl.org
www.openssl.org

	Introduction
	Motivation
	Problem-Specific Challenges
	Formulation
	Technical Details of the Implementation
	Other Cryptographic Solutions
	PSI-based Solutions
	Oblivious RAM

	The Screening Functionality
	Notations
	Mathematical Symbols
	Parties
	Provable Security

	Security Requirement and Ideal Functionality
	Initialization
	Adding a New Sequence
	Making a Query
	Refreshing Key Shares

	The Screening Protocol
	The Oblivious Threshold PRF Protocol
	PRF Key Generation
	Oblivious Evaluation of the PRF
	Refreshing PRF Key Shares

	Screening Protocol in the Fprf-hybrid Model
	Initialization Protocol
	Adding New Sequence Protocol
	Querying Protocol
	Key Share Refreshing Protocol

	Security Analysis
	Performance Evaluation
	Testing Setup
	Performance Evaluation

	Quantum Resistance
	Rationale for Exploring Quantum-Resistant Approaches
	PRF with Information-Theoretic Security.
	PRF Evaluation using MPC.

	Splitting the Database
	Rationale
	Secret-Sharing the Database

	References

