
Drifting Keys:
Impersonation Detection for Constrained Devices

Kevin D. Bowers and Ari Juels
RSA Laboratories

Cambridge, MA, USA
Email: {kbowers, ajuels}@rsa.com

Ronald L. Rivest and Emily Shen
MIT CSAIL

Cambridge, MA, USA
Email: {rivest, ehshen}@mit.edu

Abstract—We introduce Drifting Keys (DKs), a simple new
approach to detecting device impersonation. DKs enable detection
of complete compromise by an attacker of the device and its secret
state, e.g., cryptographic keys. A DK evolves within a device
randomly over time. Thus a clone device created by the attacker
will emit DKs that randomly diverge from those in the original,
valid device over time, alerting a trusted verifier to the attack.

DKs may be transmitted unidirectionally from a device,
eliminating interaction between the device and verifier. Device
emissions of DK values can be quite compact—even just a
single bit—and DK evolution and emission require minimal
computation. Thus DKs are well suited for highly constrained
devices, such as sensors and hardware authentication tokens.

We offer a formal adversarial model for DKs, and present a
simple scheme that we prove essentially optimal (undominated)
for a natural class of attack timelines. We explore application of
this scheme to one-time passcode authentication tokens. Using
the logs of a large enterprise, we experimentally study the
effectiveness of DKs in detecting the cloning of such tokens.

I. INTRODUCTION

A central tenet of modern cryptography is that well de-
signed primitives should rely not on algorithmic secrecy, but
on the confidentiality of entities’ keys. Thus, cryptography
today hinges on what are called secret (symmetric) or private
(asymmetric) keys. Overwhelmingly, cryptographic primitives
are designed to respect these labels on the assumption that
keys will remain secret or private.

Many threats, though, are undermining the inviolacy of
cryptographic keys. Side-channel attacks bypass logical-layer
protections and can extract device keys via techniques such
as timing analysis [12] and differential power analysis [13]—
even wirelessly [18]. Hardware tampering is a longstanding
challenge [2], as is widespread, poor implementation of cryp-
tography [16]. Worse still, recent high-profile breaches [20],
[21] illustrate the threat of en bloc compromise of sensitive
data, the theft of entire databases of keys or other secrets.

A good illustration of this threat and motivation for our
work is the 2011 breach of security company RSA affecting
its well known SecurID authentication tokens [23]. While RSA
declined to reveal specifics, its replacement of millions of
tokens fueled speculation that information was compromised
relating to token “seeds,” i.e., their cryptographic keys [9].
The breach purportedly later led to an attempted token-cloning
attack against defense contractor Lockheed-Martin [24].

In this paper, we consider the following problem. A small
device, e.g., a hardware authentication token belonging to a
user, contains a cryptographic key K. The device uses K to
authenticate messages (or itself) in transmissions to a trusted
verifier, e.g., an authentication server. An attacker breaches
the device—or the server it interacts with—and compromises,
i.e., steals key K. The attacker then impersonates the device,
e.g., simulates the original token to authenticate as the honest
user. Because the attacker knows K and any other device state,
it can impersonate the device perfectly: Its transmissions are
identical to the original device’s, and the attack is undetectable.
Our goal in this paper is to detect such attacks, which we
interchangeably call impersonation or cloning.

Key rotation is a basic, common defense against key com-
promise. A device’s cryptographic key Kt might be valid only
for some time period t, and replaced (typically by the verifier)
with a fresh key Kt+1 at time t+ 1. If an attacker steals Kt

at time t and tries to impersonate the device in time period
t+ 1, it is likely to fail (and its attempt is detectable).

Ordinary key rotation, however, is hard to implement in con-
strained devices. RSA SecurID tokens, for instance, are highly
bandwidth constrained. They display a passcode (typically
eight decimal digits) that a user transcribes to authenticate
to a remote service, and they take no input.

Our contribution is a new, conceptually simple imperson-
ation detection scheme called Drifting Keys. (We abbreviate as
DK.) A DK κt is a (short) extra key stored in a device that is
independent of any ordinary cryptographic device key K and
its functionality. The device itself rotates κt, i.e., randomly
changes it at time t+ 1 to obtain a new DK κt+1. The device
uses a true random source to rotate its keys; thus, an adversary
that has stolen κt is unlikely to be able to generate the same
κt+1 as the device. The device communicates its changes in
DK to the verifier; the verifier detects impersonation attacks
when it receives inconsistent DKs.

DKs differ from ordinary key rotation in their need to meet
three distinct challenges:

1) Gradual rotation: Small devices often have little band-
width, and can’t easily send or receive full, fresh keys.
DKs must thus be gradually rotated, undergoing random-
ization of just one or a few DK bits per time period.

2) Unidirectionality: As many small devices are output-only
(e.g., SecurID tokens), DKs must require only transmis-

2

sion from a device to a verifier, not the reverse.
3) Loose synchronization: Message loss is common in small-

device settings. DKs must thus be designed to be robust
to a lossy channel between the device and verifier.

DKs can detect cloning in many different scenarios. At the
level of individual devices, for example, if a node in a sensor
network is captured, compromised, and cloned, DKs can detect
resulting bogus nodes in the network. DKs are also useful for
systemic attacks. In an enterprise authentication-token system,
for instance, a server-side breach can divulge keys for many (or
all) tokens. DKs can help detect attacks on individual tokens
that cumulatively yield systemwide insight into the breach.

DKs are conceptually simple, but three challenges above
make their implementation tricky. Also, given the constrained
bandwidth and lossy channels of small device settings, ver-
ifiers must be able to detect cloning with only partial DK
information. And as we show in our study of DKs in au-
thentication tokens in particular, embedding DKs into legacy
systems poses challenges of practical interest.

Our contributions in this paper are thus as follows:
• Introducing DKs: We introduce and formally model

Drifting Key schemes.
• Optimal DK scheme: We prove that a simple DK scheme

(“Uniformly Staggered”) is the best possible (formally, is
undominated) for a natural class of timelines.

• DK Compression: We present a coding scheme (what
we call “views”) that enables the use of long DKs on a
device-to-verifier channel that is bandwidth-constrained,
lossy, and subject to (limited) adversarial eavesdropping.

• Application to authentication tokens: We explore the
application of drifting keys to commercial one-time pass-
code authentication tokens. We show how to overcome
legacy and usability challenges and demonstrate practi-
cality via simulation on real-world enterprise data.

Organization Section II presents an overview of DK schemes
and challenges and our roadmap. Section III specifies our
formal model, while Section IV gives our main DK scheme
(“Uniformly Staggered”). We show how to compress DKs to
meet bandwidth constraints in Section V. In Section VI we
explore practical application of DKs to authentication tokens,
with experiments on real-world enterprise data. We review
related work in Section VII and conclude in Section VIII.

II. OVERVIEW AND ROADMAP

In general, DKs help detect a cloning attack in a scenario
such as the following. An attacker transiently compromises
the device (or verifier) at some time A, learning all of the
device’s secret keys, including its current DK κA. The device
continues to evolve its DK randomly and to transmit them to
the verifier (without the presence of the attacker). Its last such
transmission, of DK κB , happens at time B ≥ A. At some
later time C ≥ B, the attacker attempts to impersonate the
device by transmitting a valid DK κ̃C to the verifier.

The hope is that the verifier will identify κ̃C as a forgery.
But the verifier doesn’t actually know the correct, current

device DK κC . In order to check an incoming DK at time
C, the verifier must extrapolate from its last sighted valid DK
κB . In particular, the verifier may determine a range R of
possible, valid values for the device’s current DK κC . If the
DK scheme is successful, the attacker’s forged DK κ̃C will
be inconsistent with κB , i.e., κ̃C 6∈ R. The verifier will then
detect the attacker’s cloning attempt. Figure 1 schematically
depicts this sequence of events in a DK system.

Fig. 1. Intuition behind DKs. At time A, an attacker breaches the system,
learning DK κA. At time B, the device sends current DK κB to the verifier.
At time C, the attacker presents forged DK κ̃C . The verifier expects to receive
a key κC from range R (the range of valid drift of κB over interval [B,C].)

Example DK scenario: Here is an illustration of DK use:

Example 1: A motion sensor sends readings to a base
station at the beginning of each hour, digitally signed (MACed)
using secret key σ.

To facilitate clone detection, a DK is appended to sensor
outputs. Let κt be the DK appended in hour t. This DK grows
by one random bit per hour. For hour t+ 1, a fresh, random
bit κ[t+ 1] is appended to κt to yield κt+1.

An attacker (transiently) breaches the sensor in hour t = 2,
learning both the key σ and κ2 = κ[1]κ[2]. The attacker then
tries to forge a sensor output at the end of hour t = 3, after the
sensor has sent κ3 = κ[1]κ[2]κ[3]. I.e., the attacker attempts
to pass off a forged DK κ̃3 = κ[1]κ[2]κ̃[3] as valid.

To succeed and submit a correct DK κ̃3 = κ3, the attacker
must correctly guess κ̃[3], i.e., set κ̃[3] = κ[3]. It will fail, and
the base station will reject κ̃3, with probability at least 1/2.

(In this simple example, R = {κ3}, i.e., the range of valid
DKs at time C is just one key.)

Example 1 considers a simple DK design and attack sce-
nario. DKs grow one bit at a time, indefinitely, and are
transmitted in their entirety. And C = B, so the device
(sensor) has synchronized its DK with the verifier (base
station) at the time of forgery C (i.e., C = B). In practical
settings, it often isn’t feasible to transmit full DKs (or maintain
arbitrarily growing ones). And the device and verifier are often
not synchronized (i.e., C > B), so that the verifier must detect
attacks with partial information—or even after the fact. These
two challenges are major ones addressed in this paper.
Roadmap: We analyze the security of DK schemes in this
paper in terms of a timeline characterizing an attack—in
particular, the interval lengths [A,B] and [B,C]. In Section III,

3

we introduce a formal model, expressed as a standard cryp-
tographic adversarial experiment. This model enables us to
determine the success probability of an attacker for a given
DK scheme on a given timeline (or class of timelines).

As in Example 1 above, one objective of DK schemes is
prevention, i.e., authentication rejection when an attacker tries
to submit an invalid DK. The timeline in Figure 1 shows a
prevention scenario.

When it receives two incompatible DKs, however, the
verifier doesn’t know a priori which is correct, and which is
invalid. The verifier knows only that it has detected a cloning
attempt. Thus another sequence of interest is one in which
an attacker first forges a DK κ̃B and the device later makes
an authentication attempt, submitting DK κC . If the verifier
then determines that κ̃B is inconsistent with κC , then it’s
too late to prevent the attacker from authenticating, but the
verifier achieves detection of the attack—also very valuable.
Our model in Section III covers both prevention and detection,
and we study DK schemes with respect to both.

In Section IV, we introduce a particular DK scheme that is
our main focus in this paper, and which we call Uniformly
Staggered (US). This is a simple scheme in which a DK
consists of m keys, i.e., κt = κ[1], . . . , κ[m]. Keys are
rerandomized sequentially and at regular intervals. That is,
key κ[1] is randomized, then after d time units, κ[2], then after
another d time units, κ[3], and so forth—with wraparound. So
the DK is completely rerandomized after every dm time units.

We prove that for a natural class of timelines (and the right
setting of d), US is the best possible DK scheme, in the sense
that it is undominated. No other DK scheme achieves better
verifier detection probabilities against an optimal adversary
across all timelines in the class. As we show, US is undomi-
nated for both prevention and detection timelines.

To develop DK schemes that are usable in practice we must
accommodate devices with highly constrained transmission
bandwidth. A good choice of m in a US scheme may yield a
DK too long for full transmission. As we’ll see, our canonical
device, an authentication token, can emit at most a few bits
of DK data per transmission (per passcode, that is).

In Section V, therefore, we describe an approach to partial
DK transmission by means of what we call views. Views are
constructed using a coding scheme that multiplexes a DK over
device emissions, essentially like an error-correcting code.
Use of views has three benefits, enabling: (1) A long DK to
be synchronized with the verifier using short emissions; (2)
Resilience to message loss on the device-to-verifier channel;
and (3) Clone detection even if an attacker eavesdrops a
limited number of times e during the interval [A,C].

Finally, while DKs suit many devices, we explore their ap-
plication to a particular one: One-time passcode authentication
tokens. In Section VI, we show how DKs can be integrated into
such tokens without changing their use or passcode format.
We briefly describe solutions to several technical challenges,
including adversarial tampering and benign user transcription
errors. By simulation over authentication-token data from an
enterprise with nearly 56,000 unique users, we demonstrate

the potential effectiveness of DKs in real-world use.

III. FORMAL MODEL

In this section, we lay out a formal security model for
Drifting Keys. We first define a timeline, the set of time
intervals between events in an attack. Then we enumerate the
functions composing a DK scheme. Finally, we specify the
security of a DK scheme in a standard cryptographic way, in
terms of an adversarial experiment.

For conciseness, we now denote a device by D, a verifier
by V , and an adversary by Adv where appropriate.

A. Attack timeline

Recall the sequence of event times A, B, and C from above,
corresponding respectively to Adv’s breach, authentication by
D to V , and Adv’s DK forgery attempt.

We let ∆ = C − A denote the length of the entire interval
of an attack by Adv. The attack is also characterized by two
sub-intervals: The time between the compromise and device
authentication, ∆0 = B − A, and the time between authenti-
cation and Adv’s forgery, ∆1 = C −B. Thus ∆ = ∆0 + ∆1.

We refer to the tuple (∆,∆0,∆1) as an attack timeline.
Figure 2 depicts the anatomy of a timeline.

Fig. 2. An attack timeline.

In general, V’s probability of success in detecting Adv’s
forgery at time C grows as ∆ and ∆0 do. As ∆ grows, i.e.,
more drift takes place, so does Adv’s uncertainty about the
state of κ at time C. Similarly, as ∆0 grows (for a fixed ∆),
the uncertainty of the verifier about the correct value of κC
(the range R) diminishes. That is, V’s view of κ is more recent
for larger ∆0—or equivalently, smaller ∆1.

For successful clone detection, it’s a requirement that ∆ >
0. If Adv attempts a forgery immediately, i.e. ∆ = 0, then
Adv has complete knowledge of the current key κA = κC ,
and can impersonate the device perfectly.

Similarly, it’s a requirement that ∆0 > 0. If A = B, i.e.,
∆0 = 0, then at time C, the verifier and Adv have equivalent
knowledge of the current value of κ. In this case Adv can
successfully forge with probability 1. (Put another way, in
Fig. 1, if A = B, then Adv knows R exactly.)

We analyze the security of a given DK scheme below over
a family of timelines meeting the condition ∆,∆0 > 0.

Remark: In real-world attack scenarios, typically Adv is con-
strained to meet some minimum ∆ > 0, i.e., delay its forgery
attempt for a time after a breach. Often an adversary proceeds

4

gradually to evade detection, as in Advanced Persistent Threats
(APTs) [5], or incurs delays due to the challenge of attacking
multiple systems. (For example, an attack against Lockheed-
Martin purportedly resulted from the breach of RSA, but
surfaced only months later [6].)

It’s also common that ∆0 > 0, meaning that D was used at
some point after the breach, but before Adv’s forgery attempt.

B. DK functions

We model time in discrete timesteps, e.g., minutes. The
current timestep is denoted by t. Values include:
• κt: The DK of the device at time t. κt is composed of a

sequence of m individual sub-keys. We let κt[i] denote
the ith such key, and K denote the space from which
individual keys are drawn, i.e., κt[i] ∈ K, and c = |K|.
Note that keys may be short, and in some cases may even
be single bits, as in Example 1. For convenience, we refer
to sub-keys themselves simply as “keys.”

• λt: The knowledge held by the verifier V of κt at time
t, where λt ∈ L for some space L. For convenience, we
assume that t is stored as part of λt.

• µt: The key-update message generated by the device in
the current timestep.

Functions applied by D and V include:

• keyGen(`)
R→ (κ0, λ0): A key generation function that

yields an initial device key and its counterpart for the
verifier; here, ` is a security parameter that controls m
and c. Where m and c are fixed, we omit the use of `.

• evolve(t, κt−1) → κt: A (probabilistic) key-update func-
tion;

• updateGen(t, κt) → µt: A function that computes an
update message;

• sync(t, λs, µt) → λt: A server-knowledge update func-
tion that takes in an old state λs from time s and updates
it with fresh data µt at time t.

• keyVer(t, κ̃t, λs) → {accept, reject}: A key verification
function: Indicates whether the key κ̃t is consistent with
λs in the view of V . We say that κ̃t is valid at time t if
keyVer(t, κ̃t, λs)→ accept.

We let DK = (keyGen, evolve, updateGen, sync, keyVer)
denote a DK scheme.

C. Security experiments

A “prevention” experiment: Formally, now, for a given
timeline (∆,∆0,∆1), and security parameter `, the security
of a DK scheme DK is defined in terms of the adversarial
experiment specified in Fig. 3.

In this experiment, we model a strong adversary Adv
that chooses the time A of its attack, and sets the de-
vice key κA and the server knowledge λA. The de-
vice authenticates at time B, and Adv succeeds if it
forges a valid DK, i.e., authenticates successfully, at time
C; Adv fails if V rejects its forged DK. We define
the success of Adv as SuccpreventDK,Adv[`](∆,∆0,∆1) =

pr[ExppreventDK,Adv[`](∆,∆0,∆1)→ accept].

Experiment ExppreventDK,Adv[`](∆,∆0,∆1):
Set event times:

(A, κA, λA)← Adv(“initialize”);
B ← A+ ∆0;
C ← B + ∆1;

Key evolution:
for t = A+ 1 to B

κt ← evolve(t, κt−1);
Set server state:
λB ← sync(B, λA, κB);

Adv tries to guess valid key:
κ̃C ← Adv(“forge”);

Check key validity:
return keyVer(C, κ̃C , λB);

Fig. 3. Basic “prevention” security experiment

This basic experiment models “prevention” of an adversarial
authentication attempt after an attack, meaning that the verifier
detects the forgery attempt immediately. (In practice, the ver-
ifier might not actually prevent the authentication, for various
reasons – for example, the verifier might not know whether
the inconsistent DK came from the device or the attacker.)

In this experiment, Adv doesn’t aim to evade eventual clone
detection completely. In particular, D could at some time after
C send a DK that is inconsistent with Adv’s forgery κ̃A. In
that case, V will learn that an attack has occurred, but it will
be after Adv’s successful authentication.

A “basic detection” experiment: As observed above,
Expprevent models prevention of authentication by Adv after
an attack. Detection after the fact is still of interest, though,
in real-world settings. Thus, we also consider a “basic
detection” experiment Expdetect with a ACB sequence of
events, in which Adv’s forgery attempt takes place before D’s
authentication to the verifier.

In this experiment, Adv’s breach occurs at time A, Adv
forges at time B = A + ∆0, and D next authenticates
at time C = B + ∆1. Then Adv is successful if the
verifier accepts both Adv’s forged key κ̃B and the device
key κC as valid. We define the success of a “basic de-
tection” adversary Adv as SuccdetectDK,Adv[`](∆,∆0,∆1) =

pr[ExpdetectDK,Adv[`](∆,∆0,∆1) → accept]. A formal specifi-
cation of the basic detection experiment is given in the full
version of this paper [?].

A “full detection” experiment: Since a forgery attempt
by Adv’s may be detected by V via inconsistency with D’s
authentication either before or after the forgery, we consider
a “full detection” experiment Expfull where D authenticates
both before and after Adv’s authentication attempt.

In this experiment, Adv’s breach occurs at time A, D
authenticates at time B = A + ∆0, Adv forges at time
C = B+∆1, and D authenticates again at time D = C+∆2.
Then Adv succeeds if the verifier accepts both Adv’s forged
key κ̃C and D’s key κD, meaning that κ̃C is consistent with
both κB and κD. We define the success of a “full detec-

5

tion” adversary Adv as SuccfullDK,Adv[`](∆,∆0,∆1,∆2) =

pr[ExpfullDK,Adv[`](∆,∆0,∆1,∆2)→ accept]. A formal spec-
ification of the full detection experiment is given in the full
version of this paper [?].
Other variations: For DK schemes we describe later in
which D transmits only partial “views” of κ, experiments must
include multiple D-V synchronizations.

IV. UNIFORMLY STAGGERED (US) UPDATES

In this section, we consider a DK scheme in which each
of D’s m keys is randomized periodically and sequentially.
Each key has the same period p but a distinct phase that is a
multiple of d for d = p/m (assuming here that m | p).

More formally, each key κt[i] has an associated phase di =
d · i, and key updates proceed according to the following rule:
• Key-Update Rule: Update key κt[i], i.e., set κt[i]

R← K,
at time t if t = di (mod p). Otherwise, κt[i] ← κt−1[i],
i.e., the key remains unchanged.

We call this a Uniformly Staggered (US) scheme with period
p and phase shift d. Its use is illustrated in this example:

Example 2: A hardware token contains a DK κt consisting
of seven one-bit keys, each updated on a different day of the
week. (It maintains this key in addition to its primary key
for generating passcodes.) The first bit is randomized every
Sunday, the second every Monday, and so forth. That is, it
employs US with p = 7 and d = 1 (where timesteps are days).
Thus m = p/d = 7, κt = {κt[1], . . . , κt[7]}, K = {0, 1}, and
key κ[i] has (pi, di) = (7, i) for 1 ≤ i ≤ 7.

Each displayed / transmitted passcode has the current DK
embedded in it. (See Section VI for details.)

A. Prevention and detection probabilities for US
We now give the prevention and detection probabilities

for US with period p = md and phase shift d over key
space Km, where |K| = c. For a timeline (∆,∆0,∆1) with
∆0 + ∆1 = ∆ ≤ md, an optimal Expprevent adversary
and an optimal Expdetect adversary succeed with probabil-
ity SuccpreventUS,Adv (∆,∆0,∆1) = SuccdetectUS,Adv(∆,∆0,∆1) =

c−b∆0/dc. Thus, the probability of prevention or detection of
Adv’s forgery is 1− c−b∆0/dc.

For a timeline (∆,∆0,∆1,∆2) with ∆0 + ∆1 + ∆2 =
∆ ≤ md, an optimal Expfull adversary succeeds with
probability SuccfullUS,Adv(∆,∆0,∆1,∆2) = c−b(∆0+∆1)/dc.
Thus, the probability that Adv’s forgery is detected (either
immediately or when D authenticates later) in Expfull is
1− c−b(∆0+∆1)/dc.

B. Security analysis: Prevention

We now show that for a broad “symmetric” class of pre-
vention timelines in which ∆ = md, US is undominated.
A scheme is undominated if there exists no scheme that
dominates it in the sense of achieving better detection across
all timelines. Define

~∆m,d = {∆ = {(∆ = md,∆0,∆1) | (∆0,∆1)

∈ {(s,md− s), (md− s, s)}}s∈S}S⊆[0,md]. (1)

Note that for any ∆ ∈ ~∆m,d, if (∆,∆0,∆1) ∈ ∆, then
(∆,∆1,∆0) ∈ ∆. Also note that the class ~∆m,d includes,
e.g., the set of all timelines in which ∆ = md. Also define:
• R(t, κt, δ): The drift range of a key κt over an interval

of time. Given κt, R(t, κt, δ) is the set of possible values
assumed by κt+δ .

We prove the following theorem:
Theorem 1: Given key space Km, US with period

p = md and phase shift d is undominated with re-
spect to ExppreventDK,Adv for any ∆ ∈ ~∆m,d. That is,
maxAdv,(∆,∆0,∆1)∈∆ SuccpreventDK,Adv(∆,∆0,∆1) is minimized
by DK = US.

Proof: For simplicity, assume all intervals below are
multiples of d. In US, for any t, κt, and δ ≤ md, we have
|R(t, κt, δ)| = cδ/d. So for any (∆,∆0,∆1) with ∆ = ∆0 +
∆1, there exists an Adv for which SuccpreventUS,Adv (∆,∆0,∆1) =

c−∆0/d. This Adv simply guesses a key κ′B ∈ R(A, κA,∆0)
and then sends an arbitrary key κ′C ∈ R(B, κ′B ,∆1). If its
guess κ′B is correct, then V will accept κ′C .

Suppose there exists a drifting-key scheme D̃K and pair
(∆̃0, ∆̃1) such that for any Adv (choosing any attack time
Ã), Succprevent

D̃K,Adv
(∆, ∆̃0, ∆̃1) < c−∆̃0/d. In other words, D̃K

provides stronger security than US for a particular timeline
(∆, ∆̃0, ∆̃1).

Then for any Ã and κÃ, there exists at least one key
κB̃ ∈ R(Ã, κÃ, ∆̃0) such that |R(B̃, κB̃ , ∆̃1)| < cm−∆̃0/d.
(Otherwise, Adv can simply guess a random key κ′

C̃
∈ Km;

this key will be valid with probability ≥ cm−∆̃0/d/cm =

c−∆̃0/d.) Let ν denote one such key κB̃ . We may view ν
as inducing “slow” key-space growth over the interval [B̃, C̃].

Then Adv can take advantage of the slow key-space growth
that ν induces over interval [B̃, C̃] in the prevention ex-
periment for a different timeline in ∆, namely (∆,∆0 =
∆̃1,∆1 = ∆̃0). In Expprevent

D̃K,Adv
, Adv sets A ← B̃, κA ← ν,

and λA ← (B̃, ν).
Now Adv’s key-guessing strategy is as follows. It picks

a random key κ′B in R(A, κA,∆0). It guesses for κ′C in
Expprevent

D̃K,Adv
an arbitrary key consistent with κ′B , i.e., κ′C ∈

R(B, κ′B ,∆1).
Clearly, if κ′B = κB , i.e., Adv correctly guessed the

key at time B, then V will accept κ′C as valid. Since
|R(A, κA = ν,∆0)| < cm−∆̃0/d, Adv will thus succeed with
probability > c−(m−∆̃0/d) = c−(m−(md−∆0)/d) = c−∆0/d.
Thus, Succprevent

D̃K,Adv
(∆,∆0,∆1) > SuccpreventUS,Adv (∆,∆0,∆1).

Since no D̃K dominates US, US is undominated.
C. Security analysis: Detection

We have proven that US is undominated with respect to
prevention for a natural class of timelines. Using similar but
somewhat more involved arguments, we prove that US is also
undominated with respect to basic detection, for the same class
of timelines, in the following theorem:

Theorem 2: Given key space Km, US with period
p = md and phase shift d is undominated with re-
spect to ExpdetectDK,Adv for any ∆ ∈ ~∆m,d. That is,

6

maxAdv,(∆,∆0,∆1)∈∆ SuccdetectDK,Adv(∆,∆0,∆1) is minimized
by DK = US.
The proof can be found in the full version of the paper [?].

We conjecture that US is also undominated with respect
to full detection for a class of timelines satisfying some
“symmetry” condition.

Conjecture 1: Given key space Km, US
with period p = md and phase shift d is
undominated with respect to ExpfullDK,Adv for any
∆ ∈ ~∆′m,d for some natural class ~∆′m,d. That is,
maxAdv,(∆,∆0,∆1,∆2)∈∆ SuccfullDK,Adv(∆,∆0,∆1,∆2) is
minimized by DK = US.

V. PARTIAL DK TRANSMISSION VIA “VIEWS”

We now consider an approach to DKs in which at time t,
the device transmits a partial DK, rather than its complete DK
κt. We call this partial DK as a view. As we show, a view can
be arbitrarily compact—even just a single bit.

View transmission has three advantages over full-DK trans-
mission: (1) An Adv that intercepts a view doesn’t learn the
full DK state κt of the device, so views create resilience to
eavesdropping; (2) Transmitting a view is less bandwidth-
intensive than full DK transmission; and (3) Transmitting
views creates resilience to a noisy channel, in particular, an
erasure channel, i.e., one that drops symbols.

These advantages are particularly valuable for authentica-
tion tokens, our archetypal device example. These devices are
highly bandwidth-constrained, as explained above. Moreover,
their passcodes are transmitted over what may be viewed as
a very noisy erasure channel. The vast majority of passcodes
generated by a token aren’t actually transmitted. Only when a
user authenticates does she transcribe one.

The one drawback to views is that they require a verifier to
collect multiple views in order to achieve the same probability
of clone detection as a full-DK transmission scheme.

We construct partial DKs for transmission by means of
an encoding scheme whose structure we now present. This
scheme is essentially a convolutional code [22], an error-
correcting code that operates over message data streaming
through a fixed size buffer (the DK, in our case). Our main
interest here, however, is error detection (cloning), rather
than error correction. Additionally, decoding efficiency is an
important design goal.

A. Coding framework

Given a DK κt, the aim of a DK coding scheme is to
produce a sequence of (compact) views for device-to-verifier
transmission. The verifier should be able to detect views output
by incompatible key sources. That is, given views from a key
sequence κ1, . . . , κt and from a (clone) key κ̃t, the verifier
should detect an inconsistency in views with high probability.

A DK coding scheme operates over a set of information
elements called symbols, denoted by Σ. Additionally, it makes
use of a counter value c on the number of views generated
during a key update period t.

There are two functions in a DK coding scheme:

• encode(κt, t, c, [K]) → σ ∈ Σ: Encoding operates over
a DK κt consisting of a sequence of k symbols, the
current time, and a counter value c ∈ Z+. It outputs a
single information symbol σ. (Our main proposed scheme
employs an additional input key K.)

• verify({(σj , tj , cj)}qj=1, [K]) → {accept, reject}: The
verify function takes as input a set of q views and
associated times and counters. It accepts the set if it rep-
resents a sequence of views over some valid sequence of
keys κ1, . . . , κt. Otherwise it rejects. (Our main proposed
scheme employs an additional input key K.)

A simple example illustrates the basic operation of a DK
coding scheme.

Example 3: In a naı̈ve, example DK coding scheme,
encode(κt, t, c) simply outputs κt[c mod k], i.e., outputs raw
key values (with counter wraparound).

In this case, verify accepts a set {(σj , tj , cj)}qj=1 of views
provided that there are no inconsistent values for any key
symbol κt[i]. That is, it accepts iff there exist no two triples
(σj , tj , cj) and (σj′ , tj′ , cj′) with j 6= j′ such that tj = tj′ ,
cj = cj′ mod k, and σj 6= σj′ .

If we regard freshly generated key symbols as message
insertions into a buffer (the current key), encode operates
essentially like the encoder in a convolutional error-correcting
code, while verify performs error-detection on code output.

B. A coding scheme

We now describe a simple, practical coding scheme that we
call a dot-product scheme. This scheme is attractive for highly
constrained environments in which key symbols are bits, i.e.,
Σ = {0, 1}. We employ this scheme in our authentication-
token proposed DK construction.

Let ~vt,c ∈ {0, 1}k be a uniformly random bit-vector of
length k. (These vectors may be derived jointly by the device
and verifier from a pseudorandom number generator applied
to shared key K.) A view, then, is a single bit, the dot product
of a vector with its corresponding key, i.e.:
• encode(κt, t, c,K)→ κt · ~vt,c ∈ {0, 1}.
Verification involves a consistency check on the set of linear

equations implied by views, namely:
• verify({(σj , tj , cj)}qj=1,K) outputs accept if, for t =

maxqj=1 tj , there exists a solution κ1, . . . , κt to the set
of linear equations {κtj · ~vtj ,cj = σj}qj=1. Otherwise it
outputs reject.

This dot-product coding scheme, like the naı̈ve one of
Example 3, is an error-detecting code. But in our dot-product
DK code, views are a function of all bits. Consequently, given
an adversary Adv with an incorrect key κ̃t 6= κt, the verifier
can detect a cloning attempt with high probability irrespective
of where the erroneous bits lie in κ̃t.

Randomization of ~vt,c allows the verifier to solve for
erasures, i.e., key bit values erased by the noisy channel, as it
receives transmissions from the device.

As a heuristic optimization for our authentication-token
application below, we fix certain bits of ~vt,c. For example,

7

when there’s only one view per passcode, we set ~vt,c[f] = 1,
for f the (unique) freshest updated bit position. A view
then always captures the freshest drifting bit and if Adv
doesn’t know this bit, it will guess the view incorrectly with
probability at least 1/2, resulting in a high detection rate.

VI. APPLICATION TO AUTHENTICATION TOKENS

We now consider DKs in our archetypal application, au-
thentication tokens. There are a number of such tokens that
operate in more or less the same way, displaying decimal-digit
passcodes for transcription. SecurID and Google Authenticator
are two prominent examples.

We explore the application here of a bit-based US scheme;
again, this means bits are randomized sequentially (with
wraparound). For concreteness, we consider k = 7 DK bits.
(We vary other parameters in our experiments.) We consider
eight-digit passcodes (a standard SecurID option).

A. Embedding in Passcodes

To create a legacy-compatible system—or simply not make
passcodes longer—it’s necessary to embed a DK channel
within token passcodes. (Note, however, that a small sacrifice
of authentication strength results: Each bit devoted to the DK
channel is one fewer bit in the authentication channel.)

Consider, for concreteness, the use of two views, yielding
dot-product encoded bits (a, b) for a given passcode. A naı̈ve
embedding approach is to replace the last two bits of the
passcode with these DK-channel bits (a, b). Two problems
then arise:

1) Adversarial DK alarms: A man-in-the-middle adversary
Adv, one capable of reading and tampering with P
in transmission, can extract and modify DK values—
without even compromising the token. Adv can create
false alarms in the DK system.1

2) User-induced false DK alarms: Benign mistyping of a
passcode by a user can, with high probability, change
(a, b) while leaving the rest of P intact, resulting in a
false alarm in the DK system.

To address these problems, a DK channel may be created
by means of a secret encoding of (a, b) with redundancy.
Lacking space to explore such encodings at length, we just
give an example scheme that seems attractive for practice. Let
P denote the passcode for a given time t and Q denote the
DK-enhanced passcode yielded by embedding view bits.

Example 4 (DK-channel encoding scheme): For each au-
thentication token, a distinct key is selected consisting of two
pairs of distinct, randomly selected digits (x0, x1), (y0, y1) ∈R
{0, 1, . . . , 9}2.

At a given time t, the pair of bits (a, b) is mapped into an
eight-digit codeword C = xaxaxaxaybybybyb.

The DK-enhanced passcode is computed as Q ← P ⊕ C.
Here ⊕ denotes digitwise, mod 10 addition. The server accepts

1An adversary can instigate repeated false alarms in order to erode
administrator sensitivity to signals of a real intrusion.

a passcode Q′ as valid if Q′⊕P is a valid codeword C. (The
server then extracts (a, b) from C.)

To modify (a, b) without rendering Q invalid, the attacker
must guess x0 − x1 or y0 − y1, which it can do successfully
with probability at most 1/10.

For a user to mistype a passcode Q and change (a, b)
without rendering the passcode invalid would require four
mistyped digits in sequence—a highly improbable event.

Of course, many different embedding schemes are possible,
with various technical tradeoffs.

B. Simulation

To evaluate the efficacy of views of a bit-based US scheme
for authentication tokens, we simulate a powerful attacker and
study how different parameter choices impact the probability
of detecting an attack and the average time until detection. Our
simulated users consist of nearly 56,000 unique authentication
tokens that were used to login during a 3-month window at
a large enterprise. Our dataset contains over 4 million unique
logins collected from March 22, 2012 to June 19, 2012. We
find that on average tokens are used three times a week, but
with high variability of inter-login intervals. We present more
details about the user population in the full version of the
paper.

The set of tokens in our dataset isn’t static; new tokens are
added and old tokens retired. Having no way of distinguishing
users who went on vacation and didn’t log in from those users
who left the group and no longer have login privileges, we
treated all records as belonging to permanent users. (New and
terminated users skew our results pessimistically, in the sense
of creating the appearance of longer inter-login intervals and
making attacker detection harder.)

We simulate attack against each of our 56,000 users and
repeat each test 10 times for each parameter setting. In
each run the attacker randomly selects a time to break into
the token, and must then wait at least ∆min time before
submitting a forged passcode, where ∆min is parameterized on
a per-experiment basis as a multiple (or fraction) of the drift
frequency. If ∆min is less than 1, it’s possible that no bits
will have drifted before the attack, in which case the forgery
will always succeed. If bits have drifted, the attacker must
guess any unknown bits corresponding to the current views.
The attacker in our simulations, though, is powerful, in the
sense that he can not only compromise a user’s token at will,
but may also launch his attack advantageously at a time when
the views require the attacker to guess as few bits as possible.

Using the heuristic mentioned above, views in our simulated
tokens are crafted to ensure transmission of recently drifted
bits. In particular, if w views are transmitted per passcode,
then the first vector terminates with a ‘1’ bit, the next with
a ‘10,’ etc., through ‘10w’; all other vector bits are randomly
selected, as in our basic dot-product scheme. As a result of
this view composition, the attacker cannot select a time in
which views omit the w most recent drift bits, but can wait
until views omit all of the other drift bits that are unknown

8

to him. The time the attacker must wait for such a favorable
scenario is not prohibitive for the practical parameterizations
we consider in our experiments. (For example, given w = 1,
and 7 drift bits, the attacker need wait only 32 minutes on
average for the first six view bits to assume a desired value.)

Such adversarial waiting limits the best possible detection
probability. The attacker must submit guesses for the w most
recent drift bits; if fewer than w bits have drifted, however, the
attacker will know the value of those remaining bits. Each bit
drifts independently, so the probability of the attacker correctly
guessing a given drift bit is 1

2 . If d is the number of bits that
have drifted since the attacker broke in, (d ≥ ∆min), then the
number of bits the attacker has to guess is g = min(w, d).
The ideal detection probability then is 1− (1

2)g .
If the server and token are in sync at the time of the attack,

then the ideal detection probability is actually a prevention
probability. However, if the attacker is the first to submit a
passcode after a bit drifts, even if he guesses wrong, the
inconsistency cannot be detected until the user submits a
passcode. In fact it may take several passcode transmissions
before the inconsistency can be detected.

In our simulation, an individual user submits passcodes at
times corresponding to those for the user in the log. The server
and token are assumed to be in sync at the beginning of the
window (March 22), but drift and re-sync as time passes and
users submit passcodes. We measure the percentage of attacks
that are prevented (detected immediately upon submission by
the adversary), those that are eventually detected and how long
such detection takes, and those for which the server is unable
to catch up and detect the attack in the remaining portion of
the three-month simulation window.

As Figure 4 shows, the longer the attacker is forced to
wait between breaking into the token and submitting a forged
passcode, the higher the probability of detection. Likewise, and
more importantly, the more bandwidth per passcode (number
of views), the higher the detection probability and the quicker
the detection (from 36% detection in an average of 56 hours
for w = 1 view bits to 78% detection in an average of 20 hours
with w = 3 view bits for ∆min = 3 and a drift frequency of 3
days). The reason for this is two-fold. First, the attacker must
guess more bits if multiple bits have drifted since the break-in.
Second, the additional information provided in each passcode
helps the server stay in sync, increasing both the chances
of prevention and speeding up eventual detection. There are
other ways to increase view bandwidth, such as having users
submit passcodes more often, or submit multiple passcodes if
they login less frequently. We leave analysis of this and other
protocol-level changes as future work.

As noted above, users in our dataset log in on average only
three times a week. When bits drift every week, each new bit
will be sampled three times, on average, allowing the server
to stay in sync. Bits that drift every 3 days more often go
unsampled, slowing or even preventing detection of attacks.

Remark: In our experiments, DKs don’t detect attacks with
overwhelming probability. That isn’t the goal here or in

general. Rather, it’s to provide successful prevention or de-
tection with high probability. We advocate DKs particularly
for detection of systemic attacks, such as server-side breaches
or attacks on multiple devices. In such cases, the detection
rates we observe in our experiments here (18%-85%) are ap-
propriate. Given a substantial number of compromised devices
or attacker events, systemwide detection rates can approach
100%. We also underscore that without DKs, full compromise
of cryptographic keys and cloning are generally undetectable.

VII. RELATED WORK

Tamper-evident signatures, proposed by Itkis in [10], are
closely related to DKs. A tamper-evident signing key evolves
randomly: An old (private) key is periodically used to sign
a new (public) key. As with DKs, signatures forged by the
attacker after device compromise will, with high probability,
diverge from those of the device, leading to verifier detection.

Tamper-evident signatures are stronger than DKs because
signature forgery is infeasible, but far more resource-intensive,
and unsuitable for constrained devices. In Itkis’s scheme, the
public key grows over time as does the required number of
digital signature operations. The scheme also can’t support
DK-type views, so reliable transmission of public keys re-
quires high bandwidth. Itkis’s work is the closest example to
DK of a key-evolving cryptographic scheme; see [8] for a
broad survey. Generally, key-evolving schemes aim to protect
past or future keys, not to detect key compromise.

As DKs assume unidirectional communication from the
device to verifier, they may be seen as a simple form of
unidirectional key distribution (plus authentication) designed
for lossy networks. “Self-healing key distribution” [17], [25]
initiated this line of research. It involves broadcast transmis-
sion of full key sets, however, and is designed for a group
manager to distribute session keys, not for cloning detection.

Unidirectional key distribution is also used in the resource-
constrained context of RFID to enforce privacy [11]. Amari-
ucai et al. [1] propose its use for device pairing in a scheme
based on leakage of and subsequent cracking of a secret key.
We note that DK views are actually a more efficient, easier-to-
analyze way of gradually distributing a key unidirectionally,
and thus can serve as an improvement over [1].

Clone detection for highly constrained devices is a problem
of great interest for sensor networks and RFID-enabled supply
chains. In sensor networks, nearly all proposed countermea-
sures rely on cooperative protocols among nodes, e.g., [3], [4],
[19]. DKs, in contrast, don’t rely on networking of devices.

Common barcode-type RFID tags are easily cloned [14].
But RFID-enabled supply chains are highly structured: Goods
and tags travel along a small set of pre-defined paths. Several
schemes thus rely on divergent physical tag paths to detect
cloning and other attacks, e.g.,[7]. Similar in spirit to DKs is
[15], which rotates a secret value in tags; each tag has just one
value, though, rotated in its entirety by a centralized entity.

We believe that DKs should be of interest as a new,
lightweight approach to clone detection in both sensor net-
works and RFID-enabled systems.

9

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7 3 7

P
e

rc
e

n
ta

ge
 o

f
at

ta
ck

s
d

et
e

ct
e

d

Drift Frequency (in Days) for the corresponding Δmin and w values

Probability and Time to Detect Attack for Drift Frequencies of 3 and 7 Days

Ideal %

Detected %

Prevented %

 Δmin = 0.5 Δmin = 1 Δmin = 2 Δmin = 3 Δmin = 4

w=1 w=2 w=3

w=2 w=3

 w=1 w=2 w=3 w=1 w=1

w=2

w=3

w=1

w=2

w=3
A

ve
rage

 d
e

te
ctio

n
 tim

e
 (h

o
u

rs)
100

90

80

70

60

50

40

30

20

10

0

Detection Time, Drift Frequency = 3 days
Detection Time, Drift Frequency = 7 days

Fig. 4. Prevention and Detection Probability, and Average Time to Detection from simulation of token with 7 drifting bits which drift every 3 or 7 days.

VIII. CONCLUSION

Resource-constrained devices, such as sensors, authentica-
tion tokens, and RFID tags are increasingly pervasive sources
of high-value data. Their vulnerability to complete compro-
mise of secret state locally and through server-side breaches
highlights the importance of protections against cloning at-
tacks. Practical cloning detection is challenging, though, for
devices with low bandwidth, power, and computational ability.

We have introduced Drifting Keys as a lightweight approach
to this challenge. DK emissions can be made arbitrarily com-
pact for bandwidth constrainted devices, are resilient to lossy
networks, and require no server-to-device communication. The
simplicity of DKs lends them to analytic study, as shown by
our security proofs showing that Uniformly Staggered (US)
DK schemes are undominated over a natural class of timelines.

Additionally, our exploration of one-time passcode authen-
tication tokens has shown the practical promise of DKs. DKs
can be embedded in one-time passcode authentication tokens
with no modification to passcode structure and little resource
overhead. Our experiments with the authentication logs of a
large enterprise bear out DKs’ efficacy and practicality.

REFERENCES

[1] G. T. Amariucai, C. Bergman, and Y. Guan. An automatic, time-based,
secure pairing protocol for passive RFID. In RFIDSec, pages 108–126,
2011.

[2] R. Anderson and M. Kuhn. Tamper resistance — a cautionary note. In
USENIX Security, pages 1–11, 1996.

[3] M. Conti, R. Di Pietro, L. V. Mancini, and A. Mei. Distributed detection
of clone attacks in wireless sensor networks. IEEE Trans. Dependable
Sec. Comput., 8(5):685–698, 2011.

[4] M. Conti, R. Di Pietro, and A. Spognardi. Wireless sensor replica detec-
tion in mobile environments. In Proceedings of the 13th international
conference on Distributed Computing and Networking, ICDCN’12,
pages 249–264, Berlin, Heidelberg, 2012. Springer-Verlag.

[5] Damballa, Inc. Advanced persistent threats. Whitepaper referenced 2012
at bit.ly/eS0B0H, 2010.

[6] C. Drew. Stolen data is tracked to hacking at Lockheed. New York
Times, page B1, 4 June 2011.

[7] K. Elkhiyaoui, E.-O. Blass, and R. Molva. Checker: on-site checking in
RFID-based supply chains. In Proceedings of the fifth ACM conference
on Security and Privacy in Wireless and Mobile Networks, WISEC ’12,
pages 173–184, New York, NY, USA, 2012. ACM.

[8] M. Franklin. A survey of key evolving cryptosystems. International
Journal of Security and Networks, 1(1):46–53, 2006.

[9] D. Goodin. RSA breach leaks data for hacking SecurID tokens. The
Register, 18 March 2011.

[10] G. Itkis. Forward security: Adaptive cryptography—time evolution. In
Handbook of Information Security. John Wiley and Sons, 2006.

[11] A. Juels, R. Pappu, and B. Parno. Unidirectional key distribution across
time and space with applications to RFID security. In USENIX Security,
pages 75–90, Berkeley, CA, USA, 2008. USENIX Association.

[12] P.C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In CRYPTO, pages 104–113, 1999.

[13] P.C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In
CRYPTO, pages 388–397, 1999.

[14] K. Koscher, A. Juels, V. Brajkovic, and T. Kohno. EPC RFID tag security
weaknesses and defenses: passport cards, enhanced drivers licenses, and
beyond. In Proceedings of the 16th ACM conference on Computer and
communications security, CCS ’09, pages 33–42, New York, NY, USA,
2009. ACM.

[15] M. Lehtonen, F. Michahelles, and E. Fleisch. How to detect cloned tags
in a reliable way from incomplete RFID traces. In IEEE International
Conference on RFID, pages 257–264, 2009.

[16] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and
C. Wachter. Ron was wrong, Whit is right. Technical Report 2012-064,
IACR, 2012.

[17] D. Liu, P. Ning, and K. Sun. Efficient self-healing group key distribution
with revocation capability. In Proceedings of the 10th ACM conference
on Computer and communications security, CCS ’03, pages 231–240,
New York, NY, USA, 2003. ACM.

[18] Y. Oren and A. Shamir. Remote password extraction from RFID tags.
IEEE Transactions on Computers, 56(9):1292– 1296, 2007.

[19] B. Parno, A. Perrig, and V. Gligor. Distributed detection of node
replication attacks in sensor networks. In IEEE Security and Privacy
Symposium, pages 49– 63, 2005.

[20] N. Perlroth. Lax security at LinkedIn is laid bare. New York Times,
page B1, 11 June 2012.

[21] N. Perlroth. Yahoo breach extends beyond Yahoo to Gmail, Hotmail,
AOL users. Blog, 12 July 2012.

[22] W.W. Peterson and E.J. Weldon, Jr. Error-Correcting Codes (2nd
edition). MIT Press, 1972.

[23] RSA, The Security Division of EMC. RSA hardware authenticators
product description. http://www.rsa.com/node.aspx?id=1158, 2012.

[24] N. D. Schwartz and C. Drew. RSA faces angry users after breach. New
York Times, page B1, 8 June 2011.

[25] J. Staddon, S. Miner, M. Franklin, D. Balfanz, M. Malkin, and D. Dean.
Self-healing key distribution with revocation. In IEEE Symposium on

10

Security and Privacy, pages 241–257, Los Alamitos, CA, USA, 2002.
IEEE Computer Society.

[26] D. Zanetti, L. Fellmann, and S. Capkun. Privacy-preserving clone
detection for RFID-enabled supply chains. In Proc. IEEE Int. Conf.
on RFID, 2010.

