
Fourth-Factor Authentication: Somebody You Know

John Brainard
RSA Laboratories
Bedford, MA, USA

jbrainard@rsasecurity.com

Ari Juels
RSA Laboratories
Bedford, MA, USA

ajuels@rsasecurity.com

Ronald L. Rivest
MIT CSAIL

Cambridge, MA, USA

rivest@mit.edu

Michael Szydlo
RSA Laboratories
Bedford, MA, USA

mszydlo@rsasecurity.com

Moti Yung
RSA Laboratories
Bedford, MA, USA

myung@rsasecurity.com

ABSTRACT
User authentication in computing systems traditionally de-
pends on three factors: something you have (e.g., a hard-
ware token), something you are (e.g., a fingerprint), and
something you know (e.g., a password). In this paper, we
explore a fourth factor, the social network of the user, that
is, somebody you know.

Human authentication through mutual acquaintance is an
age-old practice. In the arena of computer security, it plays
roles in privilege delegation, peer-level certification, help-
desk assistance, and reputation networks. As a direct means
of logical authentication, though, the reliance of human be-
ing on another has little supporting scientific literature or
practice.

In this paper, we explore the notion of vouching, that is,
peer-level, human-intermediated authentication for access
control. We explore its use in emergency authentication,
when primary authenticators like passwords or hardware to-
kens become unavailable. We describe a practical, prototype
vouching system based on SecurID, a popular hardware au-
thentication token. We address traditional, cryptographic
security requirements, but also consider questions of social
engineering and user behavior.

Categories and Subject Descriptors
H.m [Information Systems]: [Miscellaneous]

General Terms
Security, Human Factors

Keywords
authentication, hardware tokens, vouchers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’06, October 30–November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/0010 ...$5.00.

1. INTRODUCTION
Passwords remain the most common mechanism for user

authentication in computer-security systems. Their various
drawbacks, like poor selection by users and vulnerability
to capture, are prompting a rapidly mounting adoption of
hardware authentication tokens. Despite stronger security
guarantees, though, hardware tokens share a limitation with
passwords: inconsistent availability. Users frequently forget
passwords. Similarly, they often lose, forget, and break their
hardware tokens.

As a result, a workable authentication system requires at
least two modes of authentication. There is the primary
mode of authentication, the password or token employed
by the user in the normal course of events. Then there is
the form of emergency authentication for cases when the
primary authenticator is unavailable to a user.

On the Internet, the most common form of emergency
authenticator is e-mail. When a user forgets her password
for a particular site, she often has the option of having
the password itself or password-reset instructions sent to a
pre-registered e-mail account. Another common emergency
authentication mechanism is “life questions.” The user is
prompted to authenticate herself by furnishing answers to
previously registered personal questions, e.g., “What is the
name of your first pet?” In corporate environments, the
preferred emergency authentication mechanism is the help
desk: employees telephone support help-desk personnel for
assistance in re-establishing their access privileges. Some
consumer Web sites offer this option as well.

An authentication system is, of course, only as secure as
its weakest component. It is desirable, therefore, that an
emergency authenticator provide security as least as strong
as a good primary authenticator. Life questions, as we ex-
plain later, often fall short in this regard, as their answers are
vulnerable to guessing by attackers and sometimes subject
to attacks involving mining of public databases. Similarly,
since e-mail is rarely encrypted, and e-mail accounts are of-
ten password-protected, e-mail is generally an inadequate
emergency authentication mechanism in systems where the
primary authenticator is a hardware token. Help desks can
provide emergency authentication with any of a range of se-
curity assurances, depending on the manner in which staff
identify callers. Help-desk staff can ask life questions, iden-
tify the voices of callers they know personally, verify caller-

168

ID, and so forth. But corporations commonly dislike help
desks as a emergency-authentication mechanism because of
high labor costs. Additionally, human intermediation at
help desks introduces a vulnerability to social-engineering
attacks.

Passwords and life questions are often categorized in the
abstract as “something you know,” while hardware tokens
are “something you have.” A third category of authentica-
tor is “something you are,” that is, a biometric. Systems
that authenticate users based on physical characteristics—
particularly voice and fingerprints—are enjoying ever-rising
popularity. The general consensus of the security commu-
nity, however, is that biometrics are not suitable as primary
authenticators. Biometrics are often not secret. People pub-
licly expose their voices and fingers in various ways on a
regular basis, creating the possibility of biometric spoof-
ing. (Various countermeasures can alleviate but probably
not eliminate this problem.) Users generally don’t forget
or lose their biometrics permanently—but chapped fingers
and laryngitis can lead to temporary loss. Finally, some
biometrics, like fingerprints, require special-purpose reader
hardware. Thus, despite their attractions, biometrics do not
provide a comprehensive answer to the problem of emer-
gency authentication.

1.1 Our work
In this paper, we explore a fourth category of authenti-

cator: “somebody you know.” The use of human relation-
ships for authentication is by no means new. In social in-
teractions, introducing one person to another is the most
common way of identifying (and implicitly authenticating)
acquaintances. This is true in the physical world and also
to a large extent in cyberspace: e-mail is a popular infor-
mal channel of authentication. In the realm of computer
security, however, the natural mechanism of authentication
through social networks has seen little in the way of direct
formal use or exploration.

Our particular focus here is a process that we call vouch-
ing. Vouching is peer-level authentication in which one user,
the helper, leverages her primary authenticator in order to
assist a second user, the asker, to perform emergency au-
thentication. To lend clarity to our discussion, we some-
times refer to the asker as Alice and the helper as Harry.
Based on simple security principles and social-engineering
and usability considerations, we design and describe a pro-
totype vouching system for SecurID, a popular hardware
authentication token typically used in conjunction with a
user-specific PIN. In our system, a helper can use her Se-
curID token to help grant temporary access privileges to an
asker who has lost the ability to use her own SecurID token,
but who remembers her PIN. In a nutshell, the helper ob-
tains a temporary passcode that we call a vouchcode. The
helper furnishes this vouchcode to the asker as a substitute
for the asker’s SecurID token, i.e., as a kind of replacement
one-time passcode. Using the vouchcode, the asker can au-
thenticate without her token.

While vouching is straightforward at a loose conceptual
level, a number of subtle design issues arise on closer scrutiny
that do not apply to traditional authenticators. A (ran-
domly assigned) password, for instance, carries a certain
measurable level of entropy; some rough characterization
is possible even when a password is user-selected. Simi-
larly, the bit-length of the cryptographic key in a hardware

authentication token, the underlying cryptographic primi-
tives, and the output format permit rigorous characteriza-
tion of the token’s security properties. Vouching systems
rely on traditional primary authenticators like PINs and
passcodes—but in a more complicated context.

Usability and social-engineering considerations are par-
ticularly tricky facets of voucher-system design. A voucher
system that is difficult to use will merely drive users to call
help desks; a system that is too easy to use could evolve
into a primary authenticator, eroding user vigilance around
the vouching process. It is also important to ensure that
askers properly authenticate the people that they are vouch-
ing for. If helpers respond to vouching requests via e-mail
or to vouching requests from strangers over the telephone,
then a vouching system will offer little real security. For
such reasons, a vouching system must rely on trustworthy
interactions within a tight social network. The problem of
creating a vouching system that places helpers in a strong
position to attest to the identities of askers is an important
aspect of our work.

1.2 Organization
In section 2, we survey the literature on concepts related

to our vouching proposal. We treat the problem of model-
ing in section 3. We propose and analyze a vouching system
for hardware tokens in 4 and describe a prototype imple-
mentation for SecurID tokens in section 5. In section 6, we
discuss social engineering and related issues. We conclude
in section 7 with thoughts on further avenues of research.

2. RELATED WORK

2.1 Backup authenticators
The limitations of passwords as authenticators are well

known in the security community—from the general prob-
lem of poor selection by users [12] to the disquieting incli-
nation of users to reveal their passwords to strangers [13].
Phishing, the fraudulent use of e-mail to capture user pass-
words (and other information), has exacerbated the problem
of password capture. Researchers have proposed a variety
of countermeasures to these problems, such as browser ex-
tensions that hash passwords with domain names [17].

Life questions are another “something-you-know” authen-
ticator, but one that serves typically in emergency authenti-
cation. Life questions have received considerably less study
than passwords. Some of the security vulnerabilities of pass-
word systems, like pharming, are also applicable to life ques-
tions. Life questions, though, have their own particular fea-
tures. The fact that they serve most often as a emergency
authenticator—and thus receive infrequent use—can render
them difficult for users to answer consistently. Moreover,
as shown recently by Griffith and Jakobsson, the answers
to certain popular life questions are vulnerable to attacks
that involve mining of public databases [9]. The answers
to many commonly used life questions, like “What was the
make of your first car?” have little underlying entropy.1 Fi-
nally, users show a surprising willingness to divulge personal
information to strangers in ways that can undermine the se-
curity of life-question systems. In a recent “live phishing”
experiment, in which passersby in New York City’s Central

1General Motors, for example, had about a 43% market
share in the United States in 1983 [11].

169

Park were offered T-shirts in exchange for filling out sur-
veys, more than 70% divulged their mother’s maiden name,
while more than 90% revealed their place and date of birth
[6].

Consumers’ mobile phones offer a platform for emergency
authentication that is increasingly favored by financial in-
stitutions for high-risk online transactions (but less often
for password recovery). Mobile-phone based authentication
can operate in several ways. A financial institution can ini-
tiate a call to the phone of a customer to request trans-
action confirmation via an automated voice recognition or
keypad-based entry system—or even by means of (biomet-
ric) speaker recognition. Alternatively an institution can
transmit an authentication code to a phone via SMS messag-
ing, and request that the user enter the code into a web form
[16]. These techniques are excellent adjuncts to more tradi-
tional forms of authentication, and caller ID is a simple and
attractive form of authentication (although somewhat vul-
nerable to spoofing). They can also be useful in emergency
authentication, although such use is limited at present—
particularly within corporations, where mobile phones are
generally not under administrator control.

Password-reset via help-desk calls is a very common prac-
tice, but it’s expensive. Vendors of password-reset products
claim that each password-reset request involving live staff
costs some $15-30 [1, 3]. This cost alone is a strong impe-
tus for creating alternatives. Moreover, because help-desk
calls often involve interactions between strangers, they are
vulnerable to social-engineering attacks, such as those de-
scribed by Kevin Mitnick in his Art of Deception [15].

2.2 Social relationships and authentication
Reliance on “somebody you know” is an age-old vehi-

cle for authentication in everyday life. When you intro-
duce one friend to another, you are effectively performing
an authentication protocol based on a social relationship.
Social-network-based authentication also has a pervasive but
largely informal role in the security infrastructures of organi-
zations. When an employee holds open an access-controlled
door for a familiar colleague, when a system administrator
resets a password for a colleague whose voice she recognizes
on the phone, or when a manager brings a new employee
to a corporate badging center, a form of vouching is taking
place.

Familiar social interactions of this kind have given rise to
analogous systems in cyberspace. People regularly send e-
mail to colleagues and friends in order to effect introductions
and request grants of privileges (to set up accounts, make
payments, etc.). Reputation systems are an extension of
the vouching principle to large on-line communities; eBay
provides a familiar example in which account holders provide
mutual ratings of commercial integrity. Given their loose
authentication of participants, though, reputation systems
are unsuitable mechanisms for authentication of individual
identities.

Peer-level public-key infrastructures (PKIs) such as PGP
and SPKI/SDSI [2, 8] provide a more rigorous basis for au-
thentication through social networks. In such systems, prin-
cipals make local decisions about whether to endorse the
identities (certificates) of other principals. In the case of
PGP, a social network called a “Web of Trust” helps authen-
ticate e-mail addresses. Human intermediation can serve as
a component in peer-level (and hierarchical) PKIs. It is a

straightforward matter to define a credential asserting attes-
tation of identity based on human contact (“I have met so-
and-so face-to-face”) and to create supporting policies and
software interfaces. Trust-management systems like Poli-
cyMaker [5] and its successor, KeyNote [4], permit general
policy decisions around access to resources on the basis of
digitally signed credentials, and can in principle take human
relationships into account.

PKIs and trust-management systems, however, are ab-
stractions for the creation and management of digital cre-
dentials. In contrast, in this paper we consider “somebody
you know” as a starting point for authentication; our inves-
tigation is predicated on fundamental usability and human-
interaction issues, rather than reference to a particular cryp-
tographic mechanism. In this view, Carl Ellison’s concept
of “ceremonies” is particularly important prior work [7]; El-
lison proposes a model to capture the human behavior sur-
rounding cryptographic authentication protocols. Also per-
tinent are recent authentication systems designed with hu-
man factors as first principles. A recent example is “Seeing
is Believing,” a system that exploits visual contact (2D bar-
codes) as a physical mechanism for trust [14].

3. MODELING
In this section we model the security properties that we

would like a voucher system to achieve. We begin by de-
scribing the parties and communication channels involved
in the system. Then we discuss our assumptions concerning
the two pieces of authentication data used. These items are
the PIN and the tokencode. We describe the types of ad-
versaries we intend to protect against, and present security
requirements for such adversaries.

Parties and Channels: The principal parties involved
in the primary authentication mechanism are the User and
the Server. For the vouching protocol two types of users play
distinct roles. These are the Asker and the Helper. We also
consider a malicious external party Adversary with various
capabilities.

Users or parties are denoted by a capital letter (e.g., X),
and to each party we associate an identifier, which will be
denoted with the corresponding lowercase letter. For exam-
ple, the identifier of a user X will be denoted by x. Within
an invocation of a protocol among users, we use the nota-
tion X(y) to indicate that party X has represented itself as
having claimed identifier y. With this notation, an honest
party X will always be represented as X(x). Our notation
suggests that parties use consistent identifiers throughout
the protocol, and we make a remark whenever this may not
be the case.

Users have certain initial conditions imposed on them that
can be expressed as relations. Namely, some users are en-
rolled as helpers, and users are organized in a (helper, asker)
relation H where each helper is assigned a subset of users as
askers; we say (Y, X) ∈ H if a party X is an asker for party
Y acting as a helper.

In our model, the communication channels to and from the
server are considered to be secure. In particular, this means
that no adversary can obtain any information by eavesdrop-
ping over such channels. In practice, channels between an
entity and the server may be achieved with SSL. The chan-
nel between an asker and a helper may be less secure, and
we need to carefully design our protocol setting to mitigate
eavesdropping risks on this channel.

170

Authentication Data Items: The basic authentication
protocol as well as the vouching protocol involve two pri-
mary factors that the user presents to the system in order
to be accepted as authenticated. The basic two factors are
the PIN, PN , which is a user memorizable string, and the
tokencode, TK , which is generated from the hardware to-
ken. Other factors are possible. In particular, a third piece
of authentication data is the vouchcode, an ephemeral item
used within the vouching protocol.

To model the information made available in a protocol
message by parties, we introduce the notation (X(u) : V A)
to indicate the event wherein a party X sends a message
claiming identity u and correctly presents the value item of
V A. The following assumptions concern the probabilities of
an adversary being able to present the user’s PN and TK
at any point within the protocol.

1. For any party X and any identifier y, the probabilities
prob{X(y) : PN} and prob{X(y) : TK} are indepen-
dent.

2. The legitimate user U who chose the PIN value and
possesses the token and enrolled in the system as u
can always present the PIN and tokencode. That is,
prob{U(u) : PN} = prob{U(u) : TK} = 1. These
assumptions amount to a user being able to recall their
PIN value and also being in posession of their token.

3. An adversary, A, who is not U , and has not obtained
U ’s PIN value PN , can only present it with small prob-
ability. That is prob{A(u) : PN} < ε.

4. An adversary, A, (where A �= U), can only present a
tokencode with small probability. That is prob{A(u) :
PN} < δ.

Note that the adversary’s probability of successfully pre-
senting the required values (PN or TK) is the probability
bound on the union of two events: (1) the adversary guess-
ing the value (which is typically assumed long enough and
to contain certain amount of entropy), and (2) the adversary
stealing or otherwise obtaining the value.

Authentication Ceremony: An authentication cere-
mony AC is a sequence of interactions between a number of
parties. It was introduced to describe not just a protocol be-
tween the user software agent and the system, but to desig-
nate that a party may act via his software agent and also act
personally. Once defined, a ceremony is invoked by various
parties (with certain relationships among them) who follow
a sequence of actions. We use notation ACT to refer to a
ceremony of type T or an instance of this type of ceremony.
To specify the parties Pi and the identifiers p′

i presented by
these parties we use the notation ACT (P1(p

′
1), P2(p

′
2), . . .).

In an authentication ceremony parties exchange messages
via secure channels, and one of the parties will be the server
S. The server is assumed to be trusted and its role is to
accept the legal executions and reject the adversarial ones.
The correctness and security definitions of an authentication
ceremony are defined in terms of the server’s final state,
which is always either “accept” or “reject.”

Interactive Logging and Detection: Given a cere-
mony, we may consider an extended ceremony where in addi-
tion to message channels there exist also “logging channels”
where parties post information “about” the ceremony: e.g.,
posting the time of the invocation, the parties, and the state

of the execution). These logging channels are not erasable
by the parties, and can be viewed as a bulletin board main-
tained by the trusted server, and can be implemented by
getting e-mail upon demand from the server.

By considering the extended ceremony that includes the
original messages that are designed to stop impersonation
(i.e., to reduce the probability of an attack), logging and
log evaluation further allow for the detection of (what we
hope are rare) successful attacks. For example, a party
evaluating the log may detect unexpected behavior such an
authentication under its identifier in which it did not take
part. We denote the logging channels available to party U
as LG(U). The party reads and evaluates the log and de-
cides whether there as been an attack or not. If an attack
is detected in this way appropriate countermeasures can be
taken. In actual implementation, the logging functionality
may be implemented as a combination of e-mail notifications
and server logs.

Next we discuss correctness and security definitions.

3.0.1 Correctness

The correctness requirement of the system is that when
the parties act honestly, the authentication attempt will
succeed, i.e., for a given authentication ceremony AC =
AC(Pi(pi)) (where in all cases party Pi and its true identi-
fier pi are involved and where the parties satisfy the initial
required relationships) then the server “accepts.”

3.0.2 Security Properties

To describe the security properties of a ceremony, we de-
fine adversaries (outsiders and insiders) who attack other
parties. In an authentication ceremony, the adversarial goal
is to impersonate a party. There are two types of security
properties: (1) Prevention: where the server accepts an in-
vocation with a party claiming a wrong identifier only with
small probability. (2) Detection: where successful attacks
are realized by parties.

4. VOUCHER SYSTEM
In this section we describe a voucher system for hardware

authentication tokens such as RSA Security Inc.’s SecurID.
A SecurID token typically takes the form of a key fob or card
that displays a fresh numerical value, called a tokencode or
passcode, every sixty seconds. To authenticate to a com-
puter application, the user must type the current tokencode
together with a user-specific PIN or password.

The tokencodes in a SecurID installation are validated
by a specially designated authentication server. This server
shares a secret seed with every token and also the PIN of
the user, allowing it to validate tokencode/PIN pairs. The
technical details of tokencode computation are largely un-
published. Briefly, though, a tokencode is computed as a
cryptographic function of the current time and a secret key
shared between the token and authentication server [10].
Our system can be applied equally well to other token-types,
e.g., Verisign authentication tokens.

We will describe the regular system ACR and the vouching
system ACV . In both cases we will describe the messaging
and the extended ceremony with logging.

4.1 Regular Authentication
We first review the regular two-factor authentication pro-

tocol, ACR, which does not include vouching. This illus-

171

trates the basic system upon which a vouching system will
be constructed.

Enrollment: The process gives each user a PIN value
and a hardware token that at each time unit produces to-
kencodes. At the server side the user identifier is associated
with its chosen PIN and with the specific tokencode. Thus
the server is able to produce the authentication values and
compare them to the ones presented by the user.

Authentication Session: Once enrolled, a user U au-
thenticates herself by presenting her identifier u, her PIN
PN and the current TK to the server via a secure chan-
nel. Once the server gets the values it checks them against
computed/stored values. If the values match the server “ac-
cepts” and otherwise it “rejects.”

If logging is implemented, the server logs to LG(U) that
a session with u has taken place at its given time unit. This
logging event is available to user U (and is not manipulated
by it), and U can evaluate the log.

Properties of the regular protocol:

• Correctness: for the legitimate user U claiming to be
itself prob{U(u) : PN} = prob{U(u) : TK} = 1; thus
the server will always accept.

• Security: (prevention) The adversary A performs the
authentication session with identity u which is not his
own. Since prob{A(u) : PN} < ε and independently,
prob{A(u) : PN} < δ, the server accepts with proba-
bility at most εδ, which is very small, thus imperson-
ation is prevented.

• Security: (detection) In case the server maintain logs
that are accessible by the user at all times, in the un-
likely event that A is successful, U will learn about a
session initiated under her identity at a time when she
herself did not participate. Thus she will detect the
break.

4.2 Concrete protocol steps
The vouching system we describe is designed to deal with

the case in which a user does not have her token available,
but does recall her PIN. In other words, it is designed to
deal with unavailability of one of the two authentication
factors. Expressed succinctly, the vouching process involves
this user (asker) contacting a pre-registered helper for as-
sistance in authenticating herself. The helper obtains a
temporary tokencode from the server, called a vouchcode.
The helper communicates the vouchcode to the asker. The
vouchcode aids the asker in the emergency authentication
process. The vouching system involves the server and the
user (or asker) and helper. The vouching ceremony is de-
noted ACV = AC(S, U, H). We now explain in detail the
steps involved in the vouching process.

Enrollment: In this stage formally the relation H(X,Y)
is created. The server records this relation and each user
learns its helpers and its askers.

It is a matter of system policy which users may act as
helpers for a given asker—and how those helpers are desig-
nated. One possibility is for an asker to be enrolled in the
voucher system concurrently with the original provisioning
of the hardware token. At this time an appropriate admin-
istrator (or perhaps the asker’s supervisor) is notified by
e-mail to take action. This notification directs the adminis-
trator to a management interface through which the admin-
istrator can explicitly specify which helpers are be allowed to

Figure 1: A schematic of the basic vouching process:
Harry the helper aids Alice to obtain a temporary
password. Step numbers correspond to those in text
description (and some are omitted).

vouch for this asker. The same management interface allows
for subsequent modifications to the association of helpers to
askers. Each helper is automatically sent e-mail notifying
him of this responsibility, and must acknowledge and agree
to the corporate policy concerning vouching. This may be
implemented in a very convenient way, for example embed-
ding an “accept” button in the e-mail notification. We be-
lieve that the explicit nature of assuming responsibility as a
helper is central to clarifying the accountability of security
risks.

The process of assigning helpers to askers can also be par-
tially automated by populating the management interface
with existing relationship data, such as that contained in
corporate organizational charts. A variant of the enrollment
procedure might allow askers to choose their own helpers,
although this could increase risks if a supervisor is not in-
volved.

Once enrolled, an asker who has lost the ability to use her
token may cooperate with a helper to achieve emergency
authentication via the following steps:

1. Asker Contacts Helper: The vouching process be-
gins with the asker U contacting the helper H via an out-of-
band channel and claiming to be u. The channel can be the
telephone or even face-to-face contact. As we explain later,
e-mail contact should be deprecated or prohibited.

2. Helper Authenticates Asker: The helper verifies
the identity of the asker. Formally, the process has to as-
sure H with probability at least 1 − μ (for small μ) that
the claimed identifier u is the asker’s true identifier. In im-
plementing this step over a telephone communication, the
helper makes sure that he recognizes the asker’s voice (and
her telephone, if possible, using caller-ID); the helper may, if
in doubt, ask questions that help confirm the asker’s identity.
In the case of face-to-face contact, the helper authenticates
the asker as a matter of course. It is also assumed that the
asker identifies the helper and that they both recognize that
they are in a helper-asker relationship.

3. Helper Authenticates to Server: Using his own
client machine, the helper accesses a vouching-specific web
page. Through this interface, the helper strongly authenti-
cates himself to the server using two factor authentication—

172

i.e., using his token TK and PIN value PN as in the regular
authentication session described above. The helper asserts
identity h and declares that he is helping user u.

4. Helper Obtains Vouchcode: In response to suc-
cessful authentication, the helper is prompted by the server
S for the name of the asker. The server verifies that H and
U are in the helper-asker relationship. If the verification
succeeds, the helper then receives an asker-specific vouch-
code V C (we assume that V C is guessable with probability
at most δ) . The server further marks the fact that there
is an ongoing vouching session involving H and U . The
vouchcode assumes an alphanumeric form amenable to ver-
bal communication. For easy communication, it should also
be relatively short; it contains 20 bits of entropy in our pro-
totype.

5. Helper Gives Vouchcode to Asker: Next, H in-
forms U of the value V C —orally in the case of telephone
communication, and either orally or as a written value in
the case of face-to-face contact.

6. Asker Enters Vouchcode: U asserts identity u and
presents his PN and V C to S. In our implementation, using
a special-purpose web interface on her own client machine,
the asker authenticates by entering her username, the vouch-
code, and her PIN.

7. Server Authenticates Asker: Upon receipt of this
information, the server identifies in its database an active
vouching session for this asker. A vouching session is con-
sidered active if it has been initiated by a valid helper within
a short time period as specified by the system policy (e.g., 3
minutes). (This timeout helps ensure tight synchronization
of the vouching process, and that vouchcodes are not saved
for later use.) The server verifies the asker’s PN and V C.
The server either “accepts” the authentication attempt or
“rejects”, i.e., aborts the vouching session; either way, the
asker is informed of the result.

8. Temporary Password: If the asker has successfully
authenticated, she is prompted to choose a temporary pass-
word TP and granted access for the current session. The
asker can use this temporary password together with PN for
subsequent sessions, while the vouchcode becomes invalided.
The asker’s temporary password expires after a time period
specified by system policy (e.g., one or two days).

One important reason to have the user convert her vouch-
code into a temporary password is that a user-selected pass-
word is likely to be easier to remember than a system-
generated vouchcode. We touch on security-related reasons
in our discussion below.

9. Logging: An important component of a voucher sys-
tem is its support for detection mechanisms based on user
notification and administrator audit. We propose that con-
firmations of successful/failed asker authentication be sent
to the helper and to the asker (and, as a system option, to
an administrator). Additionally, an audit log should record
all transactions in the vouching system.

Briefly, then, in order to obtain a vouchcode for use by
the asker, the helper makes use of the registered helper-asker
association and his ability to perform strong authentication.
The asker employs this vouchcode and her PIN to obtain a
temporary password. This password serves effectively as a
token substitute: the asker may use it in lieu of a tokencode
wherever system policy permits.

4.3 Defining and Claiming the Voucher
System Properties

4.3.1 Correctness
The correctness property requires that a legitimate user

U (claiming to be u) when asking H (claiming to be h) for
help will will always be successful in getting the server S to
accept provided H(H,U). To see that correctness holds, we
simply examine the steps of the protocol.

1. In steps 1 and 2, H and U will recognize each other
and U has a way to assure H of her identity with
probability 1.

2. In steps 3 and 4, H will cause S to accept its au-
thentication with probability 1. This is based on the
correctness claim of the regular authentication proto-
col.

3. Successful authentication will result in a vouchcode
V C that will get to U in step 5. The server S is ex-
pecting this value within a vouching session. Since
H(H, U), S will produce a V C associated with H and
U with probability 1.

4. In steps 6, 7, and 8, U will be able to present her
identifier u, PN , and V C correctly to the server, which
will accept with probability 1. Furthermore, U will be
able to enter his chosen temporary password TP .

5. Finally, the log messages will be always be received by
U and H , who expect them as a positive feedback.

4.3.2 Security
We now discuss the security of our proposed vouching

system by enumerating several formal properties and dis-
cussing specific types of attacks. Practical security concerns
such as social engineering will be treated in the next section.

We assume in our discussion here that an adversary does
not benefit from collusive attacks—as should be the case in
well-designed systems enforcing independence among user
PINs and authenticators. In fact, when an adversary is at-
tacking a user in the system, we may assume it controls all
other users who are not involved in the session and their
secrets and we merely concentrate on a specific invocation.
We also assume the trustworthiness of the enrollment pro-
cess, and the system administration and server S. If these
assumptions did not hold, the primary authentication mech-
anism itself would be vulnerable.

To describe the desired security properties we need to first
clarify the capabilities of the Adversary. By an Outside at-
tacker we mean an attacker who is not enrolled in the sys-
tems as either a user, or a helper. By an Inside attacker we
mean an attacker who is either an asker, helper, or another
inside party who acts under a false identifier or without the
preconditioned relationship holding.

Prevention Requirements: In an authentication cere-
mony, the most important aspect of security is to prevent
unauthorized access. We define the prevention aspect of se-
curity in terms of the following adversarial invocations. Any
adversary taking part in a protocol in any of these instances
should lead to S rejecting with high probability.

173

• (User impersonation by an outsider): An instance where
ACV (S, A(u), H(x)) where A �= U should not be ac-
cepted. The actual helper H may or may not be
present.

• (Helper impersonation by an outsider): An instance
where ACV (S, U(x), A(h)), where A �= H , should not
be accepted. Such an instance should fail regardless of
the user.

• (Helper not registered:) When (U ′, H ′) /∈ H, an in-
stance of the form ACV (S, U ′(u′), H ′(h′)), should not
be accepted. Such an instance should fail even if U ′

and H ′ are colluding.

• (H attacking U :) An instance ACV (S, H(u), H(h)),
where H is an adversary trying to impersonate U ,
should not be accepted.

• (U attacking H :) An instance ACV (S, U(u), U(h)),
where U is an adversary trying to impersonate H ,
should not be accepted.

Detection Requirements: The following detection prop-
erties deal with the case in which an attacker has managed
to get the server to accept the authentication attempt. In
such a case, detection is a second line of defense.

• (Detecting user impersonation by an outsider): In case
of a successful instance where ACV (S, A(u), H(x)) with
A �= U (user impersonation, with or without the ac-
tual helper H being present), U will detect it in the
log.

• (Detecting helper impersonation by an outsider): In
case of a successful instance ACV (S, U(x), A(h)), where
A �= H , i.e., helper impersonation by a third party, re-
gardless of the user, H will detect it in the log.

• (Illegal help request:) In case of a successful instance
where ACV (S, U ′(u′), H ′(h′)) where (U ′, H ′) not in H
(U ′ and H ′ are colluding in this attack), U and H will
detect it in the log.

• (Detecting H attacking U :) In case of a successful in-
stance where ACV (S, H(u), H(h)), where H is an ad-
versary trying to impersonate U , U will detect it in
the log.

• (Detecting U attacking H :) In case of a successful in-
stance where ACV (S, U(u), U(h)), where U is an ad-
versary trying to impersonate H , H will detect it in
the log.

Next we discuss how the above definition is satisfied by
the protocol.

Outside Attacker Impersonates User: We first con-
sider the case of an outside attacker who targets user U
enrolled in the voucher system as an asker. Of course, the
attacker can—irrespective of the presence of the vouching
system—impersonate U by obtaining or guessing her current
TK and PN and using the regular authentication session,
but this was shown to be an event of small (εδ) probability.

The adversary A may start an instance as user U , with
A �= U , but he will fail with overwhelming probability to
convince H that he is U in step 2.

The adversary might also try to obtain U ’s vouchcode and
PIN. The first way for the attacker to obtain U ’s vouchcode
is by guessing it (knowing that U has asked for help and a
V C exists). But guessing PN and V C is not easier than
guessing TK and PN .

In the unlikely event that the user has been impersonated,
she will be able to detect it in the log.

Outside Attacker Impersonates Helper: Next the
attacker may attempt to impersonate the helper. This is an
instance of the protocol AC(S, U(u), A(h)) where A �= H .
In this case step 3 will fail with probability 1 − εδ. Again,
in the unlikely event of success the helper will detect the
attempt in the log.

Unregistered Helper: Another attack on the system
can be an instance where the user U ′ and the helper H ′ do
not have the precondition relation (H ′, U ′) ∈ H. While a
helper can obtain a vouchcode for a user who is a registered
asker for H ′, the system will not produce a vouchcode in
step 4 for user U ′ who is unregistered. In the unlikely event
that a legal helper H is impersonated by an adversary, H
will recognize an interactive logging event that he has not
actually taken part in.

Helper attacks Asker: Once an asker is assigned a
helper in the enrollment process there is a risk that the
helper attacks the asker. H can obtain a vouchcode for
U without even involving her. By guessing U ’s PN (with
probability ε in our model), H can then impersonate the
asker in the voucher system.

Briefly, then, the main new risk that the vouching proto-
col introduces is that security against malicious helpers is
reduced to that of obtaining the asker’s PIN. In case of a
successful attack, U finds a session in the log in which she
did not participate.

We remark that in our definition of an authentication cer-
emony we assume that a party presents itself with a consis-
tent identity throughout the protocol instance. In reality,
in the vouching ceremony, an adversary acting as a helper
may present itself to a user under one identity and to the
system under another identity. The analysis of such attacks
with divergent identities in very similar to our analyses with
consistent identities.

Asker attacks Helper: When an asker U attempts to
attack the helper in our model, it can only ask for help, au-
thenticate itself, and obtain a vouchcode. No helper-specific
information is leaked or made available to the asker. Thus,
an asker can only attack a helper as an outsider, and no
better.

4.4 Pragmatic consideration of Attacks
Beyond the Model

Remarks on Outsider Attacks: We have formally
modelled attacks on vouchcodes via a guessing or misbehav-
ing adversarial helper. We note that in practice an avenue
for an outside attacker is to obtain a vouchcode in transit,
for example if it is communicated over insecure e-mail from
H to U . This is one reason why our system discourages or
prohibits e-mail on the asker-helper channel. As we discuss
below, an attacker can alternatively attempt to extract U ’s
vouchcode from H via social engineering. To ensure that
such refined attacks do not weaken the vouchcode system,
it is desirable that their collective probability be at most
a small value δ. (Quantifying this probability rigorously in
real life systems is a challenge, of course.) One reason to

174

have the asker convert a vouchcode into a passcode (i.e.,
step 8 of our vouching protocol) is to minimize the risk of
vouchcode compromise by an outside attacker. If, for exam-
ple, the helper provides the vouchcode to the asker on a slip
of paper, then it is particularly desirable that the vouchcode
expire quickly.

Remarks on Illegal Helping: The system should avoid
situations where it is easy for a helper to get the PIN of the
asker, e.g., when the asker is tempted to use the helper ma-
chine (for example in the helper’s office) in order to get a
temporary password, while the helper has a malicious soft-
ware that logs and snatches the asker’s PIN.

Remarks on Asker Attacking Helper: Playing the
role of the helper in an actual real world setting carries some
risk. U could ask H to vouch for her—i.e., request a vouch-
code on her behalf—on her own machine. U can make a
compelling case for this, since it may be convenient or make
H look impolite if he refuses. U , however, if malicious, could
have keystroke-logging software on her computer that cap-
tures H ’s PIN.

Such attacks are even more of a concern when two parties
are enrolled to vouch for one another. As discussed above,
it is enough for a helper to know a user’s PIN in order to
impersonate her.

Of course, if H authenticates on U ’s machine—or any
other untrusted machine—for any purpose, he exposes him-
self to the possibility that hidden malicious software will
capture his tokencode and PIN in real time and imperson-
ate him completely. This problem is not specific to vouching:
an organization that allows any sharing of machines exposes
itself to such vulnerabilities whether or not a vouching sys-
tem is in place. It is possible, though, that the presence of a
vouching system may encourage sharing of machines. Some
countermeasures to asker-helper attacks are possible. For
example, the vouching system can enforce a policy whereby
an asker is removed from the helper’s list of helpers until
the helper changes his PIN.

5. AN IMPLEMENTATION
RSA Laboratories developed a prototype implementation

of Voucher-based authentication. The system consisted of
three components: an asker web application, a helper web
application, and an administrative program. Both web ap-
plications consisted of sequences of Common Gateway In-
terface (CGI) applications developed in C++ and running
on the Microsoft r© Internet Information Services (IIS) web
server. The administrative application was a Windows r© ap-
plication developed in C++ using the Microsoft Foundation
Classes (MFC). The underlying database, common to all the
applications, was built in Microsoft Access.

The asker application simulates a generic web application
protected by RSA SecurID r©. The subsequent pages walk
the asker through the steps required to authenticate without
possession of a token. These web pages are as follows:

• Asker Page 1: The normal user login page for SecurID,
with fields for user name and PASSCODE. The spe-
cial, added feature for vouching is a button labeled
“Forgot/lost my Token.”

• Asker Page 2: Instructions for asker to contact a helper,
with a form to enter the helper’s login name.

• Asker Page 3: A form for entering the asker’s PIN and
the vouchcode supplied to the asker by the helper.

• Asker Page 4: If the PIN and vouchcode are both de-
termined to be correct, this page displays another form
that allows the asker to enter and confirm a temporary
password. (The system may enforce security restric-
tions on the form of the password. For example, in our
prototype, passwords must be at least eight characters
in length.)

• Asker Page 5: If the password is confirmed, the asker
is presented with another login page where the PIN
and temporary password are used to log in.

• Asker Page 6: If the PIN and temporary password are
both verified successfully, the asker is presented with
a page confirming successful authentication.

The helper application allows the helper to retrieve vouch-
codes for askers. It consists of only two pages:

• Helper Page 1: The helper is presented with a login
form with fields for his user name and passcode, along
with the name of the asker being assisted.

• Helper Page 2: If the helper’s passcode is success-
fully verified, a vouchcode is generated for the specified
asker. The vouchcode is displayed to the helper who
is then responsible for conveying the value to the asker.

The administrative application controls overall system con-
figuration and the vouching capabilities of individual askers.
The application uses two dialogs, a general “Voucher Man-
agement” dialog and an asker-specific “Helper Management”
dialog. The Voucher Management dialog controls several
system parameters, such as the length and validity periods
of both vouchcodes and temporary passwords. The Helper
Management dialog specifies rules for the set of permissi-
ble asker-helper relationships. In our prototype, these re-
lationships are confined within groups that are pre-defined
by an administrator database. In a real application, this
database might be imported from an external source, such
as an HR database, in order to take advantage of previously
established groups. In our prototype, a given user may be
designated as permitted to help anyone in the same group,
permitted to help selected askers in the same group, or pro-
hibited from helping any askers.

5.1 Implementation issues
Two significant questions arose in the implementation of

our prototype voucher system. The first is this: should the
application provide the asker with a list of her helpers? The
difficulty, of course, is that since the asker has not yet au-
thenticated to the system, such a list would be accessible
to anyone. Helper lists could open the system up to social
engineering attacks, since an attacker could learn the list of
helpers for an asker he wishes to impersonate. We could, of
course, require an asker to enter her PIN in order to see her

175

list of helpers. This approach, however, would expose the
PIN to a new vector of guessing attack. Omitting helper
lists entirely could prove problematic because it may not be
reasonable to expect askers to remember all of their helpers,
especially if vouching is used infrequently. In our prototype,
we have chosen not to list helpers, but this should in general
be a matter of policy.

The other question involves the seeding of suitable groups
in the Helper Management application. In an organization
of any size, having individual helpers authorized to vouch for
all askers is problematic, since there may be many askers
whom a given helper does not know. A logical alterna-
tive is to have supervisors act as helpers for their subor-
dinates, but this may prove to be an unacceptable burden
for the supervisors—and an embarrassment for their subor-
dinates. Our conclusion is that the most suitable arrange-
ment is for groups to consist of organizational peers. This
should work well: we can generally assume the askers within
a group are familiar with each other and willing to act as
helpers. Some form of peer-level group structure exists in
most organizations—and, indeed, most HR databases—and
need not be created just for the purpose of using vouchers.

We are presently in the process of conducting a small pilot
study to understand user interaction with and refine our
prototype system.

6. SOCIAL ENGINEERING
The security of a voucher system depends critically, of

course, on how users interact within its framework. In addi-
tion to ordinary data-security considerations, as reflected in
our security model, it is vital to consider the various poten-
tial vulnerabilities to social engineering. Simple refinements
to a vouching system—some of them already incorporated
into our prototype—can considerably strengthen the secu-
rity of the system as a whole. In this section we explore the
threat of social engineering and related problems and some
possible countermeasures.

6.1 Tailgating
Politeness is often at odds with security. For example, the

practice of “tailgating,” in which employees allow people to
follow them when they unlock doors, undermines the secu-
rity of physical access-control systems in office buildings. A
desire for politeness often causes employees to grant access
even to strangers, rather than to challenge them. A näıvely
deployed voucher system can be similarly vulnerable to tail-
gating. If Harry receives a telephone call from a colleague
Alice asking for his help, Harry may well feel uncomfortable
refusing—even if he doesn’t know Alice well (or at all).

In contrast to a physical-access system, a voucher system
can impose restrictions on asker-helper relationships and
activity. In our prototype, the administrator defines the
relationships permissible in the vouching system, allowing
vouching, for example, only between peers of well-defined
corporate groups. The aim of such features is, of course, to
ensure against situations in which Harry feels pressure to
offer help to an inappropriate asker Alice.

One can imagine a broad range of alternative mechanisms
for constraining helper-asker relationships. The possibili-
ties are particularly rich when an interface exists between
a vouching system and other communication systems. For
instance, a vouching system integrated with a telephone sys-

tem might automatically enroll Alice as an asker for Harry
if the two speak on the telephone on a regular basis. (Such
solutions require sensitivity to privacy concerns, of course.)
Additionally, Harry might only be permitted to vouch for Al-
ice when she calls from a telephone number that Harry him-
self has recently called. For deployment of voucher systems
in consumer environments, where administrative oversight
and user awareness of security may limited, such automated
approaches could be particularly attractive. They are proba-
bly not practical in today’s environments, but could become
so in future, when VoIP and similar technologies result in
tighter integration of communication systems.

6.2 Weakly authenticated contact
Similar in spirit to the problem of tailgating is that of

weakly authenticated contact. Suppose that Alice is regis-
tered as an asker for Harry, and Harry receives a request
via e-mail from someone purporting to be Alice. Should he
offer his help? Such e-mail could, of course, originate with
an entirely unauthenticated source, e.g., a public e-mail ac-
count. Without proper safeguards, Harry could easily end
up helping an impostor.

It is important that vouching policies prohibit poorly au-
thenticated contact by an asker. Helping should be forbid-
den to askers who communicate by e-mail—unless, perhaps,
the e-mail is internal to a company, followed up with a phone
call, or otherwise appropriately authenticated. The safest
policy is to mandate telephone or face-to-face contact.

Policy enforcement, however, is a tricky matter. Ideally,
as suggested in our discussion of tailgating, an integrated
platform might automate policy enforcement. In existing
systems, with their loose affiliation among modes of com-
munication, such automation would be difficult to achieve.
The most practical approach, therefore, is to require helpers
to indicate how they have been contacted by askers, and to
authorize or deny vouching transactions accordingly. We are
in the process of implementing a pull-down menu (in Helper
Page 1) for this purpose in our prototype; the descriptions
“E-mail,” “Telephone,” “In person,” and “Other” specify
the form of asker contact. If the helper chooses “E-mail” or
“Other,” the system warns the helper that the mode of con-
tact is prohibited by system policy and denies the vouching
transaction.

We emphasize the importance of allowing the helper to
specify the form of asker contact accurately, even if the form
of contact violates system policy. Otherwise, the helper may
be tempted simply to bypass the protective mechanism. For
example, if a menu of contact options lists only the choices
“Telephone” and “In person,” users contacted by e-mail may
be tempted just to select “Telephone” because of the lack of
a more accurate option (in spite of any warnings). Delicate
design decisions can have a big impact. Even the order
of menu choices is important: the pull-down menu in our
prototype gives “E-mail” as a first choice, so that careless
menu selection results in rejection of the helping request.

Another mechanism that can help prevent inappropriate
use of vouching requests by e-mail is reduction or elimina-
tion of the helper’s ability to cut and paste voucher codes.
For example, a vouchcode might be displayed as an im-
age, rather than text. (Some people display their e-mail
addresses on web pages this way to discourage bots from
harvesting them.)

Of course, a user who wishes to bypass the contact pol-

176

icy of the vouching system can do so. Our belief, however,
is that most users will willingly comply with system policy
provided that such compliance is not onerous. Of course,
administrator-level system auditing can be a powerful addi-
tional mechanism for policy enforcement. We believe that
the e-mail notices in our prototype—a kind of peer-level au-
dit mechanism—will also help curb abuses.

6.3 Spidering
Any systemic weakness in the second factor used along-

side voucher codes (the PIN in our prototype system) poses
a special hazard. Given such weakness, an attacker that
has compromised one helper can readily compromise other
accounts. Consider, for example, an organization in which
PINs are user-selected and many users choose the PIN ‘1234’
for convenience. An attacker who has compromised Harry’s
account can simulate a voucher request from Alice, perhaps
guess Alice’s PIN, compromise Alice’s account, proceed to
attack Alice’s enrolled askers, and so forth. An organization
with a loose social network and thus high exposure to social
engineering would be similarly at risk.

The helper-asker relationships in a voucher system may
be represented very simply as a digraph D in which each
user is represented by a node and each enrolled helper-asker
relationship as a directed edge. A natural strategy for an
attacker that has compromised one node is to exploit weak
adjacent edges in order to compromise as much of the system
as possible. We refer to such an attack—and its exploitation
of the web of helper-asker relationships—as spidering.

We emphasize that traversal of any edge in D by an
attacker requires compromise of the second factor in the
vouching system (users’ PINs). Thus the best defense against
spidering is a sound vouching process combined with a good
second factor. Other defensive mechanisms are possible,
however. Among these are:

1. Dynamic digraphs: The digraph D might evolve as
a function not just of user relationships, but also re-
cent voucher assignments. For example, if Alice has
authenticated using a voucher assigned by Bob, Alice
herself might lose her permission to assign a voucher
to another employee for a certain period of time or un-
til she re-authenticates in a stronger manner. Other
throttling rules might also apply. For example, sup-
pose that an edge in D is colored if vouching has taken
place recently between the corresponding helper and
asker. The vouching system might prohibit vouching
or alert administrators if the diameter of a colored sub-
graph grows beyond some pre-specified threshold.

2. Multiple vouchers: To extend the digraph-based view
of a voucher system, a user may be able to authenticate
only as the result of a joint operation among several
connected users. For example, Alice might only be
able to authenticate in a voucher system on receiving
vouchers from two authorized helpers, rather than one.

6.4 Lazy vouching
Of course, a voucher system should be easy to use. If

we make it too easy, though, users may be tempted to rely
on the voucher mechanism as a primary authenticator. We
refer to such undue reliance on vouching as lazy vouching.

For example, Alice might decide never to bother obtaining
a SecurID token from system administrators, but instead

rely on Harry whenever she needs to authenticate. In some
environments, this may not be a problem. After all, lazy
vouching does not introduce a new technical vector of attack.
Lazy vouching can undermine system security in two ways,
however: (1) In a voucher system with administrative audit,
lazy vouching can make vouching seem unexceptional, and
thereby obscure system breaches; (2) By desensitizing users
to the process of vouching and the surrounding checks, lazy
vouching can increase risks of social engineering.

For these reasons, we believe that vouching systems should
be designed and configured to discourage lazy vouching. In
practice, we believe that the light burden of having to fill
out browser forms in our prototype is a good deterrent.

7. CONCLUSIONS
This paper introduces the concept of vouching as a tool

for on-line authentication. Vouching directly leverages hu-
man relationships, and this work can be seen as part of a
broad exploration of the interplay between social networks
and user authentication. Breaking the common concep-
tual identification of a user with her client machine, and
common modality of single-user involvement in authentica-
tion, we have extended the classic authentication triad of
“what you have,” “what you know,” and “what you are.”
In addition to introducing the concept of vouching as a
tool for on-line authentication, this paper provides a rough
security model for analyzing vouching, and discusses the
special social-engineering concerns of a multi-user protocol.
We present a specific protocol for vouching with hardware
tokens, our implementation with the well known SecurID
product, and thereby demonstrate both feasibility and us-
ability.

The basic vouching system we have outlined has been de-
signed to be as simple and secure as possible, but several
variants and extensions are worth further exploration:

Alternate Factors: Vouching need not be restricted to
hardware tokens and accompanying PINs. The basic vouch-
ing procedure could work with a different primary authen-
tication factor. As an example, in the protocol we describe
for SecurID, a voucher system could permit swapping of the
roles of the tokencode and PIN to deal with the case where
an asker has forgotten her PIN but still has her token.

Restricted privileges: To enhance the security of a vouch-
ing protocol and discourage lazy vouching, a voucher system
might grant restricted privileges to askers. For example, the
system might permit viewing of e-mail, but not sending, or
might limit access to company-sensitive documents.

Asker Selection of Helpers: In some deployments the
involvement of an administrator or supervisor in enrollment
might be cumbersome. It may in some cases be desirable
for askers to designate their own helpers. The security risks
of this type of approach deserve further scrutiny.

8. REFERENCES
[1] v-GO SSPR 5.0 product description. Referenced 2006

at www.passlogix.com.

[2] Simple Distributed Security Infrastructure (SDSI) web
page, 2001. Referenced 2006 at
http://theory.lcs.mit.edu/ c̃is/sdsi.html.

177

[3] PeopleSoft and Courion deliver integrated password
management solution, 27 August 2001. Press release.
Referenced 2006 at www.courion.com.

[4] M. Blaze, J. Feigenbaum, and A. D. Keromytis. The
KeyNote trust management system. In Security
Protocols International Workshop, pages 59–63.
Springer-Verlag, 1998. LNCS no. 1550.

[5] M. Blaze, J. Feigenbaum, and M. Strauss.
Compliance-checking in the PolicyMaker
trust-management system. In Financial Cryptography,
pages 251–265. Springer-Verlag, 1998. LNCS no. 1465.

[6] W. Eazel. ‘Live phishing experiment nets consumers
hook, line, and sinker. SC Magazine, 8 November
2005. Referenced 2006 at www.scmagazine.com.

[7] C. Ellison. UPnP security ceremonies design
document: For UPnP device architecture 1.0, 3
October 2003. Referenced 2006 at
http://www.upnp.org.

[8] C. Ellison. IETF RFC 2692: SPKI requirements,
September 1999.

[9] V. Griffith and M. Jakobsson. Messin’ with Texas:
Deriving mothers maiden names using public records.
In J. Ioannidis, A. D. Keromytis, and M. Yung,
editors, Applied Cryptography and Network Security
(ACNS), pages 91–103. Springer-Verlag, 2005. LNCS
no. 3531.

[10] RSA Security Inc. RSA SecurID authenticators, 2006.
Product Specification. Referenced 2006 at
www.rsasecurity.com.

[11] J. Jubak. Globalization isn’t what’s killing GM. MSN
Money, 29 November 2005. Referenced 2006 at
moneycentral.msn.com.

[12] D. V. Klein. Foiling the cracker: A survey of and
improvements to, password security. In UNIX Security
II: USENIX Workshop Proceedings, pages 5–14,
Berkeley, CA, 1990.

[13] J. Leyden. Office workers give away passwords for a
cheap pen. The Register, 18 April 2003. Referenced
2006 at www.theregister.co.uk.

[14] J. M. McCune, A. Perrig, and M. K. Reiter.
Seeing-is-believing: Using camera phones for
human-verifiable authentication. In IEEE Symposium
on Security and Privacy, pages 110–124, 2005.

[15] K. D. Mitnick and W. L. Simon. The Art of
Deception: Controlling the Human Element of
Security. Wiley, 2002.

[16] T. Pullar-Strecker. NZ bank adds security online.
Sidney Morning Herald, 8 November 2004. Referenced
2006 at www.smh.com.au.

[17] B. Ross, C. Jackson, N. Miyake, D. Boneh, and
J. Mitchell. Stronger password authentication using
browser extensions. In P. McDaniel, editor, USENIX
Security, pages 17–32, 2005.

178

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

