SYSTEM AND METHOD FOR AUTHENTICATION SEED DISTRIBUTION

Inventors: John G. Brainard, Sudbury, MA (US); Burton S. Kaliski, Jr., Wellesley, MA (US); Magnus Nyström, Concord, MA (US); Ronald L. Rivest, Arlington, MA (US)

Assignee: RSA Security Inc., Bedford, MA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Appl. No.: 09/304,775
Filed: May 4, 1999

Int. Cl.
H04L 9/00 (2006.01)
H04L 9/32 (2006.01)

U.S. Cl. 380/44; 380/277; 713/168; 713/169; 713/171; 713/176; 713/200

Field of Classification Search 713/168-176; 380/44, 277

See application file for complete search history.

References Cited
U.S. PATENT DOCUMENTS
4,104,694 A 8/1978 Hargrove
4,145,568 A 3/1979 Ehrat
4,145,569 A 3/1979 Ehrat
4,320,387 A 3/1982 Powell
4,438,824 A 3/1984 Mueller-Schloer
4,471,216 A 9/1984 Herve
4,509,093 A 4/1985 Stellberger
4,536,647 A 8/1985 Atalla et al.
4,543,657 A 9/1985 Wilkinson
4,575,621 A 3/1986 Dreibus
4,578,530 A 3/1986 Zeidler
4,582,434 A 4/1986 Plangger et al.

OTHER PUBLICATIONS
FIPS Publ. 190, "Guideline for the use of advanced authentication technology alternatives", Sep. 28, 1994, section 4; section 4.4.2.1 particularly.*

ABSTRACT

In one embodiment of a user authentication system and method according to the invention, a device shares a secret, referred to as a master seed, with a server. The device and the server both derive one or more secrets, referred to as verifier seeds, from the master seed, using a key derivation function. The server shares a verifier seed with one or more verifiers. The device, or an entity using the device, can authenticate with one of the verifiers using the appropriate verifier seed. In this way, the device and the verifier can share a secret, the verifier seed for that verifier, without that verifier knowing the master seed, or any other verifier seeds. Thus, the device need only store the one master seed, have access to the information necessary to correctly derive the appropriate seed, and have seed derivation capability. A verifier cannot compromise the master seed, because the verifier does not have access to the master seed.

35 Claims, 5 Drawing Sheets
U.S. PATENT DOCUMENTS

4,800,590 A 1/1989 Vaughan
4,849,613 A 7/1989 Eisele
4,856,062 A 8/1989 Weiss
4,885,778 A 12/1989 Weiss
4,890,323 A 12/1989 Beker et al.
4,928,998 A 5/1990 Dannhaeuser
4,944,008 A 7/1990 Ploemenka et al.
5,023,908 A 6/1991 Weiss
5,046,125 A 9/1991 Takizawa
5,058,161 A 10/1991 Weiss
5,097,505 A 3/1992 Weiss
5,168,520 A 12/1992 Weiss
5,180,902 A 1/1993 Schick et al.
5,206,905 A 4/1993 Lee et al.
5,237,614 A 8/1993 Weiss
5,479,512 A 12/1995 Weiss
5,485,519 A 1/1996 Weiss
5,592,553 A 1/1997 Guski et al.
5,657,388 A 8/1997 Weiss
5,717,756 A 2/1998 Coleman
5,737,421 A 4/1998 Audebert
5,802,176 A 9/1998 Audebert
5,887,065 A 3/1999 Audebert
5,937,068 A 8/1999 Audebert
6,141,760 A 10/2000 Abadi et al.

FOREIGN PATENT DOCUMENTS

EP 0148960 B1 7/1985
EP 0678836 B1 10/1995
FR 2607544 6/1988
JP 2835433 6/1997
JP 2884338 4/1999
WO 88/06826 9/1988

OTHER PUBLICATIONS

RSA Laboratories, a division of RSA Data Security, Inc.

* cited by examiner
FIG. 3

STEP 200
GENERATE S_m

STEP 201
DERIVE $S_v = KDF(S_m, V, id)$

STEP 202
TRANSMIT S_v TO VERIFIER
FIG. 5

SHARE S_M

DERIVE $S_V = KDF(S_m, V_d)$

GENERATE AUTH. CODE FROM S_V

TRANSMIT AUTH. CODE

AUTH. CODE

RECEIVE AUTH. CODE

AUTHENTICATE USING AUTH. CODE

STEP 244

STEP 245

STEP 246

STEP 247

STEP 248

STEP 249

STEP 250

STEP 240

STEP 241

STEP 242

STEP 243

GEN. AUTH. CODE FROM S_V

TRANSMIT S_V TO VERIFIER

GEN. S_M

SHARE S_M

DERIVE $S_V = KDF(S_m, V_d)$
SYSTEM AND METHOD FOR AUTHENTICATION SEED DISTRIBUTION

TECHNICAL FIELD

This invention relates to the field of computer-based security systems and, more particularly, to the distribution of authentication seeds.

BACKGROUND INFORMATION

In security systems, verifiers are used to authenticate, that is to verify the identity of a person or other entity such as a computer. When an entity has been authenticated, meaning that the identity of the entity has been determined by the verifier, the entity is allowed access, for example physical access to a physical location, in the case of a physical security system, or electronic access to information (e.g. financial records, computer data, network access, etc.), in data security systems.

There are many possible configurations for verifiers. Verifiers can receive input from keypads, keyboards, card readers, cameras, microphones, telephone and computer networks, and other such data input devices. As output, verifiers activate physical mechanisms, send electronic data signals, configure software, or take such other action to provide access. Verifiers can be implemented in various ways, for example as special purpose electronic and/or mechanical systems, or as general purpose computers, possibly, but not necessarily, in electrical communication with special-purpose hardware.

Some verifiers use knowledge of a shared secret to authenticate an entity. For example, knowledge of a personal identification number, password, or passphrase can be used to verify an entity. At the time that authentication takes place, the entity either reveals the secret or otherwise proves knowledge of the secret. If the entity shows knowledge of the secret, the entity is authenticated.

In some systems, an entity uses a physical or digital device, referred to as a token, that incorporates a secret. The secret, stored in some manner in the device, may or may not be known to the entity using the device. A common door key is one simple mechanical example of such a device. The shape of the key is a shared secret. When a key is inserted into a lock, the lock verifies that the key is of the correct shape. The door key shows knowledge of the secret to the verifier (the lock), and allows entry. An attacker who learns the exact shape of the key can generate an appropriate token and authenticate to the lock.

A bank card is a device that can contain a secret identification number that is revealed when the card is accessed by an automatic teller machine (“ATM”). Some bank cards incorporate cryptography to make forging of bank cards more difficult. Also, to provide an added layer of security, automatic teller machines require the user to possess the device (bank card) containing secret information, and require the user to enter a Personal Identification Number (“PIN”), which is another secret shared between the bank’s verifier and the account holder.

Some devices, to prove knowledge of a secret contained within the device, provide an authentication code that is based upon, but different from, the secret code contained within the device. The use of such an authentication code allows the device to show knowledge of a secret without revealing it. In some systems, the authentication code is based on time-dependent information. The use of this sort of device has security benefits in that the secret is more difficult to determine by eavesdropping in the communications channel between the entity and the verifier, since the secret itself is not revealed.

One example of this sort of device used by a person to authenticate to a verifier is a token that includes an authentication code display. The person reads an authentication code from the display, and transmits the authentication code to the verifier. In such a system, the user may never know the shared secret. Some such tokens accept user input, such as a PIN, and provide a result in response to the user input as well as other information (such as time-dependent information).

One token of this type stores a secret code, referred to as a seed, and mathematically combines the secret code with a time-varying value and a personal identification code provided by the user to generate an authentication code. The mathematical combination takes place in such a way that the secret code stored in the token cannot be determined from the result—the secret code is combined cryptographically with the current time and other information. In another system that is a challenge-response system, meaning that the verifier transmits a challenge for the user to respond to, the secret code is cryptographically combined with the challenge to produce an output that is sent to the verifier as a response to the challenge.

To verify an entity using a shared secret, the verifier needs to have knowledge of the shared secret. In a security system that verifies a large number of entities, there is a tradeoff between security and verifier availability. If there are a large number of verifiers, there is more likely to be a verifier available when a particular entity requires authentication. However, as the number of verifiers that have knowledge of a secret increases, it is increasingly more difficult to maintain the secrecy of the secret. For example, as the number of verifiers increases, so does the chance that one of the verifiers can be compromised in some fashion. Yet, if the number of verifiers is limited, it is possible that a verifier will not be available to authenticate an entity when the entity requires authentication.

In addition, a single device presently cannot be used to access multiple independent services. For example, the same device cannot be used to access an enterprise’s computer system and a financial institution’s web page. Even if each independent service trusts the user and the device, the services do not trust each other. In the example just mentioned, a bank does not trust the user’s employer. If each of the services share the same secret with the device, then each service has information that can compromise the others. This prevents use of a single device from being used with verifiers associated with independent services.

The utility of a security system is limited by the number and variety of verifiers to which an entity can conveniently authenticate. If the entity interacts with a number of verifiers that share different secrets with that entity, the entity will have to manage a number of secrets (or devices containing secrets), where each secret is used to authenticate to one or small number of verifiers. Managing a large number of secrets adds complexity to a computer-based entity, and is inconvenient for a human entity. Even the process of securely sharing a different secret between an entity and each of a large number of verifiers can be inconvenient and cumbersome.

Similar issues arise in the area of secure communications, where a single shared secret is used as an encryption key. To communicate securely with many other entities, an entity either has to have a separate shared secret with each other
entity, or has to share the same secret with more than one entity, thereby reducing the secrecy (and security) of the shared secret.

Public key cryptography can be used to avoid the need to securely share a secret between each pair of entities that wish to communicate or authenticate. However, public-key cryptography is impractical in many user and device authentication settings, at least partly because of the large computation power required to accomplish the calculations, and the complexity of managing certificates and revocation lists.

SUMMARY OF THE INVENTION

The system and method of the present invention allows an entity to authenticate to many verifiers without having to manage a large number of secrets. An authentication system that is simple, and that allows the user to manage just one secret, yet allows the user to authenticate with multiple verifiers is a great improvement over the prior art. For example, a token-based system and method could allow authentication with some or all of such diverse systems as (but not limited to) file servers inside and outside of one or more enterprises, remote access servers, web servers associated with various services (e.g. financial, business, utilities, entertainment, etc.), other computers, a physical security system within a home or office, and a bank automatic teller machine. Such an authentication method and system avoids the complexity and cost of managing different secrets or devices for different services.

The benefit of associating a single secret with a user that is useful with multiple verifiers is beneficial even if the device is an electronic wallet stored on a personal computer, where the memory and processing limitations are much less restrictive than in a smart card or other small-sized token with limited memory and processing power. The simplicity allows for smaller, faster implementations, and also avoids the complexity of sharing each secret.

In an embodiment of a user authentication method and system according to the invention, a device shares a secret, referred to as a master seed, with a server. The device and the server both derive one or more secrets, referred to as verifier seeds, from the master seed, using a key derivation function. The server shares a verifier seed with one or more verifiers. The device, or an entity using the device, can authenticate with one of the verifiers using the appropriate verifier seed. In this way, the device and the verifier can share a secret, the verifier seed, without that verifier having access to the master seed, or any other verifier seeds. Thus, the device need only store the one master seed, have access to the information necessary to correctly derive the appropriate verifier seed, and have seed derivation capability. An individual verifier cannot compromise the master seed, because the verifier does not have access to the master seed. In addition, if a particular verifier is compromised, only that verifier seed is affected, and other verifiers using other verifier seeds are not compromised.

In one aspect of the invention, a method for distributing authentication information associated with a device includes generating a master seed associated with the device, deriving a verifier seed using the master seed and information associated with a verifier, and transmitting the verifier seed to the verifier. In one embodiment, the method includes, after the generating step, the step of transmitting the master seed to the device. In another embodiment, the method includes, after the generating step, sharing the master seed with the device and a server. In another embodiment, the method includes, after the transmitting step, deriving a second verifier seed using the master seed and information associated with a second verifier, and transmitting the second verifier seed to the second verifier. In another embodiment, the method includes, after the transmitting step, generating an authentication code in response to the verifier seed.

In one embodiment, the generating step includes generating an authentication code in response to the verifier seed and a time dependent value. In another embodiment, the method includes the step of authenticating using the authentication code. In another embodiment, the authenticating step includes authenticating a user or a device by verifying the authentication code. In another embodiment, the authenticating step includes transmitting the authentication code to the verifier. In another embodiment, the generating step includes randomly generating and/or pseudorandomly generating the master seed.

In one embodiment, the deriving step includes deriving the verifier seed in response to a time identifier. In another embodiment, the deriving step includes deriving a verifier seed by using the master seed and information associated with a verifier as inputs to a key derivation function. In another embodiment, the key derivation function is a hash function.

In another aspect of the invention, a system for distributing authentication information associated with a device includes a seed generator for generating a master seed associated with a device, a server for deriving a verifier seed using the master seed and information associated with a verifier, and a transmitter for transmitting the verifier seed to the verifier. In one embodiment, the system includes a transmitter for the master seed to the device. In another embodiment, the system includes a communication channel for sharing the master seed with the device and the server. In another embodiment, the server derives a second verifier seed using the master seed and information associated with a second verifier, and the transmitter transmits the second verifier seed to the second verifier. In another embodiment, the system includes an authentication code generator for generating an authentication code in response to the verifier seed. In another embodiment, the system includes an authentication code generator for generating an authentication code in response to the verifier seed and a time dependent value. In another embodiment, the seed generator is a random generator and/or a pseudorandom generator. In another embodiment, the server includes a key derivation function.

In another aspect of the invention, a method for authentication includes storing a master seed associated with a device, deriving a verifier seed using the master seed and information associated with a verifier, and generating an authentication code in response to the verifier seed. In one embodiment, the method includes authenticating a user with the authentication code. In another embodiment, the method includes transmitting the authentication code to a verifier. In another embodiment, the method includes receiving the authentication code by a verifier.

In another aspect of the invention, an authentication system includes a memory for storing a master seed associated with a device, a server for deriving a verifier seed using the master seed and information associated with a verifier, and an authentication code generator for generating an authentication code in response to the verifier seed.

In another aspect of the invention, a verifier includes a data store for storing a verifier seed associated with a device, an input for receiving an input authentication code, and an
authenticate for determining whether the input authentication code was correctly generated in response to the verifier seed.

In another aspect of the invention, a token includes a data store for storing a master seed, a key derivation function for deriving a verifier seed from a master seed in response to information associated with a verifier, an authentication code generator for generating an authentication code in response to a verifier seed, and an output for providing the authentication code to a verifier.

In another aspect of the invention, an authentication method includes generating a master seed, sharing the master seed between a token and a server, deriving a verifier seed from the master seed using a key derivation function, and transmitting an authentication code responsive to the verifier seed.

BRIEF DESCRIPTION OF THE DRAWINGS

In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.

FIG. 1 is a block diagram of an embodiment of a system according to the invention;

FIG. 2 is a block diagram of an embodiment of a system with multiple verifiers according to the invention;

FIG. 3 is a flowchart of an embodiment of an authentication method according to the invention;

FIG. 4 is a block diagram of an embodiment of the invention using a token; and

FIG. 5 is a flowchart of an authentication method according to the invention.

DESCRIPTION

Referring to FIG. 1, in one embodiment, a master seed S_m 100 is generated for a device 102. The master seed S_m 100 is a secret that is shared by the device 102 and the server 104. In one embodiment, the server 104 may be exclusively a seed distribution server, and in other embodiments, the server 104 is a data server, such as a file server, web server, or authentication server, that incorporates seed distribution functionality. In one embodiment, the master seed S_m 100 is generated randomly, for example by using a sensor observing a sufficiently random physical event. In another embodiment, the master seed S_m 100 is generated by a pseudorandom number generator. In other embodiments the master seed S_m 100 is generated in other ways that produce a secret number that is statistically difficult to predict.

The master seed S_m 100 is, in various embodiments, generated by the device 102, the server 104, or by another entity used for seed generation. The master seed S_m 100 is shared by the device 102 and the server 104, preferably in a private manner, for example over a secure communications link. In one embodiment, the device 102 generates the master seed S_m 100 and shares it with the server 104. In another embodiment, the server 104 generates the master seed S_m 100 and shares it with the device 102. In yet another embodiment, another entity, a seed generator (not shown in FIG. 1), generates the master seed S_m 100, and communicates it to either the device 102 or the server 104 for sharing with the other. In still another embodiment, the seed generator communicates the master seed S_m 100 directly to both the device 102 and the server 104.

The server 104 generates a verifier seed S_v, associated with a verifier 108. The server 104 generates the verifier seed S_v by using a key derivation function “KDF.” Key derivation functions are well known in the field of encryption relating to user-provided passwords. User-provided passwords are generally not directly useful as an encryption key in conventional cryptosystems. Systems that use passwords as a basis for encryption generally derive an encryption key from the password using a key derivation function. Key derivation functions are generally chosen for a capability to generate relatively distinct outputs for different inputs, and because they are hard to reverse, meaning that it is difficult, given a particular output, to determine the input. Various key derivation functions are based on hash functions, pseudorandom functions, and so on.

Key derivation functions typically combine the password with other information, referred to as a salt. The salt need not be a secret value. An iterative function also may be included in a key derivation function. A number, referred to as an iteration count, can be used to indicate how many times to perform an underlying function by which the key is derived. The incorporation of the iteration count into the key derivation function increases the effort required to derive an encryption key from a password. A modest number of iterations, for example 1000, is not likely to be a burden for legitimate parties when computing a key, but it will be a significant burden for attackers. If the password value is a large random value, a small iteration count may be used.

In one embodiment, a key derivation function called PBKDF2 is used to implement the invention. PBKDF2 uses the message authentication code HMAC-SHA-1, which is a message authentication code based on the SHA-1 hash function. HMAC-SHA-1 takes two arguments as input. The first argument is an encryption key, and the second argument is text that is encrypted by the encryption key. HMAC-SHA-1 has a variable encryption key length and produces a 20-octet (160-bit) output value. When PBKDF2 uses the underlying function HMAC-SHA-1, it provides two inputs to HMAC-SHA-1, and FMAC-SHA-1 provides a 160-bit output in response.

The key derivation function PBKDF2 has as inputs a password (P), a salt (S), an iteration count (c), and a length (Len) in octets (8-bit bytes). PBKDF2 computes each block of derived output independently by applying the underlying function (HMAC-SHA-1) for (c) iterations. A block is the number of bits produced as output by the underlying function, which is 160 bits for HMAC-SHA-1. On the first iteration, the password (P) is the first argument to the underlying function, and the salt (S) concatenated with the block number is the second argument to the underlying function. The underlying function encrypts the salt concatenated with the block number using the password as the encryption key. In subsequent iterations, the result of the previous iteration is passed as the second argument to the underlying function, with the password again used as the encryption key. The results of all the iterations are combined, using the exclusive—or operation to produce the final result.

In more formal notation, the PBKDF2 key derivation function can be described as:

$$PBKDF2(P,S,c) = U_1 \oplus \text{PRF}(U_2, \text{INT}(c)), U_2 = \text{PRF}(U_1, S), \ldots, U_c = \text{PRF}(U_{c-1}, S)$$

where

$$U_i = \text{PRF}(P, S \text{\| INT}(i)),$$

$U_c = \text{PRF}(P, U_{c-1})$.

The server 104 generates a verifier seed S_v, associated with a verifier 108. The server 104 generates the verifier seed S_v by using a key derivation function “KDF.” Key derivation functions are well known in the field of encryption relating to user-provided passwords. User-provided passwords are generally not directly useful as an encryption key in conventional cryptosystems. Systems that use passwords as a basis for encryption generally derive an encryption key from the password using a key derivation function. Key derivation functions are generally chosen for a capability to generate relatively distinct outputs for different inputs, and because they are hard to reverse, meaning that it is difficult, given a particular output, to determine the input. Various key derivation functions are based on hash functions, pseudorandom functions, and so on.

Key derivation functions typically combine the password with other information, referred to as a salt. The salt need not be a secret value. An iterative function also may be included in a key derivation function. A number, referred to as an iteration count, can be used to indicate how many times to perform an underlying function by which the key is derived. The incorporation of the iteration count into the key derivation function increases the effort required to derive an encryption key from a password. A modest number of iterations, for example 1000, is not likely to be a burden for legitimate parties when computing a key, but it will be a significant burden for attackers. If the password value is a large random value, a small iteration count may be used.

In one embodiment, a key derivation function called PBKDF2 is used to implement the invention. PBKDF2 uses the message authentication code HMAC-SHA-1, which is a message authentication code based on the SHA-1 hash function. HMAC-SHA-1 takes two arguments as input. The first argument is an encryption key, and the second argument is text that is encrypted by the encryption key. HMAC-SHA-1 has a variable encryption key length and produces a 20-octet (160-bit) output value. When PBKDF2 uses the underlying function HMAC-SHA-1, it provides two inputs to HMAC-SHA-1, and FMAC-SHA-1 provides a 160-bit output in response.

The key derivation function PBKDF2 has as inputs a password (P), a salt (S), an iteration count (c), and a length (Len) in octets (8-bit bytes). PBKDF2 computes each block of derived output independently by applying the underlying function (HMAC-SHA-1) for (c) iterations. A block is the number of bits produced as output by the underlying function, which is 160 bits for HMAC-SHA-1. On the first iteration, the password (P) is the first argument to the underlying function, and the salt (S) concatenated with the block number is the second argument to the underlying function. The underlying function encrypts the salt concatenated with the block number using the password as the encryption key. In subsequent iterations, the result of the previous iteration is passed as the second argument to the underlying function, with the password again used as the encryption key. The results of all the iterations are combined, using the exclusive—or operation to produce the final result.
Here, INT(i) is a four-octet encoding of the block number i, most significant octet first, and PRF is the underlying function. In the embodiment just described, PRF is HMAC-SHA-1. It should be clear that other key derivation functions would be similarly useful, and various substitutions for the verifier information and other information are possible, as required by the particular key derivation function. Key derivation functions based on underlying hash functions, block ciphers, message authentication codes, and so on are intended to be within the scope of the invention.

In one embodiment, the key derivation function PBKDF2 is used to derive a verifier seed from a master seed by using the master seed as the password P, and the concatenation of a verifier identifier and a time identifier as the salt S. The inputs to the key derivation function are thus the master seed, and the concatenated verifier identifier and time identifier. Of course, either the verifier identifier and/or the time identifier might not be included, and instead a default value used. Because this information substitutes for the salt, the verifier identifier and the time identifier do not have to be secret, and can be public information. As further described below, the verifier identifier V_ID includes information about the verifier, and also can include other information, such as a time value.

In one embodiment, the key derivation function KDF takes as inputs the master seed S_M 100 and identifying information V_ID about the verifier 108. The device 102 also stores the master seed 100, and has access to the verifier identifier information V_ID. The device 102 is therefore able to use the same key derivation function KDF to obtain the same verifier seed S_v from the master seed S_M 100 and the verifier identifier information V_ID.

To authenticate with the verifier 108, the device 102 uses the verifier seed S_v that is shared by the device 102 and the verifier 108. In one embodiment, the authentication is accomplished by the device 102 transmitting the verifier seed S_v directly to the verifier 108. In another embodiment, the authentication is accomplished by the device 102 transmitting a value mathematically derived from the verifier seed S_v to the verifier 108. The device 102 mathematically derives a value from the verifier seed S_v, and transmits the derived value from the verifier 108. The derivation, in various embodiments, is accomplished using a hash function, block cipher, message authentication code, or other techniques. In one embodiment, the verifier seed S_v is, as part of the derivation, combined with other information, such as time-dependent information. For example, in one embodiment, the device 102 transmits a hash of the verifier seed S_v. In another embodiment, the device 102 transmits a derived time-dependent value encrypted with the verifier seed S_v as the encryption key. Other authentication and communication systems and methods that can be utilized when a secret is shared by a device 102 and a verifier 108 can be extended to use the verifier seed. For example, U.S. Pat. No. 4,720,860, U.S. Pat. No. 4,885,778, U.S. Pat. No. 4,886,062, U.S. Pat. No. 4,998,279, U.S. Pat. No. 5,023,908, U.S. Pat. No. 5,058,161, U.S. Pat. No. 5,097,505, U.S. Pat. No. 5,237,614, U.S. Pat. No. 5,367,572, U.S. Pat. No. 5,361,062, U.S. Pat. No. 5,485,519, and U.S. Pat. No. 5,657,388 describe various systems and methods for authentication using shared secrets. Such systems can incorporate the system and method of the invention to use a verifier seed as the basis for authentication. As another example, a challenge-response system includes the verifier 108 transmitting a challenge value to the device 102, and the device 102 encrypting the challenge value with the verifier seed S_v, and transmitting the result back to the verifier. In one embodiment, the device 102 displays or otherwise communicates the authentication information to a user, who in turn communicates the authentication information to the verifier.

In one embodiment, the verifier seed S_v is specific to a particular verifier 108. In other embodiments, the verifier seed S_v is associated with, and shared by, more than one verifier 108. The verifier identifier information V_ID, in such an embodiment identifies the group of verifiers, rather than a specific identifier 108. The entity or device 102 may or may not know that there is more than one verifier 108 associated with a particular verifier identifier 108.

In another embodiment, the verifier seed S_v is specific to a particular time or time period, such as a second, minute, hour, day, week, month, or year, or a fraction, plurality, or combination thereof. In one such embodiment, the time or time period is represented by a time identifier describing the particular day in a particular format, such as the year, month, and day in YYYYMMDD format. In another such embodiment, the day is described as the day beginning with the specific number of seconds since a predetermined date. In one embodiment, that date is Jan. 1, 1970. In these embodiments, the verifier identifier information V_ID includes the time identifier information.

In another embodiment, the verifier seed S_v is specific to a particular time or time period, and to a specific verifier or group of verifiers. In one such embodiment, the time or time period is represented by a time identifier T_ID, and the verifier or group of verifiers are represented by a verifier identifier V_ID. In one such embodiment, the time identifier information T_ID and the verifier identifier information V_ID are separate inputs to the key derivation function KDF. In another embodiment, the time identifier information T_ID and the verifier identifier information V_ID are mathematically combined before they are provided as input to the key derivation function.

In another embodiment, the verifier seed S_v, for a particular time period is derived from a seed specific to the verifier, the verifier master seed S_vM, that is, in turn, derived from the master seed S_M. In one such embodiment, the verifier master seed is derived by application of the key derivation function to the master seed S_M and the verifier identifier V_ID. The verifier seed is derived by application of the key derivation function to the verifier master seed S_vM and the time identifier T_ID.

Referring to FIG. 2, the embodiment of FIG. 1 is extended to multiple verifiers 108-0, 108-1, 108-2, 108-3, and 108-4, generally 108, each having a different verifier seed S_v where the device 102 and the server 104 share the secret master seed S_vM 100. The server 104 determines verifier seeds S_v0, S_v1, S_v2, S_v3, and S_v4, generally S_vn, for each of the plurality of verifiers 108. The number of verifiers shown is illustrative, and is not intended to limit the invention to any particular number of verifiers. In one embodiment, the server 104 distributes the verifier seeds S_vn to each of the verifiers 108. The device 102 is used to authenticate with each of the verifiers 108 by using the appropriate verifier seed S_vn for that verifier.

Referring to FIG. 3, a method for authenticating a user with a verifier includes generating a master seed S_M (STEP 200). As described above, the seed may be generated by a seed generator incorporated into device 102 or server 104, or by a seed generator located elsewhere. In one embodiment, the master seed S_M is unique for a particular device. In another embodiment, the master seed S_M is unique for a group of devices. In one embodiment, the master seed S_M is stored in a hardware or software token device accessible by a user.
The method includes deriving a verifier seed S_v based on the master seed and verifier information (STEP 201). In one embodiment, the verifier seed S_v is derived using a key derivation function that takes as inputs the user’s master seed and the verifier identifier information. In one embodiment, the verifier seed S_v is specific to a verifier or plurality of verifiers. In one embodiment, the key derivation function also receives other information as inputs, including, but not limited to, time identifier information. In one embodiment, this other information is mathematically combined with the verifier identifier before being provided to the key derivation function. The key derivation function provides, as an output, a verifier seed S_v specific to the master seed and the verifier.

The method further includes transmitting the verifier seed S_v to a verifier (STEP 202). Preferably, the transmission occurs over a secure channel. For example, in one embodiment, the verifier seed S_v is transmitted to a verifier over an encrypted network connection. In another embodiment, the verifier seed S_v is transmitted to a verifier by storing the seed on portable media such as a floppy disk, and carrying the disk to the verifier. In another embodiment, the verifier seed S_v is transmitted to the verifier by entering the information directly into the verifier, by a keypad, keyboard, or other input. Once transmitted to the verifier, the secret shared by the verifier 108 and the device 102, the verifier seed S_v can be used by the verifier for authentication, encryption, or communication.

Referring to FIG. 4, an embodiment of such an authentication system is implemented with a token 211. In one such embodiment, the token 211 is a hardware token implemented as a credit-card sized device that incorporates a microprocessor with memory and associated hardware logic and firmware, a battery, an LCD display. In one embodiment, the token 211 also accepts input data, for example by buttons, a keypad, or a pressure-sensitive display. A master seed S_M is generated for each hardware token 211 by a seed generator 210. The seed generator 210 is a random number generator configured to output random seeds. In one embodiment, the master seeds S_M generated by the seed generator 210 are random numbers of 64 or 128 bit length.

In one embodiment, the memory of the hardware token 211 is programmed during manufacture with the master seed S_M for that token 211, as well as with the current time, and also with verifier and/or time identifier information. In another embodiment, any or all of this information is entered into the memory of the hardware token electronically via a data communication path or by using specific input button sequences. The master seed S_M for the token is also transmitted to a seed distribution server 212 via a secure channel. In one embodiment, the master seed S_M is recorded on portable media, such as a floppy disk, by the seed generator 210, and the disk is carried to the seed distribution server 212. In another embodiment, the master seed S_M is transmitted over a data network. In other embodiments, other transmission schemes are used to provide the server with the master seed S_M associated with a particular token 211. Thus, the token 211 and the seed distribution server 212 share the secret of the master seed S_M.

The seed distribution server 212 generates verifier-specific seeds for the various verifiers 220–223. Three verifiers, V_v, V_{v1}, V_{v2} are shown in the figure as an example of a plurality of verifiers, and not to limit the invention to any particular number of verifiers. Each verifier, V_v, V_{v1}, V_{v2}, has associated with it a verifier identifier V_{ID}. The verifier identifier is an input to the key derivation function. Depending on the key derivation function chosen, it may be possible to use simple verifier identifiers, such as three-letter codes, as verifier identifiers. Alternatively, the verifier identifier may be a number that is long and complex. It makes sense, if the verifier identifier is a long and complex number, to provide a user with an easy-to-remember name or mnemonic for a verifier, such as a number or a short alpha-numeric code. The name can be used to “look up” the actual verifier identifier from a preprogrammed table.

The verifier identifier V_{ID} is used to derive verifier seeds S_{V_v}, $S_{V_{v1}}$, and $S_{V_{v2}}$ for each verifier using a key derivation function. Each verifier seed S_{V_v} is transmitted over a secure channel to the respective verifier, so that verifier seed S_{V_v} is transmitted to verifier V_v, V_{v1}, V_{v2} is transmitted to verifier V_{v2}, V_{v1}, verifier seed $S_{V_{v2}}$ is transmitted to verifier V_{v2}, and so on. In one embodiment, the specific verifier seeds S_{V_v} are recorded on portable media, such as a floppy disk, by the seed distribution server 212, and the disk is carried by hand and loaded onto the verifiers V_v. In another embodiment, the verifier specific seed S_{V_v} is transmitted over an encrypted communications channel over a computer network to each verifier V_v. In other embodiments, other transmission schemes are used. The verifiers V_v thus are provided with the verifier seed S_{V_v} associated with a particular token 211.

In operation, a user 213 uses the token 211 to authenticate to a verifier 220–223. For clarity, the authentication process will be described with regard to verifier V_v, V_{v1}, but it should be understood that a similar process is used for other verifiers. The user 213 enters a verifier identifier V_{ID}, or a code associated with the verifier identifier V_{ID}, into the token 211. In one embodiment, this is accomplished using the token’s input buttons. In one embodiment, the code is the first few letters of the name of the verifier V_v. In another embodiment, the code is a 1-button indicator of the appropriate verifier, and in another embodiment, the code is an identifier number. In other embodiments, other techniques are used to specify the verifier V_v. V_{v1}. In one embodiment, the token 211 determines the verifier identifier from the code entered by the user 213. The verifier identifier may in fact be the code associated with the verifier 213 entered by the user, or the token 211 may otherwise derive the verifier identifier from the code entered by the user 213, for example by performing a hash or other mathematical operation, or by performing a lookup operation.

The token 211 uses the verifier identifier to determine the verifier seed S_{V_v} for the verifier. The token 211 then uses the verifier seed S_{V_v} to determine an authentication code that the user 213 can use to authenticate to the verifier 213. In one embodiment, the code output by the token 211 is the result of a mathematical operation, such as a cryptographic operation, performed on the seed associated with the verifier 211, the user 213 also enters a personal identification number (PIN) into the token 211. In this embodiment, the code output by the token 211 is the result of a mathematical operation, such as a cryptographic operation, performed on the seed S_{V_v} and the personal identification number entered by the user. In another embodiment, the code output by the token 211 is a result of a mathematical operation, such as a cryptographic operation, performed on the token’s display, and transmits the code to the verifier. This transmission may be accomplished in various ways, including,
but not limited to, typing the code into a keypad or computer keyboard, writing or speaking the code, otherwise transmitting over a computer or telephone network and so on. The verifier 221 determines whether the code is appropriate, for example, whether it is, in the above embodiment, correctly derived from the verifier seed, the user’s PIN, and the current time. If it was correctly derived, the user is authenticated, and access is granted. If the code is incorrect, other action may be taken, including, but not limited to, transmitting an alert signal, allowing the user to try again, etc.

To authenticate to another one of the verifiers, for example verifier V₅ 220, the user 213 enters the code associated with that verifier. The token 211 determines the verifier seed Sᵥ₅ for that verifier V₅ 220, and provides an authentication code appropriate for that verifier V₅ 220.

In another embodiment of the token 211, the token is capable of storing static passwords, as well as determining authentication codes based on a verifier seed. The user enters static passwords in the token, and associates the static password with a service identifier. When the user enters the service identifier into the token 211, the token 211 determines whether the service identifier indicates a static password that is stored in the token, or whether the service identifier indicates a verifier identifier. As described above, for dynamic authentication codes, the service identifier may be the verifier identifier or a reference to the verifier identifier. In one embodiment, the token also requires the user to enter a PIN or other code in order to obtain a stored static password. This embodiment allows the token to function as a multi-purpose password/authentication tool that stores a user’s static passwords, and provides authentication codes based on various verifier seeds based on the user’s master seed.

Referring to FIG. 5, a method for authentication includes generating the master seed Sᵥₖ (STEP 240). In one embodiment, a seed generator 210 generates the master seed Sᵥₖ. In various embodiments, the seed generator 210 is incorporated into the server 212, the token 211, or a separate device 210. The seed generator 210 outputs the master seed so that it can be stored in the token 211 and in the seed distribution server 212, thus sharing the master seed Sᵥₖ with the token 211 and the seed distribution server 212 (STEP 241, STEP 244). In one embodiment, the master seed Sᵥₖ is generated by the token 211, and displayed once on the LCD display to allow sharing with the seed distribution server 212. In yet another embodiment, the seed distribution server 212 generates the master seed Sᵥₖ and the master seed Sᵥₖ is programmed into the token 211. The seed distribution server 212 determines the verifier seeds Sᵥₖ for each of the verifiers, using the master seed Sᵥₖ, a verifier identifier, and possibly other information as inputs (STEP 242). The seed distribution server 212 transmits the verifier seeds Sᵥₖ to the verifiers 220–222 (STEP 243).

In one embodiment, once the master seed Sᵥₖ has been shared, the token 211 stores the master seed Sᵥₖ in its memory (STEP 244). To authenticate with a verifier, the token 211 derives the seed appropriate for that verifier (STEP 245) using the master seed Sᵥₖ, a verifier identifier, and possibly other information as inputs. The token 211 generates an authentication code based on the verifier seed Sᵥ₅ and possibly other information (STEP 246). In one embodiment, the authentication code is based on additional information such as a PIN, the current time, and so on. In such an embodiment, the authentication code is only useful for a short time period. The authentication code is transmitted to the verifier (STEP 247). In one embodiment, a user 213 reads the authentication code from the token 211 display, and transmits the authentication code to the verifier.

The verifier 221 receives the verifier seed Sᵥ₅ from the server, and stores the verifier seed Sᵥ₅. When the token attempts to verify with the verifier, the verifier determines an authentication code (STEP 248) from the verifier seed Sᵥ₅. The authentication code is also determined by the additional information such as a PIN, the current time, and so on if that information is used by the token 211 to determine the authentication code. The verifier receives the authentication code (STEP 249) and authenticates the entity (STEP 250) by comparing the transmitted authentication code with the authentication code determined in STEP 247.

Variations, modifications, and other implementations of what is described herein will occur to those of ordinary skill in the art without departing from the spirit and the scope of the invention as claimed.

For example, an implementation can break the seed derivation into two or more steps without departing from the scope of the invention. In one such embodiment, a temporary intermediate seed is derived from the master seed by mathematically combining the master seed with a time identifier. Verifier seeds are generated from the temporary intermediate seed and distributed periodically to the verifiers. This approach further restricts the scope of a potential compromise of either the temporary intermediate seed or the verifier seeds, because all such verifier seeds are considered “expired” at the end of a preselected time duration. In one such embodiment, the temporary intermediate seed is derived from the master seed using a date identifier. Verifier seeds are generated daily from the temporary intermediate seed using the appropriate verifier identifiers. A server distributes these verifier seeds to the verifiers. A user’s device generates the temporary intermediate seed each day using the time identifier, and then uses the temporary intermediate seed to derive verifier seeds for each verifier, using verifier information.

Also, the invention can be used to have a single secret (the master seed) provide authentication within and outside of an enterprise. Within an enterprise, the enterprise issues a token to each user containing the master seed, and distribute verifier seeds to various services within an enterprise. These services can each authenticate users using the shared secret, and/or authentication codes derived from the shared secret. This compartmentalization means no compromise to a particular service. Outside of a single enterprise, the invention also allows for use of a single secret to enable authentication with a variety of unrelated services. Each of the unrelated services receive a verifier seed from the server that has the master seed. A user can then authenticate with each of the unrelated services separately, without the need for any prior communication between the user and each of the services. The user need only know the appropriate verifier identifier for the service.

In addition, an authentication code based on a verifier seed, as described above, can be used as an encryption key for secure communications between a user and a server that has a verifier seed for that user. The secure channel can be used for continued communications, or to securely communicate another encryption key for secure communications.

Accordingly to the invention is to be defined not by the preceding illustrative description but instead by the spirit and scope of the following claims.

What is claimed is:

1. A method for distributing authentication information associated with a device, comprising the steps of:
generating a master seed associated with the device, and
providing the master seed to a verifier seed generator;
deriving, by the verifier seed generator, a verifier seed
using the master seed and information associated with
a verifier, wherein the verifier seed generator and the
verifier are distinct entities, such that the verifier cannot
access the master seed; and
transmitting the verifier seed from the verifier seed gen-
erator to the verifier.
2. The method of claim 1, further comprising, after the
generating step, the step of transmitting the master seed to
the device.
3. The method of claim 1, further comprising, after the
generating step, the step of sharing the master seed with the
device and a server.
4. The method of claim 1, further comprising, after the
transmitting step, the steps of:
deriving a second verifier seed using the master seed and
information associated with a second verifier; and
transmitting the second verifier seed to the second verifier.
5. The method of claim 1, further comprising, after the
transmitting step, the step of generating an authentica-
tion code in response to the verifier seed.
6. The method of claim 5, wherein the authentication code
generating step further comprises generating an authentica-
tion code in response to the verifier seed and a time
dependent value.
7. The method of claim 5, further comprising the step of
authenticating using the authentication code.
8. The method of claim 7, wherein the authenticating step
comprises authenticating a user or a device by verifying the
authentication code.
9. The method of claim 8 wherein the authenticating step
comprises transmitting the authentication code to the veri-

10. The method of claim 1 wherein the master seed

generating step comprises at least one of randomly gener-
ating and pseudorandomly generating the master seed.
11. The method of claim 1 wherein the deriving step
further comprises deriving the verifier seed in response to a
time identifier.
12. The method of claim 1, wherein the deriving step
comprises deriving a verifier seed by using the master seed
and information associated with a verifier as inputs to a key
derivation function.
13. The method of claim 12 wherein the key derivation
function comprises a hash function.
14. A system for distributing authentication information
associated with a device, comprising:
a master seed generator for generating a master seed
associated with a device;
a verifier seed generator for deriving a verifier seed using
the master seed and information associated with a verifier,
wherein (i) the master seed generator and the
verifier are distinct entities, and (ii) the verifier seed
generator and the verifier are distinct entities, such that
the verifier cannot access the master seed, and
a transmitter for transmitting the verifier seed from the
verifier seed generator to the verifier.
15. The system of claim 14, further comprising a trans-
mitter for transmitting the master seed to the device.
16. The system of claim 14, further comprising a com-
munication channel for sharing the master seed with the
device and the verifier seed generator.
17. The system of claim 14, wherein the verifier seed
generator derives a second verifier seed using the master
seed and information associated with a second verifier, and
wherein the transmitter transmits the second verifier seed to
the second verifier.
18. The system of claim 14, further comprising an authen-
tication code generator for generating an authentication code
in response to the verifier seed.
19. The system of claim 14, further comprising an authen-
tication code generator for generating an authentication code
in response to the verifier seed and a time dependent value.
20. The system of claim 14, wherein the master seed
generator comprises at least one of a random and pseudo-
random generator.
21. The system of claim 14, wherein the verifier seed
generator comprises a key derivation function.
22. A method for authentication, comprising:
storing a master seed associated with a device;
deriving a verifier seed using the master seed and informa-
tion associated with a verifier;
isolating the master seed from the verifier such that the
verifier cannot access the master seed; and
generating an authentication code in response to the
verifier seed.
23. The method of claim 22, further comprising the step
of authenticating a user with the authentication code.
24. The method of claim 23, further comprising the step
of transmitting the authentication code to a verifier.
25. The method of claim 23, further comprising the step
of receiving the authentication code by a verifier.
26. A system for authentication, comprising:
a memory for storing a master seed associated with a
device;
a server for deriving a verifier seed using the master seed
and information associated with a verifier, wherein the
master seed is isolated from the verifier such that the
verifier cannot access the master seed; and
an authentication code generator for generating an authen-
tication code in response to the verifier seed, wherein
the verifier includes the authentication code generator.
27. A verifier for authentication, comprising:
a data store for storing a verifier seed, the verifier seed
derived from a master seed associated with a device in
response to information associated with the verifier,
wherein the master seed is isolated from the verifier
such that the verifier cannot access the master seed;
an input for receiving an input authentication code; and
an authenticator for determining whether the input
authentication code was correctly generated in
response to the verifier seed.
28. A token, comprising:
a data store for storing a master seed;
a key derivation function for deriving a verifier seed from
a master seed in response to information associated with
a verifier, wherein the master seed is isolated from the
verifier such that the verifier cannot access the master
seed;
an authentication code generator for generating an authen-
tication code in response to the verifier seed; and
an output for providing the authentication code to a
verifier.
29. A method for authentication, comprising:
generating a master seed;
sharing the master seed between a token and a server, and
isolating the master seed from a verifier such that the
verifier cannot access the master seed;
15. deriving a verifier seed from the master seed in response to information associated with the verifier using a key derivation function; and transmitting an authentication code responsive to the verifier seed.

30. The method of claim 1 wherein the information associated with the verifier comprises a verifier identifier.

31. The method of claim 4 wherein the information associated with the second verifier comprises a second verifier identifier.

32. The system of claim 14 wherein the information associated with the verifier comprises a verifier identifier.

33. The system of claim 17 wherein the information associated with the second verifier comprises a second verifier identifier.

34. The method of claim 22 wherein the information associated with the verifier comprises a verifier identifier.

35. The method of claim 14, wherein the master seed generator and the verifier seed generator are incorporated in a server, and wherein the server and the verifier are distinct entities, such that the verifier cannot access the master seed.