
A Fair Protocol for Signing Contracts

(Extended Abstrac0

Michael Ben-Or 1 Oded Goldreich 2 Silvio Micali 3 Ronald L. Rivest 4

ABSTRACT

Assume that two parties, A and B, want to sign a contract over a communication net-

work, i.e. they want to exchange their "commitments" to the contract. We consider a con-

tract signing protocol to be fair if, at any stage in its execution, the following hold: the

conditional probability that party A obtains B's signature to the contract given that B has

obtained ,4's signature to the contract, is close to 1. (Symmetrically, when switching the

roles of 4̀ and B).

Contract signing protocols cannot be fair without relying on a trusted third party. We

present a fair, cryptographic protocol for signing contracts that makes use of the weakest
possible form of a trusted thCrdparty 6udge). If both A and B are honest, the judge will

never be called upon. Otherwise, the judge rules by performing a simple computation,

without referring to previous verdicts. Thus, no bookkeeping is required from the judge.

Our protocol is fair even if ,4 and B have very different computing powers. Its fairness is

proved under the very general cryptographic assumption that functions that are one-way

in a weak sense exist. Our protocol is also optimal with respect to the number of mes-

sages exchanged.

1 Institute of Mathematics and Computer Science, Hebrew University, Jerusalem, Israel.
Work done when visiting MIT's Lab. for Comp. Sc. Supported by a Weizmann Postdoctoral Fellowship.

2 Computer Science Dept., Technion, Haifa, Israel
Currently in the Lab. for Comp, So, MIT. Supported by a Weizmann Postdoctoral Fellowship.

3 LaboratoD, for Computer .Science, MIT, Cambridge, MA 02139, USA.
Supported by NSF Grant DCR-8413577 and an IBM Faculty Development Award.

4 I~boratory for Computer Science, MIT, Cambridge, MA 02139, USA,
Supported by NSF Grant MCS80-06938.

44

1. Introduction

Let A, B be users who can exchange messages over a communication network. For example, they

may be the users of the ordinary mail system, or of a telephone network, or a modern computer network.

We will assume that a Signature Scheme S is adopted in the network. Two key properties are required

from a signature scheme. First, unforgeabitity: only user U can create U's signature on message m. Second,

universal verification: any other user should be able to verify that U's signature on message m is indeed a

valid one. An instance of a signature scheme may be provided by ordinary "hand-written" signatures.

Hand-written signatures are believed to be hard to forge and can be universaIly verified as trusted notary

publics keep samples of each user's signature, Another instance of a signature scheme, more suitable for com-

puter networks, is a "digital signature scheme". This notion was introduced by Diffie and Hellman [DH] and
first implemented by [RSA]. The strongest notion of security for a digital signature scheme was suggested and

concretely implemented (based on a weak and general complexity assumption) by Goldwasser, Micali and

Rivest [GMR]. An historical account on the problem of digital signature can be found in [GMR].

We now describe the problem of "fair" contract signing. Two users, A and B, have negotiated over the

network a contract CONT and now want to obtain each other's signature on it. In essence, the problem of

signing a contract consists of exchanging signatures of an ordinary message, but with the additional constraint

that the exchange must be "simultaneous". Therefore,

, "a signature to a contract" does not necessarily consist of of applying the signature scheme to the text of

the contract.

In general, a signature of A to CONT is a set of messages that only A can generate on input CONT, e.g.

some of these messages may be generated by applying the signature scheme S. A good contract signing pro-

tocol should satisfy the following (informal) conditions.

1) Viability: If both parties follow the protocol properly, then at its termination, each will have his

counterpaffs signature to CONT,

2) Fairness: If one party, say A, follows the protocol properly then at any stage during its execution, B

has A's signature on CONT if and only if also A has B's signature on CONT.

The fairness condition is hard to satisfy, essentially because "simultaneity" is hard to meet in our discrete
world [EY]. Thus, in order to successfully implement a contract signing protocol, it is necessary to relax and,

at the same time, to formalize the fairness condition. The meaningfulness of a solution to the contract sign-

ing problem wiI1 depend on the acceptability of the definition used to approximate the intuitive notion of

fairness. Two main approaches to approximating fairness have been considered.]'he first one, interprets

simultaneity as deriving from equal computational effort. This approach, meaningful only if both parties are

assumed to have equal computing power, suffers from some inherent additional disadvantages. The second

approach, interprets the simultaneity of two events as very high probability that one event happens if and

only if the second event happens.

1.1 Computational Approaches to Fairness

Even [El, Blum [B] and Even, Goldreich and Lempel [EGL], proposed a computational interpretation of

approximate fairness. This approach requires that at any stage during the execution of the protocol, the com-

putational effort required from the parties in order to get each other's signature to CONT be approximately

equal. Informally, a protocol is said to satisfy this definition of fairness if, during its execution, for both par-

ties the computational difficulty of computing the counterpart's signature to CONT decreases by equal

45

amounts at each step, till it vanishes.

This approach suffers from the following major weaknesses.

1) This definition of fairness is meaningful only if both parti~ are assumed to have "equal computing
power". Otherwise, at some step of the protocol, one party may find the remaing computational effort,

necessary to obtain his counterpart's signature~ to be feasible; while the same effort may be beyond the
power of his counterpart_ Such "equal computing power" was assumed by atl the above mentioned

researchers.

We feel that assuming "equal computing power" is both unrealistic in practice and undesirable from a
theoretical point of view. tn real life, parties may often have different computing power (e.g. consider a
large commercial firm and an individual). Also, it is difficult for a party to estimate accurately the com-
puting ability of the other party (one can always pretend to be less powerful).
[Jumping ahead, let us po.~nt out that the probabilistic approach, as well as our protocol, is valid even if
the parties have very diffeJrent computing power.]

2) As observed by Rackoff, ffiis approach to fairness is prone to the devastating effect of "early stopping':
Assume party B stops the execution of the protocol prematurely, at a point when each party will need
10 years of computing time to obtain his counterpart's signature on CONT. Should A keep computing
for the next 10 years or should she give up and hope that B is doing the same and thus will never have
her signature? The situation effectively binds ,4 to the contract without offering any priviledges. In
fact, if she acts as if the contract is not binding, B has the option, by investing 10 years of computation
time, to enforce the contract and to put her in serious legal trouble. Though this approach was
developed for two parties only, it should be noticed that the dilemma created by early stopping cannot be
settled in court by a judge that rules deterministically.
[If the judge is allowed to rule probabilistically, then our protocol is optimal. In particular, if one party
stops prematurely, the other will invoke the (probabilistic) judge with the following guarantee. If the
judge rules that CONT is binding when B appeals then, with high probability, he also rules so in case
A appeals.]

3) A third difficulty arises with this approach that may not be inherent, but is certainly a formidable one:
the difficulty of proving the fairness of a protocol in this sense. Proving that certain problems cannot be
efficiently solvable seems '.:o be hard. Proving that the computational difficulty of certain problems

decreases by a fixed amount, when releasing some "partial information", seems even harder. The
correctness of Blum's protocol [B] follows from the assumption that a particular computational problem,
related (but not known to be computationally equivalen0 to integer factorization, is infeasible. Unfor-
tunately, this problem has been shown to be efficiently solvable by Hastad and Shamir [HS]. The
correctness of Even Goldreich and Lempel's protocol [EGL] follows from the assumption that "ideal"
trapdoor one-way permutaLions exist and the assumption that "uniformly-hard" one-way functions f
exist. By this they mean that given f (x) and k bits of (information about) x, where x is n-bit tong, the
best algorithm for computing x essentially consists of trying all the 2 n -k possibilities for the remaining
bits. This is a very strong assumption. Even's protocol [E] (as well as its simplified version [G]) requires,
in addition to the existence of a uniformly-hard one-way function, an extra non-mathematical assump-
tion: that the contract's subject has a fixed and known value.
[In comparison, the correctness of our protocol follows from a much weaker and more general complex-
it), assumption: the existence of one-way functions f . Such f ' s need not be "ideal" or uniformly-hard.

46

In particular, it may be that half of the bits of x are easy to compute on input f(x). We only require

that (all of) x is not efficiently computable on input f (x) . In case the communication network is a com-

puter network or a telephone network, we also need particularly strong digital signature schemes. Such

schemes have been proved to exist under simple complexity assumption by [GMR].]

1.2 h Probabitistie Approach to Fairness

Rabin [R] proposed to sign contracts with the help of a trusted third party that, at regular intervals (say

each day), publicly broadcasts a randomly chosen integer between 1 and 100. Parties A and B can then sign

contracts by agreeing on a future date D and exchanging signed messages of the form: "I am committed to

CONT if integer i is chosen at date D". A goes first. B will send his i-th message only/fhe gets A's i-th

message Similarly A sends her i + 1-st message only//'she receives B's i-th message. It should be stressed

that all messages should be exchanged prior to date D. B may try to cheat by not sending his i-th message

after receiving A's i-th message. The advantage he gains by doing so is not too large: the probability that he

will have a signed contract, on date D, but A will not, equals 1/100. In this sense, the protocol is "fair".

How can this be made formal? We have two possible alternatives:

!) Requiting that the probability that "B has A's signature on CONT but A does not have B's" is small.

2) Requiring that the difference between 1 and the conditional probability that "A has B's signature on

CONT", given that "B has A's signature to CONT", is small.

Notice that the second condition implies the first. We believe that the conditional probability is a better

measure for fairness, since it better models the intuitive notion of fairness as simultaneity ("if B has the sig-

nature then A has it too" and vice versa).

In formalizing '.he definition of fairness we will use a "security" parameter k which will constitute,

together with CONT, the input to the protocol. We also use a function # from integers to the 0-1 inteval. /~

will serve as our measure of "negligible" probability; namely, we will not care about events occuring with

probability less than/~(k). For example, one may choose/~(k)=2 - t or # (k) = k - c for some positive integer

c. The parties are allowed to make random choices during the execution of the protocol. So is the third

party, if he is called into play.

Definition: A contract signing protocol is l~-fairfor A if, on input k and CONT, in case A follows the

protocol properly, the following holds. At any stage, during the execution of the protocol, in which the

probability that B has A's signature to CONT is greater than/t(k), the conditional probability that "A

has B's signature to CONT", given that "B has A's signature to CONT", is at least 1 - 1 /k .

Here the probabilities are taken over all the random choices of A, B and the third party (in case he is

called into play).

A protocool is/~-falr if it is/~-fair both for A and B.

For example, if the trusted third party of Rabin's protocol is parametrized, so that on input k it randomly

selects an integer between 1 and t(k), then the protocol would be #-fair if and only if l(k)>_l~(k)-l.k. In

fact. after A has sent i messages, but before B has replied, the conditional probability that "A has B's signa-

ture to the contract" given that "B has A's signature to the contract" equals 1 - 1 / i .

1.3 Intervention by a Third Party

We believe that the definition of p.-fairness is the correct one. However, it cannot be enforced without

47

the intervention of a third party.

Theorem 1: Let p(k) be smaller than 1, for every k. Then no viable, ,a-fair two-party protocol for
signing contracts exists, without the intervention of trusted third parties.

A proof of Theorem 1 will appear in the final version of this paper. The proof is not hard once the right for-

realization is reached.

Relying on the existence of a trusted third party is indeed a drawback, but preferable to assuming equal

computing power. It is certainly preferable to accepting the disruptive effect of "early stopping" inherent in

the computational approach to fairness.

Since a/~-fair protocol must rely on a trusted third party, its quality will depend on the role that such a

party plays in it: The more "inconspicuous" and efficient the third party is, the better the solution is. The

third party we use is a probabilistic judge (algorithm). The judge is inactive until he is invoked. The judge

can rule on whether a contract is binding, in the presence of only one party. Furthermore, the judge is

invoked only in case of dispute and does not need to store past verdicts. The mildness of the (third party's)

intervention in our solution can be demonstrated by comparing it with other forms of trusted third parties

proposed in previous solutions to the contract signing problem.

A simple, folklore solution to signing contracts is a cancellation center which stores all invalidated con-

tracts (see [EGL]). A contract is signed by exchanging messages of the form: "I'm committed to CONT
unless I've deposited a cancellation notice in the center by date D", where D is some future date. This naive

solution suffers from serious practical drawbacks. The paperwork involved in maintaining the cancellation

center is tremendous. Even more disturbing is the fact that if A wants to convince C that she (A) has B's

signature to CONT, A must get a certificate from the cancellation center that CONT was not cancelled. This

is the case even if both A and B are honest and wish to execute the protocol properly.

As discussed in section t.2, Rabin [R] proposed the use of a trusted third partywhich broadcasts ran-

domly chosen integers at fixed times. We point out that this third party must always be active, regardless of

the honesty of all parties and of whether its output is being referred to.

2. Optimal Fair Protocols for Parties with Different Computing Power

In this section we develop a viable and fair protocol, without relying on the equal resources assumption.

During the execution of the protocol, the probability that a party obtains his counterpart's signature to

CONT grows from zero to one. This growth must be moderate to satisfy the fairness requirement.

In subsection 2.1, we give a ~ight lower bound on the number of messages exchanged in a viable, p-fair

protocol. In subsection 2.2, we exhibit a protocol which achieves this lower bound. The heart of our solution

is the efficiency of the implementa~on of the judging procedure, suggested in subsection 2.3.

2.1 On the Number of Messages Exchanged in a p-Fair Protocol

A protocol for contract signing is a sequence of message exchanges hereafter called steps. In each step
one of the parties sends a message to the other. Without loss of generality, no party sends messages in two

consecutive steps; i.e. each party alternately sends and receives messages. Let us denote the party which
sends [receives] a message in step i by Si [Rf]. Let Ei denote the event "after step i, party R i has Si's com-

mitment to CONT", i.e. enough information so that the judge will rule that the contract is binding for Si.

48

Following is an analysis of the implication of the #-fairness requirement on the number of steps in a

viable protocol. This number may be a function of the security parameter k. For simplicity, we assume here

that the number of steps is independent of the contract CONT. Let us denote by # (k) the number of steps

in a viable F-fair protocol, on input the security parameter k and the contract CONT. By the viability

requirement, we have
Prob(E#(l¢)) = 1

(since upon termination of the protocol the probability that each party has his counterpart's signature to

CONT is 1.) By the F-fairness, ifProb(Et) ~_ F(k) (l_~i_~#(k)) then
1

Prob(Ei-llEi) >_ 1 - - - .
k

This implies
I

Prob(Ei-1) -> (1 - ~-)" Prob(E i)

(since Prob(A______~) > Prob(A [B) for any two events A and B).
Prob(B)

In order to minimize # (k) we set Prob(Ei) = (t - 1 / k) #(k)-i , l_<i<#(k) . Finally, Prob(E1) is set to

F(k), so that the fairness requirement is not violated by the first step. Thfis, # (k) and the Pr(Ei)'s are

easily bounded by expressions depending on k and F(k). Namely,

Theorem 2: Every viable, F-fair protocol for signing contracts has length at least # (k) =
k.Iog/~-l(k). Furthermore, the probability that after step i one party has his counterpart's signature
to CONT does not exceed (l - l / k) #(k)-i, (The logarithm is taken to the natural base.)

A reasonable choice ofF(k) = poly(log k) -1 yields #(k)=f~(k.log k).

2.2 The Proposed Protocol

Our protocol makes use of the signature scheme of the network. For the purpose of this extended
abstract, it wilt be convenient to decouple the analysis of a contract signing protocol from the security of the
underlying signature scheme used in its implementation. In fact, if the network is, say, the ordinary mail sys-
tem, the signature scheme in use (like pen-written signatures, fingerprints, etc.) may not be easy to analyze
mathematically. This decoupling can be done by assuming that the signatures used in the implementation are
totally unforgeable. Namely, for each message m and user A, the probability that another user (B) can pro-
duce A's signature on m is zero. (Independent of B's computing power.) It should be stressed that digital
signature schemes cannot possibly be unforgeable in this sense, and problems might arise when implementing
our protocol with a "concrete" digital signature scheme. In fact, the "security" of a contract signing protocol
cannot exceed the "security" of the underlying signature scheme, but it may be much less. This is so because
the protocol, in its concrete implementation, may interact badly (in an unpredictable manner) with the signa-
ture scheme. However, this is not the case with respect to the protocol presented in this extended abstract:

Our protoco[remains fair when implemented with high quality signature schemes as the ones in [GMR].

The formal version of the above statement and its proof will appear in the final write-up. We now present
our protocol for signing contracts. As before, the parties to the protocol will be denoted by A and B and the
contract they wish to sign will be denoted by CONT. We assume that CONT also specifies the security
parameter k and the function p., the name of the party that goes first in the protocol (A in the description

below) and the name of the party which goes second (B). Recall that # (k)= k.log F-1(k).

49

The Protocol for A and B

0A) A chooses l=[#(k) /2] arbitrary messages al, a2,..., at, with the only restriction that they were not

used before by A.

(A's signatures to these messages will be hereafter referred to as A's secrets.)
A sends to B the following declaration (signed): "CONT, a 1, a2 af'.

0B) B chooses 1 arbitrary messages bl, b2 bt, with the only restriction that they were not used before by
A.
(B's signatures to these messages will be hereafter referred to as B's secrets.)

B sends to A the following declaration (signed): "CONT, bb b2,..., bt".

(for l < i < l)

iA) A sends her signature on at to B.

iB) B sends his signature on b~ to A.

Handling early stopping : If the entire protocol is not completed within T time units, party X invokes the

judge with inputs the initial declarations (steps 0A and 0B), CONT, X, and the secrets of Y (X's counter-
part) in X's possession.

The Judge's Procedure

On inputs the signed initial declarations, CONT, ,Y and m secrets of Y, the judge checks whether the secrets
are valid signatures, of X's counterpart, according to the protocol. If so, he then chooses an integer e
(hereafter referred to as the edge) between 1 and 2I as specified in section 2.3. The same edge e is chosen
every time CONT is brought before the judge. The probability distribution of the edge is, essentially, the
following.

e= t with probability Pl = (1 - 1) 2t-1.

= i, 1< i<_2l, with probability Pi = (1 -- ._!k)2t - i -- (1 - 7)1 2t -(i-1) . e

If X = A and m_> [e/21 or if X =-B and m _>[e/2] then the judge rules that CONT is binding.
In this case, the judge waits for 7' time units to pass and then sends his signed verdict to both parties.

Notice that if both parties are honest and complete the protocol within T time units, the judge will
never be invoked. In fact both will have all the counterpart's secrets, a number greater than or equal to any
possible choice of the edge. This fact can be easily verified by any other party. Problems may arise only if
one of the parties prematurely terminates the protocol, say after t (< # (k)=2/) steps. In such a case deter-
mining the "sufficient number of counterpart's secrets" is of importance and is done by the judge as

described above. Notice that the parties cannot know the value of the edge during the execution of the pro-
tocol. This is achieved by delying the answer of the judge. Note that the above probability distribution by
which the edge is chosen makes the protocol /z-fair and corresponds to the probability distribution of
Theorem 2. Thus our protocol is of shortest length among all the/z-fair protocols. Namely,

Theorem 3: For function/z, there exists a viable,/z-fair protocol, for signing contracts, of length de(k)
= k.log/z-l(k). (Here the logarithm is taken to the natural base.)

50

2.3 On the Determination of the Edge

Selecting the edge so that Prob(e = i) = P i is easy of one flips unbiased coins, (Let qo=O, qi= ~p j .
j--1

RandomIy select 0 and 1 with equal probability to construct the binary expansion a real number a between 0

and 1. Stop the construction of a as soon as qi -l<_a<qi, for some i. In this case the edge is chosen to be

i,)

Recall that the judge was required to always use the same edge for the same contract. (The reader may

note that failing to do so may creates conflicting verdicts; and furthermore, give advantage to parties who
keep appealing to court many times with the same contract.) Using the same edge for the same contract can

be accomplished if the judge operates as follows. Once he chooses an edge e with respect to a contract

CONT, he stores the pair (e, CONT), and uses e again any time that the CONT is brought before him, This

solution can hardly be considered efficient, as the judge must keeps record of all previous verdicts. It is our

goal to free the judge from any bookkeeping. We do this by using the "poly-random functions" of Goldreich

Goldwasser and Micali [GGM].

In [GGM] it is shown how to use any one-way (in a very weak sense [L]) function to efficiently con-

struct a set of functions that are "very few" in number, deterministic and fast computable, but possess all the

statistical properties of truly random functions with respect to an observer with potynomially bounded resourcex
Their deterministic construction, given as input a constant c and a randomly chosen n-bit long string r, out-

puts a determinstic, polynomial-time algorithm f t . This algorithm, on input a n-bit long string x, outputs a

he-bit long string f r (x) . These functions (deterministic algorithms)fr 's cannot be distinguished from ran-

dom functions by any probabilistic polynomial time algorithm that asks and receives the value of a function at

arguments of its choice. (Here by a random function, we mean a function randomly selected with uniform

probability from the set of all functions from n-bit strings to nO-bit strings.)

Let us now show how to use this result in order to free the judge from bookkeeping. The judge ran-

domly selects a n-bit string r once and for all. No other random choices are ever done by the judge. When

invoked with CONT and all other inputs, the judge computes fr(CONT) and uses it (instead of flipping

coins) to determine ths choice of the edge. This way of operating essentially maintains ~-fairness. It can be

shown that the conditional probability that "A has B's signature on CONT" given that "B has A's signature

on CONT" is greater than 1 - 1/k - 1/n c, for all constants c and sufficiently large n. (This follows from

the properties of the poly-random functions, else all functions easy to evaluate can also be easily inverted,)

We stress that the/~-faireness of protocol holds even if the parties are given the edges relative to other con-

tracts of their choice.

In the above we assume n to be large enough so that all contracts have length smaller than n. There is

no need to assume so: it is sufficient that each contract starts with an n-bit string C uniquely associated to it.

Half of the bits of C are chosen, by A and the remaining half by B. As long as one party never uses the

same bits for another contract, then no matter how "trickly" the second party will choose the second half of

C, the same security is maintained. This greatly improves the efficiency of the scheme.

Why poly-random functions?

Poly-random functions improve previous results of Blum and Micati [BM] and Yao [Y] on pseudo-

random number generators. They present deterministic algorithms that transform a truly random (but short)

secret seed to a long pseudo-random bit-sequence passing polynomial time statistical tests. Such high quality

5t

pseudo-random number generators may not be straightforwardly applied in our context. For example

1) Using CONT or part of it as input to the generator does not work. The parties may also do so and

determine the edge as well.

2) Using the bit by bit "exclusive or" of CONT and some fixed key r (randomly and secretly selected by
the judge) as input to the generator, may not work. In fact, these generators are proved to produce

"random" outputs only on randomly and independently selected inputs. In our setting, knowledge of
the edges relative to previous contracts, may help in predicting the edge relative to a new contract.

Remark: Above, we have suggested that the edge be determined by the judge. An alternative method for

determining the edge (i.e. determining a fraction in the interval [0,1]) is described below. Each party has a
one-way function associated with him. At step 1 of the protocol, each party chooses randomly a fraction in

the interval [0,1], applies his one-way function to the binary extension of this fraction and appends the result
to his declaration (which is only then signed). The fraction (which determines the edge) is agreed to be the

sum reduced modulo 1 of these fractions. This way, the edge will be determined during the first step of the
protocol, by both parties. However, none of them knows at that point what the edge is.
Although this solution appeals to be more elegant, it suffers from a serious drawback. In order to rule, the
judge must find out the fractions chosen by both parties. This requires either that both parties appear in
court or that the judge knows to invert the one-way functions of all users, Both requirements are highly
undesirable from a practical point of view. Note that when the edge is chosen by the judge, the judge is able
to rule even if only one party appears in court.

2.4 Summary and Further Discussion

Let us first sum up the properties of our solution (which consists of a two-party protocol and a judge-
procedure):

1) It satisfies both the viability and the fairness requirements, without using the "Equal Computing Power"
assumption. It is not prone to "early stopping". Furthermore, unlike other solutions, our solution
requires the intervention of a trusted third party and a "time out" mechanism in a very mild sense.

2) A third party (a judge) intervenes only in case of dispute. In this case the judge can rule even if only
one party appears in court. Furthermore, no bookkeeping is required from the judge!

3) The protocol is optimal in the sense that it can be implemented and proven fair under the minimum
possible intractability assumption: the existence of one-way functions and secure signature schemes.
(The judge-procedure which involves the use of random functions requires a slightly stronger assump-
tion [GGM].)

4) The protocol is optimal in the sense that it uses the minimum number of message exchanges needed to
satisfy the/z-fairness requirement.

5) The protocol is very easy to execute. Also the judging-procedure is conceptually simple and only
requires the examination of two messages (the signed initial declaration and the last received secret).

Acknowledgments

We wish to thank Shimon Even and Adi Shamir for very illuminating discussions.

52

References

[B] BIum, M., "How ~o Exchange (Secret) Keys", ACM Trans. on Comp. Syz, Vol. 1, No. 2, 1983, pp. I75-
193. Also in the Proc. of the 15th ACM Syrup. on Theory of Computation, 1983, pp. 440-447.

[BM] M. Blum and S. Micali, "How to Generate Cryptographically Strong Sequences of Pseudo-Random
Bits", SIAM Jour. on Computing VoL 13, Nov. 1984, pp 850-864 (Preliminary version: Proc. 23rd IEEE
Syrup. on Foundations of Computer Science, 1982, pp 112-117.)

[BR] B1um, M.. and Rabin, M.O., "Mail Certification by Randomization", in preparation.

[DH] Diffie, W., and Hellman, M.E., "New Directions in Cryptography", IEEE Trans. on Inform. Theory,
Vol. IT-22, No. 6, November 1976, pp. 644-654.

~] Even, S., "A Protocol for Signing Contracts", TR No. 231, Computer Science Dept., Technion, Haifa,
Israel, 1982. Presented in CryptoSL

~GL] Even, S., Goldreich, O.. and Lempet, A., "A Randomized Protocol for Signing Contracts", Advances in
Co,ptotogy: Proceedings qfCrypto82, (Chaum D. et. al. eds.), Plenum Prcss, 1983, pp. 205-210. A better
version will apear in the Comm. of the ACM.

[EY] Even, S., and Yacobi, Y,, "Relations Among Public Key Signature Systems", TR No. 175, Computer
Science Dept., Technion, Haifa, Israel, 1980.

[(3] Goldreich, O., "A Simple Protocol for Signing Contracts", in Advances in Cryptology: Proceedings of
Crypto83, (Chaum D., ed.), Plenum Press, pp. 133-136, 1984.

[GGM] Goldreich, O, Goldwasser, S., and Micali, S., "How to Construct Random Functions", Proc. of the 25th
IEEE Symp. on Foundation of Computer Science, 1984, pp. 464-479. To appear, Journal of ACM

[GMR] Goldwasser, S., Micali, S., and Rivest, R.L., "A Paradoxical Solution to the Signature Problem", Proc. of
the 25th IEEE Symp. on Foundation of Computer Science, 1984, pp. 441-448.

[HS] Hastad, J., and Shamir. A., "The Cryptographic Security of Truncated Linearly Related Variables", to
appear in the proceedings of the 17th STOC, 1985.

ILl Levin. L.A., "One-way Functions and Pseudorandom Generators", to appear in the proceedings of the
17th STOC, 1985.

[R] Rabin, M.O., "Transaction Protection by Beacons", TR-29-81, Aiken Computation Laboratory, Harvard
University, 1981.

[RSA] Rivest, R.L., Shamir, A., and Adleman, L., "A Method for Obtaining Digital Signatures and Public-Key
Cryptosystems", Comm. of the ACM, Feb. 1978, pp. 120-126.

[Y] Yao, A.C., 'q'heory and Application of Trapdoor Functions", Proc. of the 23rd IEEE Syrup. on Founda-
tion of Computer Science, 1982, pp. 80-91.

