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ABSTRACT 

Assume that two parties, A and B, want to sign a contract over a communication net- 

work, i.e. they want to exchange their "commitments" to the contract. We consider a con- 

tract signing protocol to be fair if, at any stage in its execution, the following hold: the 

conditional probability that party A obtains B's signature to the contract given that B has 

obtained ,4's signature to the contract, is close to 1. (Symmetrically, when switching the 

roles of 4̀ and B). 

Contract signing protocols cannot be fair without relying on a trusted third party. We 

present a fair, cryptographic protocol for signing contracts that makes use of the weakest 
possible form of a trusted thCrdparty 6udge). If both A and B are honest, the judge will 

never be called upon. Otherwise, the judge rules by performing a simple computation, 

without referring to previous verdicts. Thus, no bookkeeping is required from the judge. 

Our protocol is fair even if ,4 and B have very different computing powers. Its fairness is 

proved under the very general cryptographic assumption that functions that are one-way 

in a weak sense exist. Our protocol is also optimal with respect to the number of mes- 

sages exchanged. 
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1. Introduction 

Let A, B .... be users who can exchange messages over a communication network. For example, they 

may be the users of the ordinary mail system, or of a telephone network, or a modern computer network. 

We will assume that a Signature Scheme S is adopted in the network. Two key properties are required 

from a signature scheme. First, unforgeabitity: only user U can create U's signature on message m. Second, 

universal verification: any other user should be able to verify that U's signature on message m is indeed a 

valid one. An instance of a signature scheme may be provided by ordinary "hand-written" signatures. 

Hand-written signatures are believed to be hard to forge and can be universaIly verified as trusted notary 

publics keep samples of each user's signature, Another instance of a signature scheme, more suitable for com- 

puter networks, is a "digital signature scheme". This notion was introduced by Diffie and Hellman [DH] and 
first implemented by [RSA]. The strongest notion of security for a digital signature scheme was suggested and 

concretely implemented (based on a weak and general complexity assumption) by Goldwasser, Micali and 

Rivest [GMR]. An historical account on the problem of digital signature can be found in [GMR]. 

We now describe the problem of "fair" contract signing. Two users, A and B, have negotiated over the 

network a contract CONT and now want to obtain each other's signature on it. In essence, the problem of 

signing a contract consists of exchanging signatures of an ordinary message, but with the additional constraint 

that the exchange must be "simultaneous". Therefore, 

, "a signature to a contract" does not necessarily consist of  of applying the signature scheme to the text of 

the contract. 

In general, a signature of A to CONT is a set of messages that only A can generate on input CONT, e.g. 

some of these messages may be generated by applying the signature scheme S. A good contract signing pro- 

tocol should satisfy the following (informal) conditions. 

1) Viability: If both parties follow the protocol properly, then at its termination, each will have his 

counterpaffs signature to CONT, 

2) Fairness: If one party, say A, follows the protocol properly then at any stage during its execution, B 

has A's signature on CONT if and only if also A has B's signature on CONT. 

The fairness condition is hard to satisfy, essentially because "simultaneity" is hard to meet in our discrete 
world [EY]. Thus, in order to successfully implement a contract signing protocol, it is necessary to relax and, 

at the same time, to formalize the fairness condition. The meaningfulness of a solution to the contract sign- 

ing problem wiI1 depend on the acceptability of the definition used to approximate the intuitive notion of 

fairness. Two main approaches to approximating fairness have been considered. ]'he first one, interprets 

simultaneity as deriving from equal computational effort. This approach, meaningful only if both parties are 

assumed to have equal computing power, suffers from some inherent additional disadvantages. The second 

approach, interprets the simultaneity of two events as very high probability that one event happens if and 

only if the second event happens. 

1.1 Computational Approaches to Fairness 

Even [El, Blum [B] and Even, Goldreich and Lempel [EGL], proposed a computational interpretation of 

approximate fairness. This approach requires that at any stage during the execution of the protocol, the com- 

putational effort required from the parties in order to get each other's signature to CONT be approximately 

equal. Informally, a protocol is said to satisfy this definition of fairness if, during its execution, for both par- 

ties the computational difficulty of computing the counterpart's signature to CONT decreases by equal 
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amounts at each step, till it vanishes. 

This approach suffers from the following major weaknesses. 

1) This definition of fairness is meaningful only if both parti~ are assumed to have "equal computing 
power". Otherwise, at some step of the protocol, one party may find the remaing computational effort, 

necessary to obtain his counterpart's signature~ to be feasible; while the same effort may be beyond the 
power of his counterpart_ Such "equal computing power" was assumed by atl the above mentioned 

researchers. 

We feel that assuming "equal computing power" is both unrealistic in practice and undesirable from a 
theoretical point of view. tn real life, parties may often have different computing power (e.g. consider a 
large commercial firm and an individual). Also, it is difficult for a party to estimate accurately the com- 
puting ability of the other party (one can always pretend to be less powerful). 
[Jumping ahead, let us po.~nt out that the probabilistic approach, as well as our protocol, is valid even if 
the parties have very diffeJrent computing power.] 

2) As observed by Rackoff, ffiis approach to fairness is prone to the devastating effect of "early stopping': 
Assume party B stops the execution of the protocol prematurely, at a point when each party will need 
10 years of computing time to obtain his counterpart's signature on CONT. Should A keep computing 
for the next 10 years or should she give up and hope that B is doing the same and thus will never have 
her signature? The situation effectively binds ,4 to the contract without offering any priviledges. In 
fact, if she acts as if the contract is not binding, B has the option, by investing 10 years of computation 
time, to enforce the contract and to put her in serious legal trouble. Though this approach was 
developed for two parties only, it should be noticed that the dilemma created by early stopping cannot be 
settled in court by a judge that rules deterministically. 
[If the judge is allowed to rule probabilistically, then our protocol is optimal. In particular, if one party 
stops prematurely, the other will invoke the (probabilistic) judge with the following guarantee. If the 
judge rules that CONT is binding when B appeals then, with high probability, he also rules so in case 
A appeals.] 

3) A third difficulty arises with this approach that may not be inherent, but is certainly a formidable one: 
the difficulty of proving the fairness of a protocol in this sense. Proving that certain problems cannot be 
efficiently solvable seems '.:o be hard. Proving that the computational difficulty of certain problems 

decreases by a fixed amount, when releasing some "partial information", seems even harder. The 
correctness of Blum's protocol [B] follows from the assumption that a particular computational problem, 
related (but not known to be computationally equivalen0 to integer factorization, is infeasible. Unfor- 
tunately, this problem has been shown to be efficiently solvable by Hastad and Shamir [HS]. The 
correctness of Even Goldreich and Lempel's protocol [EGL] follows from the assumption that "ideal" 
trapdoor one-way permutaLions exist and the assumption that "uniformly-hard" one-way functions f 
exist. By this they mean that given f ( x )  and k bits of (information about) x, where x is n-bit tong, the 
best algorithm for computing x essentially consists of trying all the 2 n -k  possibilities for the remaining 
bits. This is a very strong assumption. Even's protocol [E] (as well as its simplified version [G]) requires, 
in addition to the existence of a uniformly-hard one-way function, an extra non-mathematical assump- 
tion: that the contract's subject has a fixed and known value. 
[In comparison, the correctness of our protocol follows from a much weaker and more general complex- 
it), assumption: the existence of one-way functions f .  Such f ' s  need not be "ideal" or uniformly-hard. 
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In particular, it may be that half of the bits of x are easy to compute on input f(x). We only require 

that (all of) x is not efficiently computable on input f ( x ) .  In case the communication network is a com- 

puter network or a telephone network, we also need particularly strong digital signature schemes. Such 

schemes have been proved to exist under simple complexity assumption by [GMR].] 

1.2 h Probabitistie Approach to Fairness 

Rabin [R] proposed to sign contracts with the help of a trusted third party that, at regular intervals (say 

each day), publicly broadcasts a randomly chosen integer between 1 and 100. Parties A and B can then sign 

contracts by agreeing on a future date D and exchanging signed messages of the form: "I am committed to 

CONT if integer i is chosen at date D". A goes first. B will send his i-th message only/fhe gets A's i-th 

message Similarly A sends her i + 1-st message only//'she receives B's i-th message. It should be stressed 

that all messages should be exchanged prior to date D. B may try to cheat by not sending his i-th message 

after receiving A's i-th message. The advantage he gains by doing so is not too large: the probability that he 

will have a signed contract, on date D, but A will not, equals 1/100. In this sense, the protocol is "fair". 

How can this be made formal? We have two possible alternatives: 

!) Requiting that the probability that "B has A's signature on CONT but A does not have B's" is small. 

2) Requiring that the difference between 1 and the conditional probability that "A has B's signature on 

CONT", given that "B has A's signature to CONT", is small. 

Notice that the second condition implies the first. We believe that the conditional probability is a better 

measure for fairness, since it better models the intuitive notion of fairness as simultaneity ("if B has the sig- 

nature then A has it too" and vice versa). 

In formalizing '.he definition of fairness we will use a "security" parameter k which will constitute, 

together with CONT, the input to the protocol. We also use a function # from integers to the 0-1 inteval. /~ 

will serve as our measure of "negligible" probability; namely, we will not care about events occuring with 

probability less than/~(k). For example, one may choose/~(k)=2 - t  or # ( k ) = k - c  for some positive integer 

c. The parties are allowed to make random choices during the execution of the protocol. So is the third 

party, if he is called into play. 

Definition: A contract signing protocol is l~-fairfor A if, on input k and CONT, in case A follows the 

protocol properly, the following holds. At any stage, during the execution of the protocol, in which the 

probability that B has A's signature to CONT is greater than/t(k),  the conditional probability that "A 

has B's signature to CONT", given that "B has A's signature to CONT", is at least 1 - 1 /k .  

Here the probabilities are taken over all the random choices of A, B and the third party (in case he is 

called into play). 

A protocool is/~-falr if it is/~-fair both for A and B. 

For example, if the trusted third party of Rabin's protocol is parametrized, so that on input k it randomly 

selects an integer between 1 and t(k), then the protocol would be #-fair if and only if l(k)>_l~(k)-l.k. In 

fact. after A has sent i messages, but before B has replied, the conditional probability that "A has B's signa- 

ture to the contract" given that "B has A's  signature to the contract" equals 1 - 1 / i .  

1.3 Intervention by a Third Party 

We believe that the definition of p.-fairness is the correct one. However, it cannot be enforced without 
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the intervention of a third party. 

Theorem 1: Let p(k)  be smaller than 1, for every k. Then no viable, ,a-fair two-party protocol for 
signing contracts exists, without the intervention of trusted third parties. 

A proof of Theorem 1 will appear in the final version of this paper. The proof is not hard once the right for- 

realization is reached. 

Relying on the existence of a trusted third party is indeed a drawback, but preferable to assuming equal 

computing power. It is certainly preferable to accepting the disruptive effect of "early stopping" inherent in 

the computational approach to fairness. 

Since a/~-fair protocol must rely on a trusted third party, its quality will depend on the role that such a 

party plays in it: The more "inconspicuous" and efficient the third party is, the better the solution is. The 

third party we use is a probabilistic judge (algorithm). The judge is inactive until he is invoked. The judge 

can rule on whether a contract is binding, in the presence of only one party. Furthermore, the judge is 

invoked only in case of dispute and does not need to store past verdicts. The mildness of the (third party's) 

intervention in our solution can be demonstrated by comparing it with other forms of trusted third parties 

proposed in previous solutions to the contract signing problem. 

A simple, folklore solution to signing contracts is a cancellation center which stores all invalidated con- 

tracts (see [EGL]). A contract is signed by exchanging messages of the form: "I'm committed to CONT 
unless I've deposited a cancellation notice in the center by date D", where D is some future date. This naive 

solution suffers from serious practical drawbacks. The paperwork involved in maintaining the cancellation 

center is tremendous. Even more disturbing is the fact that if A wants to convince C that she (A) has B's 

signature to CONT, A must get a certificate from the cancellation center that CONT was not cancelled. This 

is the case even if both A and B are honest and wish to execute the protocol properly. 

As discussed in section t.2, Rabin [R] proposed the use of a trusted third partywhich broadcasts ran- 

domly chosen integers at fixed times. We point out that this third party must always be active, regardless of 

the honesty of all parties and of whether its output is being referred to. 

2. Optimal Fair Protocols for Parties with Different Computing Power 

In this section we develop a viable and fair protocol, without relying on the equal resources assumption. 

During the execution of the protocol, the probability that a party obtains his counterpart's signature to 

CONT grows from zero to one. This growth must be moderate to satisfy the fairness requirement. 

In subsection 2.1, we give a ~ight lower bound on the number of messages exchanged in a viable, p-fair 

protocol. In subsection 2.2, we exhibit a protocol which achieves this lower bound. The heart of our solution 

is the efficiency of the implementa~on of the judging procedure, suggested in subsection 2.3. 

2.1 On the Number of Messages Exchanged in a p-Fair Protocol 

A protocol for contract signing is a sequence of message exchanges hereafter called steps. In each step 
one of the parties sends a message to the other. Without loss of generality, no party sends messages in two 

consecutive steps; i.e. each party alternately sends and receives messages. Let us denote the party which 
sends [receives] a message in step i by Si [Rf]. Let Ei denote the event "after step i, party R i has Si's com- 

mitment to CONT", i.e. enough information so that the judge will rule that the contract is binding for Si. 
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Following is an analysis of the implication of the #-fairness requirement on the number of steps in a 

viable protocol. This number may be a function of the security parameter k. For simplicity, we assume here 

that the number of steps is independent of the contract CONT. Let us denote by # (k) the number of steps 

in a viable F-fair protocol, on input the security parameter k and the contract CONT. By the viability 

requirement, we have 
Prob(E#(l¢)) = 1 

(since upon termination of the protocol the probability that each party has his counterpart's signature to 

CONT is 1.) By the F-fairness, ifProb(Et) ~_ F(k) (l_~i_~#(k)) then 
1 

Prob(Ei-llEi) >_ 1 - - - .  
k 

This implies 
I 

Prob(Ei-1) -> (1 - ~-)" Prob(E i) 

(since Prob(A______~) > Prob(A [B) for any two events A and B). 
Prob(B ) 

In order to minimize # ( k )  we set Prob(Ei) = ( t - 1 / k )  #(k)-i ,  l_<i<#(k) .  Finally, Prob(E1) is set to 

F(k), so that the fairness requirement is not violated by the first step. Thfis, # ( k )  and the Pr(Ei)'s are 

easily bounded by expressions depending on k and F(k). Namely, 

Theorem 2: Every viable, F-fair protocol for signing contracts has length at least # ( k )  = 
k.Iog/~-l(k). Furthermore, the probability that after step i one party has his counterpart's signature 
to CONT does not exceed ( l - l / k )  #(k)-i,  (The logarithm is taken to the natural base.) 

A reasonable choice ofF(k ) = poly(log k) -1 yields #(k)=f~(k.log k). 

2.2 The Proposed Protocol 

Our protocol makes use of the signature scheme of the network. For the purpose of this extended 
abstract, it wilt be convenient to decouple the analysis of a contract signing protocol from the security of the 
underlying signature scheme used in its implementation. In fact, if the network is, say, the ordinary mail sys- 
tem, the signature scheme in use (like pen-written signatures, fingerprints, etc.) may not be easy to analyze 
mathematically. This decoupling can be done by assuming that the signatures used in the implementation are 
totally unforgeable. Namely, for each message m and user A, the probability that another user (B) can pro- 
duce A's signature on m is zero. (Independent of B's computing power.) It should be stressed that digital 
signature schemes cannot possibly be unforgeable in this sense, and problems might arise when implementing 
our protocol with a "concrete" digital signature scheme. In fact, the "security" of a contract signing protocol 
cannot exceed the "security" of the underlying signature scheme, but it may be much less. This is so because 
the protocol, in its concrete implementation, may interact badly (in an unpredictable manner) with the signa- 
ture scheme. However, this is not the case with respect to the protocol presented in this extended abstract: 

Our protoco[ remains fair when implemented with high quality signature schemes as the ones in [GMR]. 

The formal version of the above statement and its proof will appear in the final write-up. We now present 
our protocol for signing contracts. As before, the parties to the protocol will be denoted by A and B and the 
contract they wish to sign will be denoted by CONT. We assume that CONT also specifies the security 
parameter k and the function p., the name of the party that goes first in the protocol (A in the description 

below) and the name of the party which goes second (B). Recall that # (k)= k.log F-1(k). 
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The Protocol for A and B 

0A) A chooses l=[#(k) /2]  arbitrary messages al, a2,..., at, with the only restriction that they were not 

used before by A. 

(A's signatures to these messages will be hereafter referred to as A's secrets.) 
A sends to B the following declaration (signed): "CONT, a 1, a2 ..... af'. 

0B) B chooses 1 arbitrary messages bl, b2 ..... bt, with the only restriction that they were not used before by 
A. 
(B's signatures to these messages will be hereafter referred to as B's secrets.) 

B sends to A the following declaration (signed): "CONT, bb b2,..., bt". 

(for l < i < l )  

iA) A sends her signature on at to B. 

iB) B sends his signature on b~ to A. 

Handling early stopping : If the entire protocol is not completed within T time units, party X invokes the 

judge with inputs the initial declarations (steps 0A and 0B), CONT, X, and the secrets of Y (X's counter- 
part) in X's possession. 

The Judge's Procedure 

On inputs the signed initial declarations, CONT, ,Y and m secrets of Y, the judge checks whether the secrets 
are valid signatures, of X's counterpart, according to the protocol. If so, he then chooses an integer e 
(hereafter referred to as the edge) between 1 and 2I as specified in section 2.3. The same edge e is chosen 
every time CONT is brought before the judge. The probability distribution of the edge is, essentially, the 
following. 

e=  t with probability Pl = ( 1 - 1 )  2t-1. 

= i, 1< i<_2l, with probability Pi = (1 --  ._!k)2t - i  --  ( 1 -  7)1 2t -(i-1) . e 

If X = A and m_> [e/21 or if X =-B and m _>[e/2] then the judge rules that CONT is binding. 
In this case, the judge waits for 7' time units to pass and then sends his signed verdict to both parties. 

Notice that if both parties are honest and complete the protocol within T time units, the judge will 
never be invoked. In fact both will have all the counterpart's secrets, a number greater than or equal to any 
possible choice of the edge. This fact can be easily verified by any other party. Problems may arise only if 
one of the parties prematurely terminates the protocol, say after t (<  # (k)=2/) steps. In such a case deter- 
mining the "sufficient number of counterpart's secrets" is of importance and is done by the judge as 

described above. Notice that the parties cannot know the value of the edge during the execution of the pro- 
tocol. This is achieved by delying the answer of the judge. Note that the above probability distribution by 
which the edge is chosen makes the protocol /z-fair and corresponds to the probability distribution of 
Theorem 2. Thus our protocol is of shortest length among all the/z-fair protocols. Namely, 

Theorem 3: For function/z, there exists a viable,/z-fair protocol, for signing contracts, of length de(k) 
= k.log/z-l(k). (Here the logarithm is taken to the natural base.) 
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2.3 On the Determination of the Edge 

Selecting the edge so that Prob(e = i ) = P i  is easy of one flips unbiased coins, (Let qo=O, qi= ~p j .  
j--1 

RandomIy select 0 and 1 with equal probability to construct the binary expansion a real number a between 0 

and 1. Stop the construction of a as soon as qi -l<_a<qi, for some i. In this case the edge is chosen to be 

i,) 

Recall that the judge was required to always use the same edge for the same contract. (The reader may 

note that failing to do so may creates conflicting verdicts; and furthermore, give advantage to parties who 
keep appealing to court many times with the same contract.) Using the same edge for the same contract can 

be accomplished if the judge operates as follows. Once he chooses an edge e with respect to a contract 

CONT, he stores the pair (e, CONT), and uses e again any time that the CONT is brought before him, This 

solution can hardly be considered efficient, as the judge must keeps record of all previous verdicts. It is our 

goal to free the judge from any bookkeeping. We do this by using the "poly-random functions" of Goldreich 

Goldwasser and Micali [GGM]. 

In [GGM] it is shown how to use any one-way (in a very weak sense [L]) function to efficiently con- 

struct a set of functions that are "very few" in number, deterministic and fast computable, but possess all the 

statistical properties of truly random functions with respect to an observer with potynomially bounded resourcex 
Their deterministic construction, given as input a constant c and a randomly chosen n-bit long string r, out- 

puts a determinstic, polynomial-time algorithm f t .  This algorithm, on input a n-bit long string x,  outputs a 

he-bit long string f r (x) .  These functions (deterministic algorithms)fr 's  cannot be distinguished from ran- 

dom functions by any probabilistic polynomial time algorithm that asks and receives the value of a function at 

arguments of its choice. (Here by a random function, we mean a function randomly selected with uniform 

probability from the set of all functions from n-bit strings to nO-bit strings.) 

Let us now show how to use this result in order to free the judge from bookkeeping. The judge ran- 

domly selects a n-bit string r once and for all. No other random choices are ever done by the judge. When 

invoked with CONT and all other inputs, the judge computes fr(CONT) and uses it (instead of flipping 

coins) to determine ths choice of the edge. This way of operating essentially maintains ~-fairness. It can be 

shown that the conditional probability that "A has B's signature on CONT" given that "B has A's signature 

on CONT" is greater than 1 - 1/k - 1/n c, for all constants c and sufficiently large n. (This follows from 

the properties of the poly-random functions, else all functions easy to evaluate can also be easily inverted,) 

We stress that the/~-faireness of protocol holds even if the parties are given the edges relative to other con- 

tracts of their choice. 

In the above we assume n to be large enough so that all contracts have length smaller than n. There is 

no need to assume so: it is sufficient that each contract starts with an n-bit string C uniquely associated to it. 

Half of the bits of C are chosen, by A and the remaining half by B. As long as one party never uses the 

same bits for another contract, then no matter how "trickly" the second party will choose the second half of 

C, the same security is maintained. This greatly improves the efficiency of the scheme. 

Why poly-random functions? 

Poly-random functions improve previous results of Blum and Micati [BM] and Yao [Y] on pseudo- 

random number generators. They present deterministic algorithms that transform a truly random (but short) 

secret seed to a long pseudo-random bit-sequence passing polynomial time statistical tests. Such high quality 
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pseudo-random number generators may not be straightforwardly applied in our context. For example 

1) Using CONT or part of it as input to the generator does not work. The parties may also do so and 

determine the edge as well. 

2) Using the bit by bit "exclusive or" of CONT and some fixed key r (randomly and secretly selected by 
the judge) as input to the generator, may not work. In fact, these generators are proved to produce 

"random" outputs only on randomly and independently selected inputs. In our setting, knowledge of 
the edges relative to previous contracts, may help in predicting the edge relative to a new contract. 

Remark: Above, we have suggested that the edge be determined by the judge. An alternative method for 

determining the edge (i.e. determining a fraction in the interval [0,1]) is described below. Each party has a 
one-way function associated with him. At step 1 of the protocol, each party chooses randomly a fraction in 

the interval [0,1], applies his one-way function to the binary extension of this fraction and appends the result 
to his declaration (which is only then signed). The fraction (which determines the edge) is agreed to be the 

sum reduced modulo 1 of these fractions. This way, the edge will be determined during the first step of the 
protocol, by both parties. However, none of them knows at that point what the edge is. 
Although this solution appeals to be more elegant, it suffers from a serious drawback. In order to rule, the 
judge must find out the fractions chosen by both parties. This requires either that both parties appear in 
court or that the judge knows to invert the one-way functions of all users, Both requirements are highly 
undesirable from a practical point of view. Note that when the edge is chosen by the judge, the judge is able 
to rule even if only one party appears in court. 

2.4 Summary and Further Discussion 

Let us first sum up the properties of our solution (which consists of a two-party protocol and a judge- 
procedure): 

1) It satisfies both the viability and the fairness requirements, without using the "Equal Computing Power" 
assumption. It is not prone to "early stopping". Furthermore, unlike other solutions, our solution 
requires the intervention of a trusted third party and a "time out" mechanism in a very mild sense. 

2) A third party (a judge) intervenes only in case of dispute. In this case the judge can rule even if only 
one party appears in court. Furthermore, no bookkeeping is required from the judge! 

3) The protocol is optimal in the sense that it can be implemented and proven fair under the minimum 
possible intractability assumption: the existence of one-way functions and secure signature schemes. 
(The judge-procedure which involves the use of random functions requires a slightly stronger assump- 
tion [GGM].) 

4) The protocol is optimal in the sense that it uses the minimum number of message exchanges needed to 
satisfy the/z-fairness requirement. 

5) The protocol is very easy to execute. Also the judging-procedure is conceptually simple and only 
requires the examination of two messages (the signed initial declaration and the last received secret). 
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