
SESSION ID:

Honeywords:
A New Tool for Protection from Password
Database Breach

DSP-W02

Kevin Bowers
Senior Research Scientist
RSA Laboratories
kbowers@rsa.com

Ronald L. Rivest
Vannevar Bush Professor
MIT EECS
CSAIL
rivest@mit.edu
(some slides adapted from those of Ari Juels)

#RSAC

Outline

u  Motivation – theft of password hash files

u  Honeywords – enables detection of theft, prevents impersonation
u  Honeywords are ``decoy passwords’’ (many for each user)

u  Separate ``honeychecker’’ aids in password checking

u  How to generate good honeywords?

u  Experimental results (can you tell honeywords from real passwords?)

u  Implementation guidance (Django)

2

Motivation: Theft of
Password Hash Files

3

#RSAC

Good and bad news about password breaches

u  The good news: when talking about password (or PII) breaches, a
convenient recent example is always available!
u  October 2013: Adobe lost 130 million ECB-encrypted passwords

u  The bad news: This is all bad news.

6+ million passwords

June 2012

50 million passwords
March 2013

1.5 million passwords June 2012 450,000 passwords
July 2012

#RSAC

Passwords usually stored in hashed form

u  P = Alice’s password

u  System stores mapping “Alice” èh(P) in database, for a suitable
hash function h.

u  When someone (perhaps Alice) tries to log in as Alice,
system computes h(P’) of submitted password P’
and compares it to h(P). If equal, login is allowed.

u  Hash function h should be easy to compute, hard to invert.
Such ``one-wayness’’ makes a stolen hash not so useful to
adversary.

5

#RSAC

Password hashing

u  To defeat precomputation attack, a per-user ``salt’’ value s is used:
system stores mapping “Alice”è(s,h(s,P)). Hash h(s,P’) computed for
submitted password P’ and compared.

u  Hashing with salting forces adversary who steals hashes and salts to
find passwords by brute-force offline search: adversary repeatedly
guesses P’ until a P’ is found such that h(s,P’) = h(s,P)

u  Also, hashing can be hardened (slowed) in various ways (e.g. bcrypt)

u  This all seems good, but…

#RSAC

Password hashing

u  Real passwords are often weak and easily guessed.
u  Study of 69M Yahoo passwords [B12] shows that:

u  1.08% of users had same password (is your password “123456” ?)

u  About half had strength no more than 22 bits (4M tries to break)

u  Password-hash crackers now use models or sets of real passwords:
u  [WAdMG09] uses probabilistic context-free grammar

u  Crackers use, e.g., RockYou 2009 database of 32 million passwords

u  We assume in this talk that hashes can be cracked and passwords are
effectively stored in the clear.

#RSAC

Adversarial game

u  Adversary compromises system
ephemerally, steals password hashes

u  Adversary cracks hash, finding P

u  Impersonate user(s) and logs in.
u  Adversary almost always succeeds,

and is often undetected.
“Alice”,	
 P	

“Alice”:	

	
 s,h(s,P)	

Honeywords are
“Decoy Passwords”

9

#RSAC

Decoys

u  Decoys, fake objects that look real, are a time-honored
counterintelligence tool.

u  In computer security, we have “honey objects”:
u  Honeypots [S02]

u  Honeytokens, honey accounts

u  Decoy documents [BHKS09] (many others by Keromytis, Stolfo, et al.)

u  Honey objects seem undervalued.

10

#RSAC

``Honeywords’’ proposed 2013 by Juels & Rivest

u  ACM CCS 2013

11

Honeywords: Making Password
Cracking Detectable

#RSAC

Terminology

Alice:!
P1	

P2	

…	

Pi	

…	

Pn	

#RSAC

Terminology

Alice:!
P1	

P2	

…	

Pi	
 =	
 P	

…	

Pn	

True	
 password	

#RSAC

Terminology

Alice:!
P1	

P2	

…	

Pi	
 =	
 P	

…	

Pn	

Honeywords	
 	

(decoys)	

#RSAC

Terminology

Alice:!
P1	

P2	

…	

Pi	

…	

Pn	

Sweetwords	

#RSAC

Honeyword design questions

u  Verification: How does the check whether a submitted password P’ is
the true password Pi?
u  How is index i verified without storing i alongside passwords?

u  Generation: How to generate honeywords?
u  How to make realistic decoy passwords?

(Many other design questions, e.g., how to respond when breach is detected…)

#RSAC

Honeywords: Verification

u  The authentication system stores
a mapping from Alice to her set of
passwords

u  A “honeychecker” stores the index
of the correct password for Alice

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Computer	
 System	

Alice:!
P1	

P2	

…	

Pi	

…	

Pn	

	

	

	

	

	

	

	

	

Honeychecker	

Alice:	

i	

#RSAC

Honeywords: Verification

u  Alice authenticates by submitting
her password P

u  The computer system checks her
password against all those it
stores

u  If a match is found, the index of
that match is sent to the
honeychecker for verification

u  If the index is correct, Alice is
authenticated

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Computer	
 System	

Alice:!
P1	

P2	

…	

Pi	

…	

Pn	

	

	

	

	

	

	

	

	

Honeychecker	

Alice:	

i	

i	

P	

P	
 =	

True	

#RSAC

The adversarial game

What	
 is	
 i?	

“Alice”,	
 Pj	

With	
 ideal	
 honeywords,	
 adversary	

guesses	
 correctly	
 	
 (
 j	
 =	
 i	
),	
 with	

probability	
 only	
 	
 1/n	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Computer	
 System	

Alice:!
P1	

P2	

…	

Pi	

…	

Pn	

#RSAC

The adversarial game

Which	
 is	
 the	

(true)	

password?	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Computer	
 System	

Alice:!
5512lockerno.	

tribal_3	

cshcsh.meowr.18	

28/07/89rm	

anto_2001_jesu	

CRFRALAASS$4	

!v0nn3	

#RSAC

Honeywords: Verification

u  An attacker will submit a sweetword
u  The computer system checks the

password against all those it stores
u  If a match is found, the index of that

match is sent to the honeychecker
for verification

u  If the index is incorrect, an alarm is
raised

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Computer	
 System	

Alice:!
P1	

P2	

…	

Pi	

…	

Pn	

	

	

	

	

	

	

	

	

Honeychecker	

Alice:	

i	

2	

Pj	

Pj	
 =	

False	

2	
 ≠	

#RSAC

Honeywords: Verification Rule

u  If true password Pi submitted, user authentication succeeds.
u  Submitted password P’ not in P1 … Pn is handled as typical

password authentication failure.
u  If honeyword Pj is submitted, an alarm is raised by the

honeychecker.
u  This is strong indication of theft of password hash file!

u  Honeywords (if properly chosen) will rarely be submitted otherwise.

u  No change in the user experience!

#RSAC

Some nice features of this design
u  System just transmits sweetword index j to

honeychecker
u  Little modification needed

u  We get benefits of distributed security
u  Compromise of either component isn’t fatal
u  No single point of compromise
u  Compromise of both is just hashed case

u  Honeychecker can be minimalist, (nearly)
input-only
u  Only (rare) output is alarm

j	

	

	

	

Computer	

System	

	

	

	

Honey	

checker	

#RSAC

Another nice feature – offline operation
u  Honeychecker can be offline

u  E.g., honeychecker sits downstream in security operations center (SOC)
u  Not active in authentication itself, but gives rapid alert in case of breach
u  If honeychecker goes down, users can still authenticate (using usual

password); we really just lose breach detection (detection of password file
theft).

How to generate good
honeywords ?

25

#RSAC

Honeyword generation

Which is Alice’s real password?

Alice:	

•  QrMdmkQt	

•  AP9LXEEa	

•  m7xnQVV4	

•  kingeloi	

•  y5BJKWhA	

#RSAC

Honeyword generation:
Chaffing with a password model

Alice:	

•  qivole	

•  paloma	

•  123asdf	

•  Compaq	

•  asdfway	

u  Password-hash crackers
learn model from lexicon of
breached passwords (e.g.,
RockYou database)
u  Make guesses from model

probability distribution
u  Simple (splicing) generator

in our paper yields…

#RSAC

But there are problem cases…

Which is Alice’s real password?

Alice:	

•  hi4allaspls	

•  #1spongebobsmymansodonbouchhim	

•  Travis46	

•  #1bruinn	

•  KJGS^!*ss	

#RSAC

Honeyword generation:
Chaffing by tweaking

Alice:	

•  yamahapacificer321456789876

54321	

•  yamahapacificer123456789876

54321	

•  yamahapacificer123456789012

34567	

•  yamahapacificer621456789876

54322	

u  [ZMR10] observed users tweak
passwords during reset (e.g.,
HardPassword1, HardPassword2, …)

u  Proposed tweak-based cracker

u  Idea: ``Tweak’’ password to
generate honeywords!

u  E.g., tweak numbers in true
password…

#RSAC

Honeyword generation:
A research challenge

u  Blink-182 is a rock band

u  Blink-182 is semantically significant
u  Tweaking would break it

u  Generation is unlikely to yield it

u  Dealing with such passwords is a
special challenge—like natural
language processing

u  Subject of an upcoming paper

Alice:	

•  Blink123	

•  Graph128	

•  Froggy%71	

•  Blink182	

•  Froggy!83	

#RSAC

How good does honeyword generation have to be?

u  Suppose user chooses password P with probability U(P)

u  Suppose honeyword procedure generates P with probability G(P)

u  Given sweetword list P1, …, Pn, adversary’s best strategy is to pick
Pj maximizing U(Pj) / G(Pj)

u  For example, given chaffing-with-a-password-model, a particularly
dangerous password is  
 #1spongebobsmymansodon:ouchhim  
(much more likely to be picked by user than as a honeyword!)!

#RSAC

How good does honeyword generation have to be?

u  We imagine practical choice of, say, n = 20
u  With perfect honeyword distribution U ≈G and adversary picks a

honeyword (and sets off alarm!) with probability 95%
u  Perfect honeyword distribution isn’t required: even if adversary can

rule out all but two sweetwords, we still detect a breach
systematically with high probability
u  E.g., 50% guessing success means prob. 2-m of compromising m

accounts without detection

#RSAC

How good does honeyword generation have to be?

u  Generation strategies can be hybridized as a hedge against
failure of one strategy, e.g.,

•  qivole!	

•  123asdf	

•  PleaseDismantle	

TheGreenLine89	

•  Froggy%71	

•  qivole#	

•  111asdf	

•  PleaseDismantle	

TheGreenLine12	

•  Froggy!88	

?	

Experimental Results

34

#RSAC

Experimental Goals

u  We attempt to measure how hard an attacker’s task is to complete
u  Assume the password file is stolen and all hashes are reversed

u  Attacker must then determine the real password from a set of sweetwords

u  Additional information about the user is not provided

u  Test is performed both algorithmically (using a probabilistic model
built from real passwords) and manually (leveraging Mechanical Turk)

#RSAC

Experimental Design
Real	

Password	

Real	

Password	

Tweak	
 1	

Real	

Password	

Tweak	
 2	

Base	

Password	

1	

Base	
 1	

Tweak	
 1	

Base	
 1	

Tweak	
 2	

Base	

Password	

2	

Base	
 2	

Tweak	
 1	

Base	
 2	

Tweak	
 2	

Filtered	

RockYou	

Database	

Generator	

Mechanical	
 Turkers	

Classificakon	

Program	

“Real”	

Passwords	

Training	
 Set	

Test	

• Base	
 1	
 Tweak	
 2	

• Base	
 2	
 Tweak	
 1	

• Real	
 Tweak	
 2	

• Base	
 Password1	

• Real	
 Password	

• Base	
 2	
 Tweak	
 2	

• Base	
 Password	
 2	

• Real	
 Tweak	
 1	

• Base	
 1	
 Tweak	
 1	

Results	

Results	

#RSAC

Results

0%	

25%	

50%	

75%	

100%	

Overall	

Overall	

Ideal	

Humans	

Algorithm	

37

0%	

25%	

50%	

75%	

100%	

Base	

Generakon	

Tweaking	

By	
 Component	

Ideal	

Humans	

Algorithm	

u  Even with only 9 choices, the attacker was unable to correctly guess
the real password even just half of the time.

Implementation
Guidance (Django)

38

#RSAC

Implementing Honeywords

u  Goal: Walk through an implementation of honeywords, demonstrating
components and pieces that are required for deployment

u  High level presentation to identify major steps

u  General principles should be easily translated to most frameworks
u  Example implementation done in Django

https://www.djangoproject.com/

u  Code will be presented at the very end for those interested
u  Email for more information or access to the code.

#RSAC

Current Authentication

u  Website calls authenticate(username, password)

u  User’s encoded hashed password is retrieved from the User DB

u  Supplied password is encoded using the same parameters

u  Server checks if the computed hash matches the stored hash
encoded	

algorithm	
 iterakons	
 salt	
 hash	

User	
 DB	

authenkcate	
 (username,	
 password)	
 (username,	
 password)	

?	

==	
 hash	
 	
 	
 	
 	
 	
 hash(password,	
 algorithm,	
 iterakons,	
 salt)	
 (password,	
 algorithm,	
 iterakons,	
 salt)	

#RSAC

hash4	

hash3	

hash2	

Desired Authentication

u  Website calls authenticate(username, password)

u  User’s encoded hashed passwords are retrieved from the User DB

u  Supplied password is encoded using the same parameters

u  Server checks if the computed hash is in the stored hashes

u  Index of matching hash is checked by the honeychecker

encoded	

algorithm	
 iterakons	
 salt	
 hash1	

User	
 DB	

authenkcate	
 (username,	
 password)	
 (username,	
 password)	

	
 	
 	
 	
 	
 hash(password,	
 algorithm,	
 iterakons,	
 salt)	
 (password,	
 algorithm,	
 iterakons,	
 salt)	
 username,	
 3	

Honeychecker	

True/False	

#RSAC

How do we get there?

q  Modify the password verification function to implement new logic

q  Enable communication with a remote system (honeychecker)

q  Change what is stored as the user’s password

q  Build the honeychecker to store indices and verify them

q  Modify the encoding function to generate honeywords and store their
hashes, as well as notifying the honeychecker of the correct index

42

Changing the Verifier

43

#RSAC

Hashers

u  Verification happens within a “hasher”
u  Implements both the verify and encode functions

u  Different hashers implement different hashing
algorithms

u  System maintains an ordered list of hashers
u  At verification, they are tried in order
u  Password is re-encoded if it doesn’t use the

first listed hasher
u  Placing a new hasher at the top of the list will

upgrade users automatically as they log in

44

Hashers	

	

	

	

	

	

	

	

	

	

PBKDF2PasswordHasher	

BCryptPasswordHasher	

SHA1PasswordHasher	

MD5PasswordHasher	

HoneywordHasher	

#RSAC

Honeyword Hasher

u  Needs a unique name (algorithm)

u  Needs to communicate with the honeychecker

u  Modify the implementation of

u  verify(password, encoded) – verifies that stored encoded password is an
encoding of the submitted password

u  encode(password, salt, iterations) – given a password, salt and number of
iterations computes the encoded password that will be stored in the database

u  Additional functions that we will override

u  salt() – used to generate a salt value when the user changes or upgrades their
password

45

Storing Sweetwords

46

#RSAC

Django Authentication
u  Django maintains a database of users and their hashed passwords
u  Usernames (max 30 characters) must be unique
u  Password (max 128 characters) is actually a tuple describing the:

u  <algorithm>: Algorithm used to compute the hash
u  <iterations>: Number of times to apply the hashing algorithm
u  <salt>: A user-specific salt
u  <hash>: The Base64 encoding of the resulting hash value

u  What django calls the encoded password is the concatenation of those strings separated by dollar
signs: <algorithm>$<iterations>$<salt>$<hash>

u  This string is what actually gets stored in the password field of the user database
u  There is no room in the password field to store more than 2 hashes
u  To avoid breaking things, we’d prefer not to replace the User model

47

User	
 DB	

encode(‘passw0rd’,	
 ‘pbkdf2_sha256’,	
 12000,	
 	
 ‘nR9uayYDhouC’)	
 =	
 	

	

‘pbkdf2_sha256$12000$nR9uayYDhouC$yIVCfAB/
UfLaEVAo0HSoPcSzwShmNYdmhRLB6pCu0yg=‘	

#RSAC

Where can we store the sweetwords?

u  Store the sweetwords in their own table, User DB stores a key into that table

u  Need a key, known to the hasher, that can be used as an index into this table

u  Hasher knows algorithm, iterations and salt

u  Hasher can override the salt-generation function, giving even more control

u  Use the salt as the key

u  Sweetwords database then stores a mapping from a salt to a number of
sweetword hashes

u  The salt should be changed every time the user changes password

u  Ideally old sweetwords are deleted when they are no longer in use

48

Honeychecker

49

#RSAC

Honeychecker

u  Stores the index corresponding to a user

u  Ideally runs on a separate machine or at least separate VM

u  API supports updates (additions) and index checking

u  update_index(salt, index)

u  check_index(salt, index)

u  Ideally old, unused salt/index pairs are removed from the honeychecker

u  To further harden the system, these calls should only be allowed from known
servers over trusted channels

u  Probably want to backend the honeychecker by a database as well

50

Verification Function

51

#RSAC

Verify
u  Coming back to the verify function in the HoneywordHasher…

u  In the ideal model, the verify function checks if the hash of the submitted password is in the local
database.

u  If not, the password was either mis-typed or an online guessing attack is occurring

u  If so, the index in the database is sent to the honeychecker for verification

u  If the index is correct, the user is authenticated

u  If the index is incorrect, it is likely that the database has been stolen and appropriate action should be taken.

u  The parameters needed to hash the submitted password are stored in the database as well and
must be extracted from the encoded password

u  This is complicated a little in our case because we had to create a separate sweetword database

#RSAC

Verify(password, encoded)

53

encoded	

algorithm	
 iterakons	
 salt	
 dummy	

Sweetword	

DB	

Honeychecker	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 .index	
 (
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hash	
 hashes	

password	

hash(password,	
 salt,	
 iterakons)	
 password	
 salt	
 iterakons	

True/False	
 (Alarm)	

Encoding Function

54

#RSAC

Encode

u  The other half of implementing honeywords is creating them and storing them in the
databases

u  When a user submits a new password (or upgrades an old password) the encode
function must:

u  Create the honeywords

u  Combine them with the real password to form the sweetword list

u  Randomly order that list

u  Store the hashes of all sweetwords in the Sweetword database

u  Inform the honeychecker of the new index associated with the user

u  Return something of the correct form to be stored in the User database

55

#RSAC

encode(new_password, salt, iterations)

56

new_password	
 gen(new_password,	
 base_count,	

training)	

	
 	
 Sweetwords 	
 	
 	

Honeychecker	

tweak(sweetword,	

tweak_count)	

Sweetword	

DB	

salt	

index	

new_password	

real_tweak1	

base1	

base1_tweak1	

iterakons	

hash(sweetword,	
 salt,	
 iterakons)	
 salt	
 iterakons	

Key	

Value	

#RSAC

encode(new_password, salt, iterations)

57

salt	
 iterakons	

	
 	
 	
 	
 	
 	
 	
 hash(dummy,	
 salt,	
 iterakons)	

algorithm	
 iterakons	
 salt	
 $$ $ dummy	
 hash	
 Honeychecker	

Return	

dummy	

#RSAC

Helpers

u  Base password generation
u  Download generation script from Ron’s webpage:

u  http://people.csail.mit.edu/rivest/honeywords/gen.py
u  Edit the file to ensure unique generation and inclusion of at least one digit (to allow tweaking)

u  Tweaking
u  Tweak your base password as many times as you like (or can)

u  Need to ensure tweaks are unique

u  Reordering
u  Base and tweaks are then randomly ordered

u  Salt generation
u  Because salts are used as key, we need to ensure they are unique

58

#RSAC

Reviewing our checklist

" Modify the password verification function to implement new logic
" Enable communication with a remote system (honeychecker)

" Change what is stored as the user’s password

" Build the honeychecker to store indices and verify them

" Modify the encoding function to generate honeywords and store their
hashes, as well as notifying the honeychecker of the correct index

•  The full code implementing everything on this list is included at the end of
these slides.

59

Discussion and
Conclusions

60

#RSAC

The larger landscape

u  Honeywords are a kind of poor-man’s distributed security system

u  There are other, practical approaches to password-breach protection
u  Hashing (see Password Hashing Competition)

u  [Y82] (and many others), Dyadic Security

u  Honeywords strike attractive balance between ease of deployment
and security
u  Little modification to computer system

u  Honeychecker is minimalist

u  Conceptually simple

Code

62

#RSAC

HoneywordHasher

from django.contrib.auth.hashers import PBKDF2PasswordHasher
import xmlrpclib

Define HoneywordHasher derived from PBKDF2PasswordHasher
class HoneywordHasher(PBKDF2PasswordHasher):

 # Give our hasher a unique algorithm name to later identify
 algorithm = “honeyword_base9_tweak3_pbdkf2_sha256”
 # Setup the honeychecker
 honeychecker = xmlrpclib.ServerProxy(<uri>)

63

#RSAC

HoneywordHasher.hash(self, password, salt, iterations)

 # Compute pbkdf2 over password
 hash = pbkdf2(password, salt, iterations, digest=self.digest)
 # Base64 encode the result
 return base64.b64encode(hash).decode(‘ascii’).strip()

64

#RSAC

HoneywordHasher.salt(self)

from django.utils.crypto import get_random_string

def salt(self)

 salt = get_random_string() # Generate a candidate salt
 # Check if the salt already exists, if so, create another one
 while Honeywords.objects.filter(salt=salt).exists():
 salt = get_random_string()
 return salt # Return the unique salt

65

#RSAC

HoneywordHasher.verify(self, password, encoded)

 # Pull apart the encoded password that was stored in the database
 algorithm, iterations, salt, dummy= encoded.split(‘$’, 3)
 # Grab the honeyword hashes from the database
 hashes = pickle.loads(Sweetwords.objects.get(salt = salt).sweetwords)
 # Use a helper function to hash the provided password
 hash = self.hash(password, salt, int(iterations))
 if hash in hashes: # Make sure the submitted hash is in the local database
 #Check with the honeychecker to see if the index is correct
 return honeychecker.check_index(salt, hashes.index(hash))
 return False #Return false if the hash isn’t even in the local database

66

#RSAC

HoneywordHasher.encode(self, password, salt, iterations)

#Put the real password in the list
sweetwords = [password]
Add generated honeywords to the list as well
sweetwords.extend(honeywordgen.gen(password, <bases>,

[<pwfiles>]))
Add tweaks of all the sweetwords to the list
for i in range(<bases+1>):

 sweetwords.extend(honeywordtweak.tweak(passwords[i], <tweaks>))
Randomly permute the sweetword order
random.shuffle(sweetwords)

67

#RSAC

HoneywordHasher.encode(self, password, salt, iterations)

hashes = []
for swd in sweetwords: # Hash all of the passwords

 hashes.append(self.hash(swd, salt, iterations))
Update the honeychecker with a new salt and index
self.honeychecker.update_index(salt, sweetwords.index(password))
Create a new honeyword entry for the local database
h = Sweetwords(salt = salt, sweetwords = pickle.dumps(hashes))
h.save() #Write to the database
Return what is expected for storage in the User database
return “%s$%d$%s$%s” % (self.algorithm, iterations, salt, hashes[0])

68

#RSAC

honeywordgen.py
Modifying generation parameters
u  Downloaded from: http://people.csail.mit.edu/rivest/honeywords/gen.py
u  Black = existing code

Blue = additions
Red = deletions

 #### PARAMETERS CONTROLLING PASSWORD GENERATION
nL = 8 # password must have at least nL letters
nD = 1 # password must have at least nD digit
nS = 0 # password must have at least nS special (non-letter non-digit)

69

#RSAC

honeywordgen.py (cont)
Ensure generated passwords are unique
def generate_passwords(n, pw_list):
""" print n passwords and return list of them """
ans = []
for t in range(n):

 pw = make_password(pw_list)
 while pw in ans:
 pw = make_password(pw_list)
 ans.append(pw)

return ans

70

#RSAC

honeywordgen.py
Make a generation function, remove system parameters
def main()gen(password, n, filenames):

 # get number of passwords desired
 if len(sys.argv) > 1:
 n = int(sys.argv[1])
 else:
 n = 19
 # read password files
 filenames = sys.argv[2:] # skip "gen.py" and n
 pw_list = read_password_files(filenames)
 …

import cProfile
cProfile.run("main()")
main()

71

#RSAC

Tweaking function - pseudocode

u  Identify the piece of the password you will tweak (input, length)
u  If that piece is numeric, replace with different digits of same length

str(random.randrange(pow(10, length))).zfill(length)

u  If symbols, create a translation table
symbolchars = [‘!’, ‘@’, ‘#’, ‘$’, ‘%’, ‘^’, ‘&’, ‘*’, ‘(‘, ‘)’, ‘_’, ‘+’, ‘=‘, ‘-’, ‘`’, ‘~’, ‘<‘, ‘>’,

‘?’, ‘/’, ‘\\’, ‘\’’, ‘”’, ‘;’, ‘:’, ‘{‘, ‘}’, ‘[‘, ‘]’, ‘|’, ‘.’, ‘\,’, ‘ ‘]
shuffled = random.shuffle(copy.deepcopy(symbolchars))
translation = str.maketrans(symbolchars, shuffled)
input.translate(translation)

72

#RSAC

Sweetwords Database

from django.db import models

class Sweetwords(models.Model)

 # Our index is the salt value.
 salt = models.CharField(max_length=128)
 # Allow the sweetwords field to store a huge number of hashes
 sweetwords = models.CharField(max_length = 65536)

73

#RSAC

Honeychecker

from SimpleXMLRPCServer import SimpleXMLRPCServer
indices = { } # Maps the salt to the correct index for that salt

def check_index(salt, index):

 if salt in indices: # User exists
 #If index matches, user is authenticated
 # Otherwise a honeyword was submitted – should probably alert
 return indices[salt] == index
 return False

74

#RSAC

Honeychecker (cont)

def update_index(salt, index):
 indices[salt] = index #Add new salt/index pairing to dictionary

def main(): # Setup server, register functions and then start running

 honeychecker = SimpleXMLRPCServer((“<ip_addr>”, <port>))
 honeychecker.register_function(check_index, ‘check_index’)
 honeychecker.register_function(update_index, ‘update_index’)
 honeychecker.server_forever()

main() # Call main to get things going once everything is setup

75

#RSAC

settings.py
Change the settings file
INSTALLED_APPS = (
…
‘django.contrib.staticfiles’,
‘honeywords’,
)
PASSWORD_HASHERS = (
‘honeywords.hashers.HoneywordHasher’,
‘django.contrib.auth.hashers.PBKDF2PasswordHasher’,
…
)

76

#RSAC

Create the tables and go!

u  Now you need to make those settings take effect

 python manage.py sql honeywords

 python manage.py syncdb

u  That’s it. Your up and running!

u  As users log in their passwords will be converted to honeywords, the
honeychecker will be notified of the new mapping, and their password
will be better protected in case you are ever breached.

77

#RSAC

References

u  http://people.csail.mit.edu/rivest/honeywords/

u  https://docs.djangoproject.com/en/dev/topics/auth/passwords/

u  https://docs.djangoproject.com/en/1.6/intro/tutorial01/

78

