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Abstract--We consider a 2-layer, 3-node, n-input neural network whose nodes compute linear threshold functions 
of their inputs. We show that it is NP-complete to decide whether there exist weights and thresholds for this 
network so that it produces output consistent with a given set of training examples. We extend the result to other 
simple networks. We also present a network for which training is hard but where switching to a more powerful 
representation makes training easier. These results suggest that those looking for perfect training algorithms 
cannot escape inherent computational difficulties just by considering only simple or very regular networks. They 
also suggest the importance, given a training problem, of finding an appropriate network and input encoding 
for that problem. It is left as an open problem to extend our result to nodes with nonlinear functions such as 
sigmoids. 
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1. INTRODUCTION 

One reason for the recent surge in interest in feed- 
forward neural networks is the development of the 
back propagation training algorithm (Rummelhart,  
Hinton, & Williams, 1986). The ability to train large 
multilayer networks is essential for utilizing neural 
networks in practice (e.g., Sejnowski & Rosenberg 
(1987)), and the back propagation algorithm prom- 
ises just that. In practice, however, the back prop- 
agation algorithm often runs very slowly (Tesauro & 
Janssens, 1988), and the question naturally arises as 
to whether there are necessarily intrinsic computa- 
tional difficulties associated with training neural net- 
works, or whether better training algorithms might 
exist. This paper shows that in a certain worst-case 
sense, there are intrinsic difficulties in training even 
some very simple 2-layer networks. 

A common paradigm for the use of neural net- 
works is that a sample of data is divided into a train- 
ing set and a test set; the network is trained for some 
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time on the training set until it makes few mistakes, 
and its performance is then measured on the test set. 
Two important theoretical issues arise in this frame- 
work. One is a sample complexity question which we 
do not deal with here, but see Baum and Haussler 
(1989) and Haussler (1989), which asks: How large 
should the training set be so that one can expect good 
performance in the training phase to translate to good 
performance in the testing phase? The other issue is 
the computational complexity question: How much 
computational effort is required to achieve good per- 
formance in the training phase in the first place? This 
paper addresses the latter issue. 

For the single-layer, n-input perceptron, if there 
exist edge weights so that the network correctly clas- 
sifies a given training set, then such weights can be 
found in time guaranteed to be polynomial in n, using 
linear programming. The question arises: Is there an 
algorithm with the same guarantees for larger mul- 
tilayer networks? This paper shows that no such 
training algorithm exists for a very simple 2-layer 
network with only two hidden nodes and a single 
output node, unless a widely believed complexity- 
theoretic assumption proves false. That is, we show 
that unless P = NP, for any polynomial-time training 
algorithm there will be some sets of training data on 
which the algorithm fails to correctly train the net- 
work, even though there exist edge weights so the 
network could correctly classify the data. 
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1.1. Previous Work 

A common method of demonstrating a problem to 
be intrinsically hard is to show the problem to be 
NP-complete. NP is the class of decision problems 
for which an affirmative answer can be verified in 
polynomial time, and NP-complete problems are the 
hardest problems of this class; they are hardest in 
the sense that a polynomial time algorithm to solve 
one NP-complete problem could be used to solve 
any problem in NP in polynomial time. (NP-hard 
problems are like NP-complete problems, but need 
not belong to the class NP.) Also, P is the class of 
those decision problems solvable in polynomial time. 
Although no proof is known that no polynomial-time 
algorithm exists for NP-complete problems (that is, 
whether P = NP), many infamous hard problems-- 
such as the traveling salesman problem--are now 
known to be NP-complete. A good discussion of the 
theory of NP-completeness, as well as a description 
of several hundreds of NP-complete problems, is given 
by Garey and Johnson (1979). While NP-complete- 
hess does not render a problem totally inapproach- 
able in practice, and does not address the specific 
instances one might wish to solve, it often implies 
that only small instances of the problem can be solved 
exactly, and that large instances can at best only be 
solved approximately, even with large amounts of 
computer time. 

The work in this paper is inspired by Judd (1990) 
who shows the following problem to be NP-com- 
plete: "Given a neural network and a set of training 
examples, does there exist a set of edge weights for 
the network so that the network produces the correct 
output for all the training examples?" Judd shows 
that the problem remains NP-complete even if the 
network is only required to produce the correct out- 
put for two-thirds of the training examples, which 
implies that even approximately training a neural 
network is intrinsically difficult in the worst case (Judd, 
1988). Judd produces a class of networks and training 
examples for those networks such that any training 
algorithm will perform poorly on some networks and 
training examples in that class. The results, however, 
do not specify any particular "hard network"--that 
is, any single network hard to train for all algorithms. 
Also, the networks produced have a number of hid- 
den nodes that grows with the number of inputs 
and outputs, as well as a quite irregular connection 
pattern. 

The work in this paper is also inspired by Megiddo 
(1986) who shows that if input features are allowed 
to be arbitrary rational values, then training a variant 
of the main network we consider here is NP-com- 
plete. If inputs are restricted to, say, binary or ter- 
nary values, then his proof techniques break down. 
The proofs we present here for our more general 
results are of a very different style. 

1.2. Our Results 

We extend the results of Judd and Megiddo by show- 
ing that it is NP-complete to train a specific very 
simple network, that has only two hidden nodes, a 
regular interconnection pattern, and binary input 
features. We also present classes of regular 2-layer 
networks such that for all networks in these classes, 
the training problem is NP-complete. In addition, we 
relate certain problems in approximate network 
training to other difficult (but not known to be NP- 
hard) approximation problems. In particular, we 
consider the problem of finding approximation al- 
gorithms that make only one-sided error and the 
problem of approximating the minimum number of 
hidden-layer nodes needed for correct classification 
of a given training set. 

Our results, like Judd's, are described in terms of 
"batch"-style learning algorithms that are given all 
the training examples at once. It is worth noting that 
training is at least as hard with an "incremental" 
algorithm, such as back propagation, that sees the 
examples one at a time. Thus our results also imply 
that incremental training algorithms are likely to run 
slowly. 

Our results state that given a network of the classes 
considered, for any training algorithm there will be 
some types of training problems such that the algo- 
rithm will perform poorly as the problem size in- 
creases. The results leave open the possibility that 
given a training problem that is hard for some net- 
work, there might exist a different network and en- 
coding of the input that make training easy. In fact, 
we present an example of two networks, the second 
more powerful than the first, such that training the 
first is NP-complete but the second can be trained 
in polynomial time. So, in particular, those sets of 
examples hard to train on the first network can be 
trained easily on the other. Kearns and Valiant (1989) 
show, however, that there exist more complicated 
networks for which this approach will not help in the 
worst case. Preliminary versions of this paper have 
appeared in Blum and Rivest (1988), (1989) and Blum 
(1989a). 

2. THE TRAINING PROBLEM AND 
NETWORKS CONSIDERED 

DEFINITION 1. Given a neural network Or, let the 
training problem for N be the question: "Given a set 
of training examples, do there exist edge weights and 
thresholds for the nodes of Ot so that #produces output 
consistent with the trainging set?" 

Note that we have stated the training problem as 
a decision ("yes" or "no") problem, but that the 
search problem (finding the weights) is at least equally 
hard. 

For most of this paper, we will focus on a multi- 
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layer network with n binary inputs and 3 nodes la- 
beled N1, N2, N3. All inputs are connected to nodes 
N~ and N2. The outputs of hidden nodes Nt and N2 
are connected to output node N3 which gives the 
output of the network (see Figure 1). 

Each node Ni computes a linear threshold function 
(also called Ni) on its inputs. If N~ has input x = 
(xt . . . . .  x,,), then for some values ao . . . . .  a,,, 

= ,[+1 ifa~x~ + azx2 + "" + a,,x,,>a~ 
Ni(x) 

L - 1 otherwise. 

The aj's (j -> 1) are typically viewed as weights on 
the incoming edges and a0 as the threshold. We will 
call the network as described above the 3-Node Net- 
work.  

A training algorithm for this network is given a 
set of training examples. Each is either a positive 
example (an input for which the desired network 
output is + 1) or a negative example (an input for 
which the desired output is - 1). The main result of 
this paper is that the training problem for the 3-Node 
Network is NP-complete. That is, unless P = NP 
there is no polynomial-time algorithm that given a 
collection of training examples on n Boolean inputs, 
can always correctly decide whether there exist linear 
threshold functions for nodes N~, N2, and N3 so that 
the 3-Node Network produces output consistent with 
the training examples. 

Since it is NP-complete to train, the 3-Node Net- 
work differs greatly in a computational sense from 
the single-node perceptron which can be trained in 
polynomial time using linear programming. Note the 
3-Node Network training problem is in NP since the 
maximum number of bits needed for each weight is 
the same as that needed for the weights of a percep- 
tron. A paper of Raghavan (1988) shows that in fact 
one needs at most O(n log n) bits per weight (and 
threshold) and therefore one can certainly write down 

1 2 3 4 . . -  n 

FIGURE 1. The 3-node network. 

all the weights and thresholds, and then verify that 
the network so produced classifies all examples cor- 
rectly, in polynomial time. 

We also show the training problem for the follow- 
ing networks to be NP-complete: 

1. The 3-Node Network restricted so that any or all 
of the weights for one hidden node are required 
to equal the corresponding weights of the other 
(so possibly only the thresholds differ) and any 
or all of the weights are required to belong to 
{+1, -1}. 

2. Any k-hidden node, for k bounded by some poly- 
nomial in n (e.g., k = n2), 2-layer fully-connected 
network with linear threshold function nodes where 
the output node is required to compute the AND 
function of its inputs. 

3. The 2-layer, 3-node n-input network with an XOR 
output node, if ternary features are allowed. 

In addition we show that any set of positive and 
negative training examples classifiable by the 3-node 
network with XOR output node (for which training 
is NP-complete) can be correctly classified by a per- 
ceptron with O(n 2) inputs which consist of the orig- 
inal n inputs and all products of pairs of the original 
n inputs (for which training can be done in polyno- 
mial-time using linear programming techniques). 

3. T R A I N I N G  T H E  3 - N O D E  N E T W O R K  IS 
N P - C O M P L E T E  

In this sect ion,  we  prove  the fo l lowing theorem.  

THEOREM 1. Training the 3-Node Network  is NP-  
complete.  

First, we provide some intuition. To see why train- 
ing such a simple network might be hard, imagine 
that the output node were required to compute the 
AND function of its inputs--that is, output + 1 when 
it receives inputs (+ 1, + 1) from nodes Nt and N2, 
and output - 1  on all other pairs of inputs. When 
the network is presented with a positive example, 
we know that both hidden nodes N~ and N~ must 
output + 1. Therefore, we know in some sense in 
what direction we should modify the weights of these 
nodes. When the network is presented with a neg- 
ative example, however, all we know is that either 
Nt or N2 (or both) should output -1 .  We might, 
perhaps, just try to make both nodes output - 1, but 
unless the positive and negative examples are linearly 
separable--implying that we could have solved the 
training problem on a perceptron--this will not work. 
For some negative examples, we will have to make 
a choice: Should N~ output - 1 or should N2 output 
- 1? It may be that we must make the correct com- 
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bination of choices over all or at least a large number 
of the negative examples in order to correctly train 
the network, and there are an exponential number 
of such combinations. NP-completeness tells us that 
in the worst case, we will not be able to do much 
better than just blindly trying all combinations and 
seeing if one happens to work, which clearly would 
take exponential time. So, regardless of the linear 
programming problem of finding a good set of weights 
for a node given that we know what it should output, 
what makes the training problem hard is that we must 
decide what the outputs for the hidden nodes should 
be in the first place. 

The proof of Theorem 1 involves reducing the 
known NP-complete problem "Set-Splitting" to the 
network training problem. In order to more clearly 
understand the reduction, we begin by viewing net- 
work training as a geometrical problem. 

3.1. The Geometric Point of View 

A training example can be thought of as a point in 
n-dimensional Boolean space {0, 1}% labeled ' + '  or 
' - '  depending on whether it is a positive or negative 
example. The zeros of the linear functions that are 
threshoided by nodes N, and N2 can be thought of 
as (n - 1)-dimensional hyperplanes in this space. 
These hyperplanes divide the space into four quad- 
rants according to the four possible pairs of outputs 
for nodes Nt and N2. If the hyperplanes are parallel, 
then one or two of the quadrants is degenerate (non- 
existent). In this paper, the words "plane" and "hy- 
perplane" will be used interchangeably. 

Since the output node receives as input only the 
outputs of the hidden nodes Nt and N2, it can only 
distinguish between points in different quadrants. The 
output node is also restricted to be a linear function. 
It may not, for example, output " +  1" when its inputs 
are ( + 1, + 1) and ( - 1, - 1), and output " -  1" when 
its inputs are (+  1, - 1) and ( -  1, + 1). 

So, the 3-Node Network training problem is 
equivalent to the following: Given a collection of 
points in {0, 1}% each point labeled ' + '  o r '  - ' ,  does 
there exist either 

1. A single plane that separates the ' + '  points from 
the ' - '  points, or 

2. Two planes that partition the points so that either 
one quadrant contains all and only ' + '  points or 
one quadrant contans all and only ' - '  points. 

We first look at a restricted version which we call 
the Quadrant of Positive Boo&an Examples problem: 
"Given O(n) points in {0, 1}% each point labeled'  + '  
or ' - ' ,  do there exist two planes that partition the 
points so that one quadrant contains all ' + '  points 
and no ' - '  points?" The Quadrant of Positive Bool- 

ean Examples problem corresponds to having an 
" A N D "  function at the output node. Once we have 
shown this to be NP-complete, we will extend the 
proof to the full problem by adding examples that 
disallow the other possibilities at the output node. 
Megiddo (1986) has shown that for a collection of 
arbitrary ' + '  and ' - '  points in n-dimensional Eu- 
clidean space, the problem of whether there exist 
two hyperplanes that separate them is NP-complete. 
His proof breaks down, however, when one restricts 
the coordinate values to {0, 1} as we do here. Our 
proof turns out to be of a quite different style. 

3.2. Set-Splitting 

The following problem, Set-Splitting, was proven to 
be NP-complete by Lovfisz (Garey & Johnson, 1979): 
"Given a finite set S and a collection C of subsets c~ 
of S, do there exist disjoint sets S~, $2 such that St U 
S.~ = S and Vi, ci ~: St and ci ~: $2?" The Set-Splitting 
problem is also known as 2-non-Monotone Colora- 
bility or Hypergraph 2-colorability. Our use of this 
problem is inspired by its use by Kearns, Li, Pitt, 
and Valiant to show that learning k-term DNF is NP- 
complete (Kearns, Li, Pitt, & Valiant, 1987) and the 
style of the reduction is similar. 

3.3. The Proof 

THEOREM 2. Quadrant of Positive Boolean Examples 
is NP-complete. 

Proof. The proof is by reduction from Set-Splitting. 
That is, given an instance of Set-Splitting, we convert 
it into an instance of Quadrant of Positive Boolean 
Examples, such that the constructed instance has a 
solution if and only if the Set-Splitting instance had 
a solution. 

So, given an instance of the Set-Splitting problem: 

S=(s,}, C={c,}, cjCS, Isl=,,, 

We create the following signed points on the n-di- 
mensional hypercube {0, 1}": 

• Let the origin lY' be labeled ' + ' ;  
• For each si, put a point labeled ' - '  at the neighbor 

to the origin that has a 1 in the i-th bi t -- that  is, 
1 2  . . .  i . . .  n 

at (00...010-..0). Call this point pi; 
• For each cj = {sit . . . . .  %k), put a point labeled 

' + '  at the location whose bits are 1 at exactly the 
positions j~, j~. . . . .  , jk~--that is, at Pit + "'" + 
P j k ;  • 

For example, let S = {sl, s2, s3}, C = {ct, c2}, cl = 
{&, s2}, c~. = {s2, s3}. We create ' - '  points at posi- 
tions: (0 0 1), (0 1 0), (1 0 0) and ' + '  points at 
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FIGURE 2. An example. 
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positions: (0 0 0), (1 1 0), (0 1 1) in this reduction 
(see Figure 2). 

We now show that the given instance of the Set- 
Splitting problem has a solution i f f  the constructed 
instance of the Quadrant of Positive Boolean Ex- 
amples problem has a solution. 

(if) 

Given St, $2 from the solution to the Set-Splitting 
instance, let Pt be the plane a t x t  + "'" + anx,,  = 

-½, whereai  = - l i f s i ~ S t ,  andai  = n i f s i ~ S t .  

Similarly, let P2 be the plane b l x t  + . . . b,,x,, = - ½  

where bi = - 1 if si E $2, and b, = n otherwise. Let 
a = (at . . . . .  a,) and b = (bt . . . . .  b,,). 

Plane Pt separates from the origin all ' - '  points 
corresponding to s~ E St and no ' + '  points. See Fig- 
ure 3. For eachs~E  S ~ , a . p i  = - 1 ,  which is less 
than -½. For each ' + '  point p we have a • p > -½ 
since either p is the origin or else p has a 1 in a bit 
i such that si ~ St. Similarly, plane P2 separates from 
the origin all ' - '  points corresponding to s~ E $2 and 
no ' + '  points. Thus, the quadrant a • x > -½ and 
b • x > -½ contains all points labeled ' + '  and no 
points labeled ' - '  

(¢ )  

Let St be the set of points separated from the origin 
by P] and $2 be those points separated by P2. Place 
any points separated by both planes in either St or 
$2 arbitrarily. Sets St and $2 cover S since all ' - '  
points are separated from the origin by at least one 
of the planes. Consider some cj = {s/t "'" sjk,} and the 
corresponding ' - '  points P/t, • • • , P/k,. If, say, c~ C 

St, then Pt must separate all the p/~ from the origin. 
Therefore, Pt must separate P/t + • • • + P/k, from 
the origin. Since that point is the ' + '  point corre- 
sponding to c/, the ' + '  points are not all confined to 
one quadrant, contradicting our assumptions. So, no 
ci can be contained in St. Similarly, no c/ can be 
contained in S 2. • 

We have shown that the training problem for the 
3-Node Network is NP-complete if the output node 
is required to compute the AND of its two inputs. 

In order to handle the other possibilities at the output 
node, we now add a "gadget" consisting of six new 
points in three new dimensions. The gadget forces 
that the only way in which two planes could separate 
the ' + '  points from the ' - '  points would be to con- 
fine the ' + '  points to one quadrant. 

P r o o f  o f  T h e o r e m  1. Given an instance of Set-Split- 
ting, create examples as in the proof of Theorem 2, 
except in addition we add three new dimensions, 
x,+t, x,+2, and x,+3, and put ' + '  points in locations: 

(0. . .0101),  (0. . .0011) 

and ' - '  points in locations: 

(0. . .0100),  (0. . .0010),  (0.. .0001), (0.. .0111). 

The ' + '  points of this cube can be separated from 
the ' - '  points by appropriate settings of the weights 
of planes Pt and P2 corresponding to the three new 
dimensions. Given planes P't: a t x l  + "'" + a n x ,  = 

-½ and P~: b t x t  + "'" + b , x n  = -½ which solve a 
Quadrant of Positive Boolean Examples instance in 
n dimensions, expand the solution to handle the gadget 
by setting 

P~ to atx~ + "'" + a,,Xn + x,,+~ + x , , + : -  x~+3 = -½ 

P., to b,x~ + "'" + b,,x° - x,,+~ - x,,+, + xn÷3 = -½ 

(000) (100) 

FIGURE 3. The gadget. 
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(P~ separates ' - '  point (0 -.. 0 001) from the ' + '  
points and P2 separates the other three ' - '  points 
from the ' + '  points). On the other hand, notice that 
no single plane can separate the ' + '  points from the 
' - '  points in the cube and there is no way for two 
planes to confine all the negative points in one quad- 
rant. Thus, any solution to the network training 
problem must have all ' + '  points in one quadrant 
and so as in the proof of Theorem 2, give a solution 
to the Set-Splitting instance. • 

4. CLASSES OF HARD NETWORKS 

4.1. The Restricted 3-Node Network 

In order to approach the dividing line between com- 
putational feasibility and infeasibility for neural net- 
work training, we now consider an even simpler net- 
work. If we require the two hidden nodes N~ and N2 
of the 3-Node Network to compute exactly the same 
function, then the network would reduce to the sim- 
ple perceptron and be trainable in polynomial time. 
However, suppose we allow only the thresholds used 
by NI and N2 to differ; that is, we require just the 
weights on edges into node N~ to equal the corre- 
sponding weights on edges into node N2. We show 
that the training problem for such a network is NP- 
complete. Thus, adding the single extra free param- 
eter of thresholds that may differ results in intract- 
ability. Another natural way we might simplify the 
network would be to require the edge weights to be 
either + 1 or - 1. This requirement forces nodes N~ 
and N2 to each separate out some Hamming ball in 
{0, 1}"--that is, all points on the hypercube differing 
in at most some fixed number of bits from some 
center--instead of just any linearly-separable region. 
Unfortunately, trainining fo this type of network is 
also NP-complete as we will show. 

DEFINITION 2. A Restricted 3-Node Network is a ver- 
sion of the 3-Node Network in which some or all of 
the weights of hidden node NI are required to equal 
the corresponding weights of hidden node N:, with 
possibly only the thresholds allowed to differ, and in 
which some or all of the weights may be restricted to 
be from the set { -  1, + 1}. 

We prove that training the Restricted 3-Node Net- 
work is NP-complete. The proof uses a reduction 
from Set-Splitting slightly different from that in the 
last section and we use a form of the Set-Splitting 
problem in which the subsets cj have at most three 
elements (this restricted version of Set-Splitting is 
still NP-complete). The reduction has the property 
that the following are equivalent: 

• The instance of the Set-Splitting problem is solv- 
able. 

• The sets of ' + '  and ' - '  points created can be 
separated by two hyperplanes. 

• The points can be separated by two parallel hy- 
perplanes with coefficients in { + 1, - 1}. 

That is, the reduction will also imply that training 
the 3-Node Network remains NP-hard even if we 
only look at training sets in which all the positive 
examples lie in two disjoint Hamming balls. Thus, 
restricting oneself to considering only sets of training 
data where the concept (set of positive examples) 
consists of two disjoint Hamming balls does not re- 
duce the computational complexity in the worst case. 
The proof appears in Appendix A. 

4.2. Networks With More Intermediate Nodes 

We will now consider networks with more than two 
nodes in the hidden layer and present a large class 
of such networks for which training is NP-complete. 

DEFINITION 3. Let A be the family of 2-layer, n-input, 
single-output networks in which there are r >- 2 linear 
threshold function nodes in the hidden layer, each one 
connected to all n inputs, and in which the output 
node computes the A N D  function. That is, the output 
node outputs + 1 if and only if all of its inputs are 
+1. 

The class A is just the straightforward generali- 
zation of the 3-Node Network to networks with more 
than two hidden nodes, with the restriction that the 
output node compute the AND of its inputs instead 
of an arbitrary linear threshold function. 

THEOREM 3. For any network of the family A such 
that the number of hidden nodes, r, is bounded by 
some fixed polynomial in the number of inputs, n, 
the training problem is NP-complete. 

Essentially, to prove this result, for each of r - 2 
hidden nodes, we take an unused corner of the n- 
dimensional hypercube and label it ' - '  and all its 
neighbors ' + ' .  This will force a hyperplane corre- 
sponding to a hidden node to have as its sole function 
separating the ' - '  point from the rest of the hyper- 
cube. There will be two hidden nodes left so we can 
then use the reduction from the proof of Theorem 
1. The proof appears in Appendix B. 

4.3. The 3-Node Network with XOR Output 

The last network for which we will show training to 
be NP-complete is a modification of the 3-Node Net- 
work in which the output node computes the XOR 
function. When the outputs of the two hidden nodes 
are ( + 1, - 1) or ( -  1, + 1), then the network output 
is " +  1" and otherwise the network output is " -  1." 



Training a 3-Node Network 123 

We will call this network the 3 - N o d e  N e t w o r k  with 

X O R  Ou tpu t ,  or 3 N X .  The motivation for consid- 
ering this network is that in Section 6 we will present 
a network that can both correctly classify any set of 
training examples that 3NX can, and be trained in 
polynomial time. This shows that worst-case hard- 
ness of training is not necessarily directly related to 
network power. 

In the following discussion, we will suppose that 
the inputs to 3NX are from a ternary alphabet. In- 
stead of each input being on or off, an input can be 
positive, negative or neutral. 

THEOREM 4. Training 3 N X  is N P  comple t e  i f  ternary 
inpu t  attributes are a l lowed.  

Proo f .  The ternary attributes used are { -  1, 0, 1} so 
every training example is a vector in { - 1 ,  0, 1}" 
labeled'  + '  o r '  - '. Given an instance of Set-Splitting 
on n elements, create signed points in { - 1, 0, 1}" as 
follows: 

• Let the origin 0" be labeled ' + ' ;  
I 2 --" i 

• For each s~, put a ' - '  point at p~ = (00 .-. 0 1 0  
-- '  n I 2 '-" i " "  n 

0) a n d a t  -pa = ( 0 0 . . - 0 - 1 0  0). 
• For each cj = {%,, . . . .  sj,}, put a ' + '  point at 

P~, + "'" + Pi," 

These points are the same as in the proof of Theorem 
1 except the reflection of each ' - '  point through the 
origin is also given and there is no "gadget ."  

A solution St, $2 to the Set-Splitting instance can 
be translated into the same plane equations P~, P2 
as in the proof of Theorem 1. Pt is a~x~ + . . . + 

a , x ,  = - ½ w h e r e  ai = - l f o r s i E  St anda i  = n 
for si q~ S~; P2 is created from S_, similarly. Notice 
that the ' - '  point p~ is separated from the ' + '  points 
by Pt if s~ E St and by P2 if s~ E $2. Conversely -p~ 
is separated from the ' + '  points by P2 if si E S~ and 
by Pt if s~ ~ Sz. Also, no ' - '  point is separated from 
the ' + '  points by both planes which implies that the 
network can correctly classify the training examples 
with an XOR output node. 

A solution Pt, P_, to the training problem can be 
translated into sets S~, $2, where S, = {sil Pt separates 
p~ from the origin} and $2 = {s~lP2 separates p~ from 
the origin}. The following claim implies that these 
sets solve the Set-Splitting instance. 

CLAIM. Given  cj = {s h . . . . .  si~}, Pt does no t separa t e  

all o f  pj, . . . . .  pj, f r o m  the origin.  

P r o o f  o f  c laim.  If P1 separates all of the pj, from the 
origin, it also separates the point p = Pi, + • • • + 
pj, ( the '  + '  point corresponding to cj) from the origin 

and does not separate any of the -Pi, from the origin. 
Therefore, the other plane P2 must separate all of 
the -Pi, from the origin and cannot separate p or 
any of the pj, from the origin. So, the point p and all 
the Pi, are on the same side of both planes and the 
training problem is not correctly solved. 

The claim implies that each cj is split by S~ and $2, 
proving the theorem. • 

5. G E T r l N G  AROUND INTRACTABILITY 

The results presented in the previous sections show 
several classes of networks such that for any training 
algorithm there will be some hard training problems. 
It is quite possible, however, that a problem hard 
for one network might be easier for another network. 
In this section, we describe two networks such that 
training the first is NP-complete, but the second can 
both be trained in polynomial time and is more pow- 
erful than the first in that it can be trained correctly 
on any set of examples the first is powerful enough 
to correctly classify. This phenomenon was discov- 
ered independently by Valiant and Warmuth (1989). 

The first network is the network 3NX described 
earlier. The second is a perceptron with an expanded 
input representation. This perceptron has 2n + 

n(n  - 1) /2  inputs, consisting of the original n inputs, 
their squares, and all n(n  - 1)/2 products of pairs 
of the original n inputs. We will call this network p2 
and the regular n-input perceptron, P. The number 
of weights in p2 is O(n2), compared with O(n)  for 
3NX. However, p2 can be trained in polynomial time 
since it is just a perceptron with O(n  2) inputs. 

THEOREM 5. A n y  set o f  training data that 3 N X  can 

correctly classify,  p2 can also correctly classify. 

Proo f .  L e t  W l X  1 --~ . . . + W n X  n "~ w 0 ~ 0 a n d  O l X  I -~- 

• . . + v , x ,  + vo > 0 be the linear threshold func- 
tions for the two hidden nodes of 3NX. (Notice we 
have moved the thresholds w0 and v0 to the left-hand 
sides of the inequalities.) We may assume that on all 
training examples, wjx j  + . . .  + w , x ,  + wo # 0 

and v~x~ + . . . + v , x ,  + vo ~ O, since we can per- 
turb the thresholds w0 and v0 by slight amounts if we 
wish and not affect the function computed by the 
network• Therefore, the network 3NX outputs"  + 1" 
exactly when 

(wlx l  + . . .  + w , x ,  + w0 > 0 )and  
(v~xt + . . .  + v , x ,  + Vo < O) 

o r  

(w ,x l  + . . .  + w , x ,  + w0 < 0 )and  

(v ,x t  + . . .  + v , x ,  + Vo > 0). 
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Equivalently, 3NX outputs " +  1" exactly when 

(w~xl + . . .  + w,x ,  + Wo) 

x (vlx~ + . . .  + v ,x ,  + Vo)< 0 

which implies 

vowo + ~ (vowi + w,,vi)x~ + ~ viw~x~ 
i = 1  i = 1  

n i - I  

+ E E (w,v~ + v, wj)x,xj > o. 
i=2 j=l  

The left-hand side of this last formula is a linear 
function of the inputs to p2. So, there exist edge 
weights for p2 (those described by the above for- 
mula) such that p2 classifies the examples in exactly 
the same way as does 3NX. • 

Theorem 5 shows that by increasing the power of 
a network, it is possible to remove as well as to 
introduce computational intractability. In terms of 
their representational power, we have: 

P C_ 3NX C_ p2 

where P can be trained in polynomial time, training 
3NX is NP-complete, and p2 can again be trained in 
polynomial time. Intuitively, the reason that network 
p2 can be both more powerful than 3NX and easier 
to train is that we are giving it predefined nonlin- 
earities. The network p2 does not have to start from 
scratch, but instead is given more powerful building 
blocks (the products of pairs of the inputs) to work 
with. 

By using p2 instead of 3NX, we gain in a worst- 
case computational sense, but lose in that the number 
of weights increases from O(n) to O(n2). The in- 
crease in the number of weights implies that the num- 
ber of training examples needed to constrain those 
weights so that the network can meaningfully gen- 
eralize on new examples increases correspondingly 
(e.g., see Baum & Haussler, 1989). Thus, there is a 
tradeoff. Theorem 5 can be extended in the obvious 
way to networks like 3NX with k > 2 hidden nodes; 
the number of inputs to the resulting perceptron will 
be n*. 

In practice, if one were to use the strategy of 
adding nonlinear inputs to the perceptron, then in- 
stead of giving the perceptron all O(n 2) products of 
pairs as inputs at once, one might just give the net- 
work those products that appear related to the train- 
ing problem at hand. One could then test to see 
whether those products suffice by running a training 
algorithm and checking whether or not the network 
correctly classifies the training data. In addition, 
products of triples of inputs or other nonlinear func- 
tions of the original inputs could be given as new 
inputs to the perceptron if the trainer has some prior 
knowledge of the particular training problem. 

6. HARDNESS RESULTS FOR 
APPROXIMATION ALGORITHMS 

We now state, but do not prove, two hardness results 
on approximate network training; the proofs appear 
in (Blum, 198%). 

The first problem we consider is relaxing the re- 
striction that the trained network output correctly on 
all the training examples, even if there exist edge 
weights so that the network would do so. Judd (1988) 
shows that there exist (network, training set) pairs 
for which outputting correctly on better than 2/3 of 
the training examples is NP-hard. He proves this 
result by showing training to be NP-complete for 
some such pair in which the training set has only 
three elements and therefore one cannot do better 
than 67% accuracy without achieving 100% accu- 
racy. The networks he considers are quite compli- 
cated and contain many output nodes, however. Our 
results are weaker than his in that we cannot show 
that achieving such a high error rate is necessarily 
hard, but hold for the very simple networks discussed 
in the previous chapters. 

DEFINITION 4. A training algorithm with one-sided 
error for a single-output network ~,')l is an algorithm 
that given a collection of positive and negative training 
examples that ':)1 can correctly classify, will produce 
edge weights so that Ol outputs correctly on all of  the 
positive examples and at least an e fraction of the 
negative examples, for some constant ~ > O. 

In this section we will use the problem Graph k- 
Colorability. An instance of this problem is a graph 
consisting of n vertices connected by some number 
of edges and k allowed colors. A solution is an as- 
signment to each vertex of one of the k colors so that 
no edge has both endpoints given the same color. 
Graph k-Colorability is NP-complete for k -> 3 and 
approximate graph coloring (approximating the min- 
imum number of colors needed to color a graph) 
appears to be a hard problem in the worst case also 
for a l l k ->3 .  

THEOREM 6. For any network O~ E A with n inputs 
and k >- 3 hidden nodes, any training algorithm with 
one-sided error for 01 can be used to color any n- 
vertex k-colorable graph with O(k log n) colors. 

Theorem 6 implies, for instance, that training the 
network O~ ~ A that has 3 hidden nodes so that 0~ 
will output correctly on all the positive examples and 
on at least 10% of the negative examples (e = 0.1) 
on a collection of training data which M is powerful 
enough to correctly classify, is as hard in the worst 
case as O(log n)-coloring a 3-colorable graph. 

Finding O(k log n) approximations for the k-col- 
oring problem is not known to be NP-complete, but 
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O(k log n) is much lower than the bounds achieved 
by the current best approximation algorithms which 
all grow as n" for a constant o~ < 1. Thus, Theorem 
6 suggests that one-sided error training in the worst 
case is "probably hard." 

A second form of approximate training we con- 
sider is that given a set of training examples that is 
hard for a particular network, one might try to add 
power to the network in some way in order to make 
training easier. For the 2-layer networks of the kind 
discussed in this paper, one natural way to add power 
is to add more nodes to the hidden layer. We show 
that for networks of the class A, if one adds only 
relatively few nodes to the hidden layer, then there 
will be training sets that are hard for both the original 
and the enlarged network, so this approach will likely 
not help in the worst case. 

DEFINITION 5. Given two networks ':~l and ~ ' ,  and 
~,')l'/~:~-training algorithm is one that given any set o f  
training data that ~:~ is powerful enough to correctly 
classify, will correctly train ~l'. 

Thus, for instance, in the last section we showed a 
P2/3NX-training algorithm. 

for networks other than those specifically mentioned. 
They do, however, suggest that one cannot escape 
computational difficulties simply by considering only 
very simple or very regular networks. 

On a somewhat more positive note, we present 
two networks such that the second is both more pow- 
erful than the first and can be trained in polynomial 
time, even though the first is NP-complete to train. 
This shows that computational intractability does not 
depend directly on network power and provides the- 
oretical support for the idea that finding an appro- 
priate network and input encoding for one's training 
problem is an important part of the training process. 

An open problem is whether the NP-completeness 
results can be extended to neural networks that use 
the differentiable logistic linear functions. We con- 
jecture that training remains NP-complete when these 
functions are used since it does not seem their use 
should too greatly alter the expressive power of a 
neural network (though Sontag (1989) has demon- 
strated some important differences between such 
functions and thresholds). Note that Judd (1990), for 
the networks he considers, shows NP-completeness 
for a wide variety of node functions including logistic 
linear functions. 

THEOREM 7. Given network ~.'~ E A with k hidden 
nodes and ~:~' E A with k' hidden nodes (k' > k), 
then ~:~l' /v)l-training is as hard as coloring a k-colorable 
graph with k'  colors. 

Theorem 7 implies that to avoid NP-completeness, 
one must in general at least double the number of 
hidden nodes, since it is NP-hard to color a k-col- 
orable graph with 2k - ~ colors for general k. Cur- 
rent state-of-the-art coloring approximation algo- 
rithms (Wigderson, 1983; Blum, 1989b) suggest that 
one may wish to add at least n ° hidden nodes, (0 < 
o~ < 1) for t~ depending on the original number of 
hidden nodes k. Of course there is no guarantee here 
that adding this number of hidden nodes will actually 
help, in a worst-case computational complexity sense. 

7. CONCLUSIONS 

We show for many simple two-layer networks whose 
nodes compute linear threshold functions of their 
inputs that training is NP-complete. For any training 
algorithm for one of these networks there will be 
some sets of training data on which it performs poorly, 
either by running for more than an amount of time 
polynomial in the input length, or by producing su- 
boptimal weights. Thus, these networks differ fun- 
damentally from the perceptron in a worst-case com- 
putational sense. 

The theorems and proofs are in a sense fragile; 
they do not imply that training is necessarily hard 
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APPENDIX A 

THEOREM 8. The training p rob l em  f o r  a Restricted 3 -Node  Ne twork  
is NP-comple te .  

P r o o f  o f  Theorem 8. The reduction proceeds as follows. Given 
an instance of the Set-Splitting problem on n / 2  elements  in which 
each subset c, has at most three elements:  

s = {s,}, c = {c,}, c, c_ s ,  IsI = n/2,  Ic, I <- 3, 

create labeled points in n-dimensional  space as follows: 

• Label the origin ' + "  as before; 
• For each s,, put a ' - '  point at the location with l 's  in bits 

2i - 1 and 2i and O's in all other  bits. We will call the bits 
2i - 1 and 2i the bits "corresponding"  to s,; 

• For each c,, there are two cases: Ic,[ = 2 or Ic, I = 3. Create 2-' = 
4 or 2' = 8 ' + '  points respectively, such that for each ' + '  point, 
exactly one of the two bits corresponding to each s, ~ c, is 1. 

For example,  consider S = {s~, sz, s3}, C = {cl, c.,}, c~ = {sl, s,.} 
and c. = {s.. s3}. Then  the ' - '  points are: (110000), (001100), 
(000011) and the ' + "  points are: (000000), (101000), (100100). 
(011000), (010100), (001010), (001001), (000110). (000101). 

We will also need a "gadget"  as we did to prove Theorem 1, 
in order to force the planes to have all ' + "  points in one region 
and the ' - "  points in the others. This "gadget"  is essentially the 
same as in the proof of Theorem 1. In six new dimensions,  

put points labeled ' + "  at locations: 

( 0 - - -0001111 ) ,  ( 0 . . - 0  110011) 

and points labeled ' - '  at locations: 

(0 ... 0 110000), (0 ... 0 001100), 

(0 .-. 0 000011), (0 ... 0 111111) 

where the bits in the n old dimensions are zero. That  is, we replace 
each bit in the old gadget by two in the new gadget. 

CLAIM 1. Given a solution for an instance of the Set-Splitting 
problem, we can find parallel hyperplanes with coefficients in 
{ -  1, + 1} that separate the ' + '  and ' - '  points. 

Proof .  Given S,,  create 
- 1 ,  where a~_, = a,., = 

s, f t  S,. 

the plane Pt: a~x~ + ... + a , x ,  = 
- 1  if s, ~ S~ and a2,_~ = a2i = +1 if 

Note that for all ' - '  points corresponding to s, ~ S~, a,x~ + 
... + a , x ,  = - 2 a n d f o r a l l o t h e r ' - ' p o i n t s ,  a~x~ + ..- + a , x ,  = 
+2.  For all ' + '  points, a~xt + ... + a , x ,  ~ { - 1 ,  0, +1} since 
each c, has at most  three elements  of  which at least one contributes 
a " -  1" and at least one contributes a " +  1 ." Therefore ,  the plane 
P~ separates exactly the ' - '  points derived from si E S~ from the 
' + '  points since for all ' + '  points,  a~xj + ... + a , x ,  -> - 1 and 
for all ' - '  points corresponding to s, ~ S~, we have a,x, + ... + 
a,,x, < - 1. Define the second plane analogously. 

To correctly "slice" the gadget,  for one plane let the coefficients 
a,,+~ . . . . .  a , .6  in dimensions  n + 1, . . . , n + 6, respectively, 
be - 1, - 1. - 1, - 1, + 1, + 1, and for the other  plane,  let the 
coefficients be + 1, + 1, + 1, + 1, - 1, - 1. One  can just "plug 
in" the 6 gadget  points to see that this works. 

Planes P~ and P, are parallel since the coefficients a~ . . . . .  
a,,+6 of plane P~ are just the negation of the corresponding coef- 
ficients of  plane P,. • 

CLAIM 2. Given splitting planes (not necessary parallel, any coef- 
ficients allowed) we can find a solution to the Set-Splitting in- 
stance. 

PART 1. The gadget cannot  be split with the ' - '  points all in one 
quadrant .  

Proof .  Exactly the same as for the reduction in the proof of Theo-  
rem 1. 

PART 2. A single plane cannot  have all ' - '  points corresponding 
to a subset  c~ on one side and all ' + ' s  on the other. 

Proof .  Suppose one did. Given a plane a~x~ + ... + a , x ,  = ao, 
without loss of  generality assume that for the ' + '  points, a~x~ + 
• .. + a , x ,  > a., and that for all the ' - '  points corresponding to 
the e lements  of  c,, we have a~x~ + ... + a , x ,  <- ao. Since the 
origin is a ' + '  point, we know that a,~ must  be negative. 

For each s, E c,, since s~ has l ' s  in bits 2i - 1 and 2i, we have 
a.., ~ + a,, <- a,, which implies that either a2,_ ~ --- ,~a0 or a,, -< ~a~, 
(or both). Therefore,  if Ic, I = 2, then at least one of t h e '  + : points 
corresponding to cj will have l 's  in bits i~ and i, for which a a,, -< 
½a,, and thus will force atxl + "" + a , x ,  <-- 2 x ½a.. If Icil' = 3, 
then at least one of the " + '  points corresponding to cj will force 
a~x~ + ... + a,,x, <- 3 x ½a,,. This presents  a contradiction 
since we assume that for all the ' + '  points, we had a~x~ + ... + 
a,,x, > a.. 

APPENDIX B 

P r o o f  o f  Theorem 3. Given an instance of Set-Splitting on n ele- 
ments ,  we create training examples  of length n + 2 (alternately 
' + '  and ' - '  points in (n + 2)-dimensional space) as follows. 

1. Create labeled points as in the reduction in the proof of  Theo-  
rem 1 (except we have added two extra dimensions):  

• Let the origin be labeled ' + '  n . ; . , . :  
• For each s, ~ S,  put a " - '  point at p; = (00--.010..- 0 ). 
• For each c~ = {s,L . . . . .  sj~}, put a ' + '  point at Pit + "'" + 

Note that all these points created have zeros in bits n + 1 and 
n + 2 .  

2. For each of r - 2 hidden nodes in the network, we will create 
labeled points as follows: 

• Choose any arbitrary empty  (unlabeled) position in 
{0, 1} "+-" with l ' s  in bits n + i and n + 2 such that the total 
number  of  l 's  in the vector for that position is odd and 
put a ' - '  point there. For example,  we might pick position: 
0110010011 ( i f n  were 8). 
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• Label all neighbors of  (all positions differing in exactly one 
bit from) that ' - '  point as ' + '  points. 

For each ' - '  point p created in Step 2, there must  be some 
plane that separates  it from the ' +" points. Since all the neighbors 
of  p are labeled ' + ", a separating plane will have p on one side 
and the result of  the (n + 2)-dimensional hypercube of the other. 
Thus ,  only two planes remain to separate the ' - "  points created 
in step 1 from the ' + '  points. The proof  of  Theorem 1 shows that 
two planes that separate these ' - '  points from the ' + '  points will 
yield a solution to the Set-Splitting instance. 

Given a solution to the Set-Splitting instance, we can create r 
hyperplanes that separate the ' + '  and ' - '  points with all the ' + '  

points in one region (which we want since the output  node com- 
putes the A N D  function) by using r - 2 hyperplanes to separate 
the ' - '  points created in Step 2 and two planes to separate those 
from Step I. The two planes that separate the ' - '  points created 
in Step 1 from the rest of the hypercube are formed exactly as in 
the proof of  Theorem 1 except that the coefficients in dimensions 
n + 1 and n + 2 are large positive integers (a , . ,  = a,+z = n) so 
that all the ' + '  points from Step 1 are in the same region as the 
' + '  points from Step 2. 

We can handle up to 2 + 2 "-j hyperplanes (hidden nodes),  
and therefore certainly any fixed polynomial in n of  them as n 
becomes large, using about as many labeled points (training ex- 
amples) as the total number  of weights in the network. • 


