
Neural Networks, Vol. 5, pp. 117-127, 1992 0893-6080/92 $5.00 + .00
Printed in the USA. All rights reserved. Copyright © 1992 Pergamon Press plc

ORIGINAL CONTRIBUTION

Training a 3-Node Neural Network is NP-Complete

AVRIM L. BLUM* AND RONALD L. RIVESTt

MIT Laboratory for Computer Science

(Received 24 May 1990; revised and accepted 9 July 1991)

Abstract--We consider a 2-layer, 3-node, n-input neural network whose nodes compute linear threshold functions
of their inputs. We show that it is NP-complete to decide whether there exist weights and thresholds for this
network so that it produces output consistent with a given set of training examples. We extend the result to other
simple networks. We also present a network for which training is hard but where switching to a more powerful
representation makes training easier. These results suggest that those looking for perfect training algorithms
cannot escape inherent computational difficulties just by considering only simple or very regular networks. They
also suggest the importance, given a training problem, of finding an appropriate network and input encoding
for that problem. It is left as an open problem to extend our result to nodes with nonlinear functions such as
sigmoids.

Keywords--Neural networks, Computational complexity, NP-completeness, Intractability, Learning, Training,
Multilayer perceptron, Representation.

1. INTRODUCTION

One reason for the recent surge in interest in feed-
forward neural networks is the development of the
back propagation training algorithm (Rummelhart,
Hinton, & Williams, 1986). The ability to train large
multilayer networks is essential for utilizing neural
networks in practice (e.g., Sejnowski & Rosenberg
(1987)), and the back propagation algorithm prom-
ises just that. In practice, however, the back prop-
agation algorithm often runs very slowly (Tesauro &
Janssens, 1988), and the question naturally arises as
to whether there are necessarily intrinsic computa-
tional difficulties associated with training neural net-
works, or whether better training algorithms might
exist. This paper shows that in a certain worst-case
sense, there are intrinsic difficulties in training even
some very simple 2-layer networks.

A common paradigm for the use of neural net-
works is that a sample of data is divided into a train-
ing set and a test set; the network is trained for some

* This material is based upon work supported under a National
Science Foundation graduate fellowship.

t This paper was prepared with support from NSF grant DCR-
8607494, ARO Grant DAAL03-86-K-0171, and the Siemens Cor-
poration.

Requests for reprints should be sent to Avrim L. Blum, School
of Computer Science, Carnegie-Mellon University, Pittsburgh,
PA 15213.

time on the training set until it makes few mistakes,
and its performance is then measured on the test set.
Two important theoretical issues arise in this frame-
work. One is a sample complexity question which we
do not deal with here, but see Baum and Haussler
(1989) and Haussler (1989), which asks: How large
should the training set be so that one can expect good
performance in the training phase to translate to good
performance in the testing phase? The other issue is
the computational complexity question: How much
computational effort is required to achieve good per-
formance in the training phase in the first place? This
paper addresses the latter issue.

For the single-layer, n-input perceptron, if there
exist edge weights so that the network correctly clas-
sifies a given training set, then such weights can be
found in time guaranteed to be polynomial in n, using
linear programming. The question arises: Is there an
algorithm with the same guarantees for larger mul-
tilayer networks? This paper shows that no such
training algorithm exists for a very simple 2-layer
network with only two hidden nodes and a single
output node, unless a widely believed complexity-
theoretic assumption proves false. That is, we show
that unless P = NP, for any polynomial-time training
algorithm there will be some sets of training data on
which the algorithm fails to correctly train the net-
work, even though there exist edge weights so the
network could correctly classify the data.

117

118 A. L. Blum and R. L. Rivest

1.1. Previous Work

A common method of demonstrating a problem to
be intrinsically hard is to show the problem to be
NP-complete. NP is the class of decision problems
for which an affirmative answer can be verified in
polynomial time, and NP-complete problems are the
hardest problems of this class; they are hardest in
the sense that a polynomial time algorithm to solve
one NP-complete problem could be used to solve
any problem in NP in polynomial time. (NP-hard
problems are like NP-complete problems, but need
not belong to the class NP.) Also, P is the class of
those decision problems solvable in polynomial time.
Although no proof is known that no polynomial-time
algorithm exists for NP-complete problems (that is,
whether P = NP), many infamous hard problems--
such as the traveling salesman problem--are now
known to be NP-complete. A good discussion of the
theory of NP-completeness, as well as a description
of several hundreds of NP-complete problems, is given
by Garey and Johnson (1979). While NP-complete-
hess does not render a problem totally inapproach-
able in practice, and does not address the specific
instances one might wish to solve, it often implies
that only small instances of the problem can be solved
exactly, and that large instances can at best only be
solved approximately, even with large amounts of
computer time.

The work in this paper is inspired by Judd (1990)
who shows the following problem to be NP-com-
plete: "Given a neural network and a set of training
examples, does there exist a set of edge weights for
the network so that the network produces the correct
output for all the training examples?" Judd shows
that the problem remains NP-complete even if the
network is only required to produce the correct out-
put for two-thirds of the training examples, which
implies that even approximately training a neural
network is intrinsically difficult in the worst case (Judd,
1988). Judd produces a class of networks and training
examples for those networks such that any training
algorithm will perform poorly on some networks and
training examples in that class. The results, however,
do not specify any particular "hard network"--that
is, any single network hard to train for all algorithms.
Also, the networks produced have a number of hid-
den nodes that grows with the number of inputs
and outputs, as well as a quite irregular connection
pattern.

The work in this paper is also inspired by Megiddo
(1986) who shows that if input features are allowed
to be arbitrary rational values, then training a variant
of the main network we consider here is NP-com-
plete. If inputs are restricted to, say, binary or ter-
nary values, then his proof techniques break down.
The proofs we present here for our more general
results are of a very different style.

1.2. Our Results

We extend the results of Judd and Megiddo by show-
ing that it is NP-complete to train a specific very
simple network, that has only two hidden nodes, a
regular interconnection pattern, and binary input
features. We also present classes of regular 2-layer
networks such that for all networks in these classes,
the training problem is NP-complete. In addition, we
relate certain problems in approximate network
training to other difficult (but not known to be NP-
hard) approximation problems. In particular, we
consider the problem of finding approximation al-
gorithms that make only one-sided error and the
problem of approximating the minimum number of
hidden-layer nodes needed for correct classification
of a given training set.

Our results, like Judd's, are described in terms of
"batch"-style learning algorithms that are given all
the training examples at once. It is worth noting that
training is at least as hard with an "incremental"
algorithm, such as back propagation, that sees the
examples one at a time. Thus our results also imply
that incremental training algorithms are likely to run
slowly.

Our results state that given a network of the classes
considered, for any training algorithm there will be
some types of training problems such that the algo-
rithm will perform poorly as the problem size in-
creases. The results leave open the possibility that
given a training problem that is hard for some net-
work, there might exist a different network and en-
coding of the input that make training easy. In fact,
we present an example of two networks, the second
more powerful than the first, such that training the
first is NP-complete but the second can be trained
in polynomial time. So, in particular, those sets of
examples hard to train on the first network can be
trained easily on the other. Kearns and Valiant (1989)
show, however, that there exist more complicated
networks for which this approach will not help in the
worst case. Preliminary versions of this paper have
appeared in Blum and Rivest (1988), (1989) and Blum
(1989a).

2. THE TRAINING PROBLEM AND
NETWORKS CONSIDERED

DEFINITION 1. Given a neural network Or, let the
training problem for N be the question: "Given a set
of training examples, do there exist edge weights and
thresholds for the nodes of Ot so that #produces output
consistent with the trainging set?"

Note that we have stated the training problem as
a decision ("yes" or "no") problem, but that the
search problem (finding the weights) is at least equally
hard.

For most of this paper, we will focus on a multi-

Training a 3-Node Network 119

layer network with n binary inputs and 3 nodes la-
beled N1, N2, N3. All inputs are connected to nodes
N~ and N2. The outputs of hidden nodes Nt and N2
are connected to output node N3 which gives the
output of the network (see Figure 1).

Each node Ni computes a linear threshold function
(also called Ni) on its inputs. If N~ has input x =
(xt x,,), then for some values ao a,,,

= ,[+1 ifa~x~ + azx2 + "" + a,,x,,>a~
Ni(x)

L - 1 otherwise.

The aj's (j -> 1) are typically viewed as weights on
the incoming edges and a0 as the threshold. We will
call the network as described above the 3-Node Net-
work.

A training algorithm for this network is given a
set of training examples. Each is either a positive
example (an input for which the desired network
output is + 1) or a negative example (an input for
which the desired output is - 1). The main result of
this paper is that the training problem for the 3-Node
Network is NP-complete. That is, unless P = NP
there is no polynomial-time algorithm that given a
collection of training examples on n Boolean inputs,
can always correctly decide whether there exist linear
threshold functions for nodes N~, N2, and N3 so that
the 3-Node Network produces output consistent with
the training examples.

Since it is NP-complete to train, the 3-Node Net-
work differs greatly in a computational sense from
the single-node perceptron which can be trained in
polynomial time using linear programming. Note the
3-Node Network training problem is in NP since the
maximum number of bits needed for each weight is
the same as that needed for the weights of a percep-
tron. A paper of Raghavan (1988) shows that in fact
one needs at most O(n log n) bits per weight (and
threshold) and therefore one can certainly write down

1 2 3 4 . . - n

FIGURE 1. The 3-node network.

all the weights and thresholds, and then verify that
the network so produced classifies all examples cor-
rectly, in polynomial time.

We also show the training problem for the follow-
ing networks to be NP-complete:

1. The 3-Node Network restricted so that any or all
of the weights for one hidden node are required
to equal the corresponding weights of the other
(so possibly only the thresholds differ) and any
or all of the weights are required to belong to
{+1, -1}.

2. Any k-hidden node, for k bounded by some poly-
nomial in n (e.g., k = n2), 2-layer fully-connected
network with linear threshold function nodes where
the output node is required to compute the AND
function of its inputs.

3. The 2-layer, 3-node n-input network with an XOR
output node, if ternary features are allowed.

In addition we show that any set of positive and
negative training examples classifiable by the 3-node
network with XOR output node (for which training
is NP-complete) can be correctly classified by a per-
ceptron with O(n 2) inputs which consist of the orig-
inal n inputs and all products of pairs of the original
n inputs (for which training can be done in polyno-
mial-time using linear programming techniques).

3. T R A I N I N G T H E 3 - N O D E N E T W O R K IS
N P - C O M P L E T E

In this sect ion, we prove the fo l lowing theorem.

THEOREM 1. Training the 3-Node Network is NP-
complete.

First, we provide some intuition. To see why train-
ing such a simple network might be hard, imagine
that the output node were required to compute the
AND function of its inputs--that is, output + 1 when
it receives inputs (+ 1, + 1) from nodes Nt and N2,
and output - 1 on all other pairs of inputs. When
the network is presented with a positive example,
we know that both hidden nodes N~ and N~ must
output + 1. Therefore, we know in some sense in
what direction we should modify the weights of these
nodes. When the network is presented with a neg-
ative example, however, all we know is that either
Nt or N2 (or both) should output -1 . We might,
perhaps, just try to make both nodes output - 1, but
unless the positive and negative examples are linearly
separable--implying that we could have solved the
training problem on a perceptron--this will not work.
For some negative examples, we will have to make
a choice: Should N~ output - 1 or should N2 output
- 1? It may be that we must make the correct com-

120 A. L. Blum and R. L. Rivest

bination of choices over all or at least a large number
of the negative examples in order to correctly train
the network, and there are an exponential number
of such combinations. NP-completeness tells us that
in the worst case, we will not be able to do much
better than just blindly trying all combinations and
seeing if one happens to work, which clearly would
take exponential time. So, regardless of the linear
programming problem of finding a good set of weights
for a node given that we know what it should output,
what makes the training problem hard is that we must
decide what the outputs for the hidden nodes should
be in the first place.

The proof of Theorem 1 involves reducing the
known NP-complete problem "Set-Splitting" to the
network training problem. In order to more clearly
understand the reduction, we begin by viewing net-
work training as a geometrical problem.

3.1. The Geometric Point of View

A training example can be thought of as a point in
n-dimensional Boolean space {0, 1}% labeled ' + ' or
' - ' depending on whether it is a positive or negative
example. The zeros of the linear functions that are
threshoided by nodes N, and N2 can be thought of
as (n - 1)-dimensional hyperplanes in this space.
These hyperplanes divide the space into four quad-
rants according to the four possible pairs of outputs
for nodes Nt and N2. If the hyperplanes are parallel,
then one or two of the quadrants is degenerate (non-
existent). In this paper, the words "plane" and "hy-
perplane" will be used interchangeably.

Since the output node receives as input only the
outputs of the hidden nodes Nt and N2, it can only
distinguish between points in different quadrants. The
output node is also restricted to be a linear function.
It may not, for example, output " + 1" when its inputs
are (+ 1, + 1) and (- 1, - 1), and output " - 1" when
its inputs are (+ 1, - 1) and (- 1, + 1).

So, the 3-Node Network training problem is
equivalent to the following: Given a collection of
points in {0, 1}% each point labeled ' + ' o r ' - ' , does
there exist either

1. A single plane that separates the ' + ' points from
the ' - ' points, or

2. Two planes that partition the points so that either
one quadrant contains all and only ' + ' points or
one quadrant contans all and only ' - ' points.

We first look at a restricted version which we call
the Quadrant of Positive Boo&an Examples problem:
"Given O(n) points in {0, 1}% each point labeled' + '
or ' - ' , do there exist two planes that partition the
points so that one quadrant contains all ' + ' points
and no ' - ' points?" The Quadrant of Positive Bool-

ean Examples problem corresponds to having an
" A N D " function at the output node. Once we have
shown this to be NP-complete, we will extend the
proof to the full problem by adding examples that
disallow the other possibilities at the output node.
Megiddo (1986) has shown that for a collection of
arbitrary ' + ' and ' - ' points in n-dimensional Eu-
clidean space, the problem of whether there exist
two hyperplanes that separate them is NP-complete.
His proof breaks down, however, when one restricts
the coordinate values to {0, 1} as we do here. Our
proof turns out to be of a quite different style.

3.2. Set-Splitting

The following problem, Set-Splitting, was proven to
be NP-complete by Lovfisz (Garey & Johnson, 1979):
"Given a finite set S and a collection C of subsets c~
of S, do there exist disjoint sets S~, $2 such that St U
S.~ = S and Vi, ci ~: St and ci ~: $2?" The Set-Splitting
problem is also known as 2-non-Monotone Colora-
bility or Hypergraph 2-colorability. Our use of this
problem is inspired by its use by Kearns, Li, Pitt,
and Valiant to show that learning k-term DNF is NP-
complete (Kearns, Li, Pitt, & Valiant, 1987) and the
style of the reduction is similar.

3.3. The Proof

THEOREM 2. Quadrant of Positive Boolean Examples
is NP-complete.

Proof. The proof is by reduction from Set-Splitting.
That is, given an instance of Set-Splitting, we convert
it into an instance of Quadrant of Positive Boolean
Examples, such that the constructed instance has a
solution if and only if the Set-Splitting instance had
a solution.

So, given an instance of the Set-Splitting problem:

S=(s,}, C={c,}, cjCS, Isl=,,,

We create the following signed points on the n-di-
mensional hypercube {0, 1}":

• Let the origin lY' be labeled ' + ' ;
• For each si, put a point labeled ' - ' at the neighbor

to the origin that has a 1 in the i-th bi t -- that is,
1 2 . . . i . . . n

at (00...010-..0). Call this point pi;
• For each cj = {sit %k), put a point labeled

' + ' at the location whose bits are 1 at exactly the
positions j~, j~. , jk~--that is, at Pit + "'" +
P j k ; •

For example, let S = {sl, s2, s3}, C = {ct, c2}, cl =
{&, s2}, c~. = {s2, s3}. We create ' - ' points at posi-
tions: (0 0 1), (0 1 0), (1 0 0) and ' + ' points at

Tra in ing a 3 - N o d e N e t w o r k

¢ : 0

(011)

(001) ~

(ooo)

FIGURE 2. An example.

(

~010) ~)(110,

(100)

121

positions: (0 0 0), (1 1 0), (0 1 1) in this reduction
(see Figure 2).

We now show that the given instance of the Set-
Splitting problem has a solution i f f the constructed
instance of the Quadrant of Positive Boolean Ex-
amples problem has a solution.

(if)

Given St, $2 from the solution to the Set-Splitting
instance, let Pt be the plane a t x t + "'" + anx,, =

-½, whereai = - l i f s i ~ S t , andai = n i f s i ~ S t .

Similarly, let P2 be the plane b l x t + . . . b,,x,, = - ½

where bi = - 1 if si E $2, and b, = n otherwise. Let
a = (at a,) and b = (bt b,,).

Plane Pt separates from the origin all ' - ' points
corresponding to s~ E St and no ' + ' points. See Fig-
ure 3. For eachs~E S ~ , a . p i = - 1 , which is less
than -½. For each ' + ' point p we have a • p > -½
since either p is the origin or else p has a 1 in a bit
i such that si ~ St. Similarly, plane P2 separates from
the origin all ' - ' points corresponding to s~ E $2 and
no ' + ' points. Thus, the quadrant a • x > -½ and
b • x > -½ contains all points labeled ' + ' and no
points labeled ' - '

(¢)

Let St be the set of points separated from the origin
by P] and $2 be those points separated by P2. Place
any points separated by both planes in either St or
$2 arbitrarily. Sets St and $2 cover S since all ' - '
points are separated from the origin by at least one
of the planes. Consider some cj = {s/t "'" sjk,} and the
corresponding ' - ' points P/t, • • • , P/k,. If, say, c~ C

St, then Pt must separate all the p/~ from the origin.
Therefore, Pt must separate P/t + • • • + P/k, from
the origin. Since that point is the ' + ' point corre-
sponding to c/, the ' + ' points are not all confined to
one quadrant, contradicting our assumptions. So, no
ci can be contained in St. Similarly, no c/ can be
contained in S 2. •

We have shown that the training problem for the
3-Node Network is NP-complete if the output node
is required to compute the AND of its two inputs.

In order to handle the other possibilities at the output
node, we now add a "gadget" consisting of six new
points in three new dimensions. The gadget forces
that the only way in which two planes could separate
the ' + ' points from the ' - ' points would be to con-
fine the ' + ' points to one quadrant.

P r o o f o f T h e o r e m 1. Given an instance of Set-Split-
ting, create examples as in the proof of Theorem 2,
except in addition we add three new dimensions,
x,+t, x,+2, and x,+3, and put ' + ' points in locations:

(0. . .0101), (0. . .0011)

and ' - ' points in locations:

(0. . .0100), (0. . .0010), (0.. .0001), (0.. .0111).

The ' + ' points of this cube can be separated from
the ' - ' points by appropriate settings of the weights
of planes Pt and P2 corresponding to the three new
dimensions. Given planes P't: a t x l + "'" + a n x , =

-½ and P~: b t x t + "'" + b , x n = -½ which solve a
Quadrant of Positive Boolean Examples instance in
n dimensions, expand the solution to handle the gadget
by setting

P~ to atx~ + "'" + a,,Xn + x,,+~ + x , , + : - x~+3 = -½

P., to b,x~ + "'" + b,,x° - x,,+~ - x,,+, + xn÷3 = -½

(000) (100)

FIGURE 3. The gadget.

122 A. L. Blurn and R. L. Rivest

(P~ separates ' - ' point (0 -.. 0 001) from the ' + '
points and P2 separates the other three ' - ' points
from the ' + ' points). On the other hand, notice that
no single plane can separate the ' + ' points from the
' - ' points in the cube and there is no way for two
planes to confine all the negative points in one quad-
rant. Thus, any solution to the network training
problem must have all ' + ' points in one quadrant
and so as in the proof of Theorem 2, give a solution
to the Set-Splitting instance. •

4. CLASSES OF HARD NETWORKS

4.1. The Restricted 3-Node Network

In order to approach the dividing line between com-
putational feasibility and infeasibility for neural net-
work training, we now consider an even simpler net-
work. If we require the two hidden nodes N~ and N2
of the 3-Node Network to compute exactly the same
function, then the network would reduce to the sim-
ple perceptron and be trainable in polynomial time.
However, suppose we allow only the thresholds used
by NI and N2 to differ; that is, we require just the
weights on edges into node N~ to equal the corre-
sponding weights on edges into node N2. We show
that the training problem for such a network is NP-
complete. Thus, adding the single extra free param-
eter of thresholds that may differ results in intract-
ability. Another natural way we might simplify the
network would be to require the edge weights to be
either + 1 or - 1. This requirement forces nodes N~
and N2 to each separate out some Hamming ball in
{0, 1}"--that is, all points on the hypercube differing
in at most some fixed number of bits from some
center--instead of just any linearly-separable region.
Unfortunately, trainining fo this type of network is
also NP-complete as we will show.

DEFINITION 2. A Restricted 3-Node Network is a ver-
sion of the 3-Node Network in which some or all of
the weights of hidden node NI are required to equal
the corresponding weights of hidden node N:, with
possibly only the thresholds allowed to differ, and in
which some or all of the weights may be restricted to
be from the set { - 1, + 1}.

We prove that training the Restricted 3-Node Net-
work is NP-complete. The proof uses a reduction
from Set-Splitting slightly different from that in the
last section and we use a form of the Set-Splitting
problem in which the subsets cj have at most three
elements (this restricted version of Set-Splitting is
still NP-complete). The reduction has the property
that the following are equivalent:

• The instance of the Set-Splitting problem is solv-
able.

• The sets of ' + ' and ' - ' points created can be
separated by two hyperplanes.

• The points can be separated by two parallel hy-
perplanes with coefficients in { + 1, - 1}.

That is, the reduction will also imply that training
the 3-Node Network remains NP-hard even if we
only look at training sets in which all the positive
examples lie in two disjoint Hamming balls. Thus,
restricting oneself to considering only sets of training
data where the concept (set of positive examples)
consists of two disjoint Hamming balls does not re-
duce the computational complexity in the worst case.
The proof appears in Appendix A.

4.2. Networks With More Intermediate Nodes

We will now consider networks with more than two
nodes in the hidden layer and present a large class
of such networks for which training is NP-complete.

DEFINITION 3. Let A be the family of 2-layer, n-input,
single-output networks in which there are r >- 2 linear
threshold function nodes in the hidden layer, each one
connected to all n inputs, and in which the output
node computes the A N D function. That is, the output
node outputs + 1 if and only if all of its inputs are
+1.

The class A is just the straightforward generali-
zation of the 3-Node Network to networks with more
than two hidden nodes, with the restriction that the
output node compute the AND of its inputs instead
of an arbitrary linear threshold function.

THEOREM 3. For any network of the family A such
that the number of hidden nodes, r, is bounded by
some fixed polynomial in the number of inputs, n,
the training problem is NP-complete.

Essentially, to prove this result, for each of r - 2
hidden nodes, we take an unused corner of the n-
dimensional hypercube and label it ' - ' and all its
neighbors ' + ' . This will force a hyperplane corre-
sponding to a hidden node to have as its sole function
separating the ' - ' point from the rest of the hyper-
cube. There will be two hidden nodes left so we can
then use the reduction from the proof of Theorem
1. The proof appears in Appendix B.

4.3. The 3-Node Network with XOR Output

The last network for which we will show training to
be NP-complete is a modification of the 3-Node Net-
work in which the output node computes the XOR
function. When the outputs of the two hidden nodes
are (+ 1, - 1) or (- 1, + 1), then the network output
is " + 1" and otherwise the network output is " - 1."

Training a 3-Node Network 123

We will call this network the 3 - N o d e N e t w o r k with

X O R Ou tpu t , or 3 N X . The motivation for consid-
ering this network is that in Section 6 we will present
a network that can both correctly classify any set of
training examples that 3NX can, and be trained in
polynomial time. This shows that worst-case hard-
ness of training is not necessarily directly related to
network power.

In the following discussion, we will suppose that
the inputs to 3NX are from a ternary alphabet. In-
stead of each input being on or off, an input can be
positive, negative or neutral.

THEOREM 4. Training 3 N X is N P comple t e i f ternary
inpu t attributes are a l lowed.

Proo f . The ternary attributes used are { - 1, 0, 1} so
every training example is a vector in { - 1 , 0, 1}"
labeled' + ' o r ' - '. Given an instance of Set-Splitting
on n elements, create signed points in { - 1, 0, 1}" as
follows:

• Let the origin 0" be labeled ' + ' ;
I 2 --" i

• For each s~, put a ' - ' point at p~ = (00 .-. 0 1 0
-- ' n I 2 '-" i " " n

0) a n d a t -pa = (0 0 . . - 0 - 1 0 0).
• For each cj = {%,, sj,}, put a ' + ' point at

P~, + "'" + Pi,"

These points are the same as in the proof of Theorem
1 except the reflection of each ' - ' point through the
origin is also given and there is no "gadget ."

A solution St, $2 to the Set-Splitting instance can
be translated into the same plane equations P~, P2
as in the proof of Theorem 1. Pt is a~x~ + . . . +

a , x , = - ½ w h e r e ai = - l f o r s i E St anda i = n
for si q~ S~; P2 is created from S_, similarly. Notice
that the ' - ' point p~ is separated from the ' + ' points
by Pt if s~ E St and by P2 if s~ E $2. Conversely -p~
is separated from the ' + ' points by P2 if si E S~ and
by Pt if s~ ~ Sz. Also, no ' - ' point is separated from
the ' + ' points by both planes which implies that the
network can correctly classify the training examples
with an XOR output node.

A solution Pt, P_, to the training problem can be
translated into sets S~, $2, where S, = {sil Pt separates
p~ from the origin} and $2 = {s~lP2 separates p~ from
the origin}. The following claim implies that these
sets solve the Set-Splitting instance.

CLAIM. Given cj = {s h si~}, Pt does no t separa t e

all o f pj, pj, f r o m the origin.

P r o o f o f c laim. If P1 separates all of the pj, from the
origin, it also separates the point p = Pi, + • • • +
pj, (the ' + ' point corresponding to cj) from the origin

and does not separate any of the -Pi, from the origin.
Therefore, the other plane P2 must separate all of
the -Pi, from the origin and cannot separate p or
any of the pj, from the origin. So, the point p and all
the Pi, are on the same side of both planes and the
training problem is not correctly solved.

The claim implies that each cj is split by S~ and $2,
proving the theorem. •

5. G E T r l N G AROUND INTRACTABILITY

The results presented in the previous sections show
several classes of networks such that for any training
algorithm there will be some hard training problems.
It is quite possible, however, that a problem hard
for one network might be easier for another network.
In this section, we describe two networks such that
training the first is NP-complete, but the second can
both be trained in polynomial time and is more pow-
erful than the first in that it can be trained correctly
on any set of examples the first is powerful enough
to correctly classify. This phenomenon was discov-
ered independently by Valiant and Warmuth (1989).

The first network is the network 3NX described
earlier. The second is a perceptron with an expanded
input representation. This perceptron has 2n +

n(n - 1) /2 inputs, consisting of the original n inputs,
their squares, and all n(n - 1)/2 products of pairs
of the original n inputs. We will call this network p2
and the regular n-input perceptron, P. The number
of weights in p2 is O(n2), compared with O(n) for
3NX. However, p2 can be trained in polynomial time
since it is just a perceptron with O(n 2) inputs.

THEOREM 5. A n y set o f training data that 3 N X can

correctly classify, p2 can also correctly classify.

Proo f . L e t W l X 1 --~ . . . + W n X n "~ w 0 ~ 0 a n d O l X I -~-

• . . + v , x , + vo > 0 be the linear threshold func-
tions for the two hidden nodes of 3NX. (Notice we
have moved the thresholds w0 and v0 to the left-hand
sides of the inequalities.) We may assume that on all
training examples, wjx j + . . . + w , x , + wo # 0

and v~x~ + . . . + v , x , + vo ~ O, since we can per-
turb the thresholds w0 and v0 by slight amounts if we
wish and not affect the function computed by the
network• Therefore, the network 3NX outputs" + 1"
exactly when

(wlx l + . . . + w , x , + w0 > 0)and
(v~xt + . . . + v , x , + Vo < O)

o r

(w ,x l + . . . + w , x , + w0 < 0)and

(v ,x t + . . . + v , x , + Vo > 0).

124 A. L. Blum and R. L. Rivest

Equivalently, 3NX outputs " + 1" exactly when

(w~xl + . . . + w,x , + Wo)

x (vlx~ + . . . + v ,x , + Vo)< 0

which implies

vowo + ~ (vowi + w,,vi)x~ + ~ viw~x~
i = 1 i = 1

n i - I

+ E E (w,v~ + v, wj)x,xj > o.
i=2 j=l

The left-hand side of this last formula is a linear
function of the inputs to p2. So, there exist edge
weights for p2 (those described by the above for-
mula) such that p2 classifies the examples in exactly
the same way as does 3NX. •

Theorem 5 shows that by increasing the power of
a network, it is possible to remove as well as to
introduce computational intractability. In terms of
their representational power, we have:

P C_ 3NX C_ p2

where P can be trained in polynomial time, training
3NX is NP-complete, and p2 can again be trained in
polynomial time. Intuitively, the reason that network
p2 can be both more powerful than 3NX and easier
to train is that we are giving it predefined nonlin-
earities. The network p2 does not have to start from
scratch, but instead is given more powerful building
blocks (the products of pairs of the inputs) to work
with.

By using p2 instead of 3NX, we gain in a worst-
case computational sense, but lose in that the number
of weights increases from O(n) to O(n2). The in-
crease in the number of weights implies that the num-
ber of training examples needed to constrain those
weights so that the network can meaningfully gen-
eralize on new examples increases correspondingly
(e.g., see Baum & Haussler, 1989). Thus, there is a
tradeoff. Theorem 5 can be extended in the obvious
way to networks like 3NX with k > 2 hidden nodes;
the number of inputs to the resulting perceptron will
be n*.

In practice, if one were to use the strategy of
adding nonlinear inputs to the perceptron, then in-
stead of giving the perceptron all O(n 2) products of
pairs as inputs at once, one might just give the net-
work those products that appear related to the train-
ing problem at hand. One could then test to see
whether those products suffice by running a training
algorithm and checking whether or not the network
correctly classifies the training data. In addition,
products of triples of inputs or other nonlinear func-
tions of the original inputs could be given as new
inputs to the perceptron if the trainer has some prior
knowledge of the particular training problem.

6. HARDNESS RESULTS FOR
APPROXIMATION ALGORITHMS

We now state, but do not prove, two hardness results
on approximate network training; the proofs appear
in (Blum, 198%).

The first problem we consider is relaxing the re-
striction that the trained network output correctly on
all the training examples, even if there exist edge
weights so that the network would do so. Judd (1988)
shows that there exist (network, training set) pairs
for which outputting correctly on better than 2/3 of
the training examples is NP-hard. He proves this
result by showing training to be NP-complete for
some such pair in which the training set has only
three elements and therefore one cannot do better
than 67% accuracy without achieving 100% accu-
racy. The networks he considers are quite compli-
cated and contain many output nodes, however. Our
results are weaker than his in that we cannot show
that achieving such a high error rate is necessarily
hard, but hold for the very simple networks discussed
in the previous chapters.

DEFINITION 4. A training algorithm with one-sided
error for a single-output network ~,')l is an algorithm
that given a collection of positive and negative training
examples that ':)1 can correctly classify, will produce
edge weights so that Ol outputs correctly on all of the
positive examples and at least an e fraction of the
negative examples, for some constant ~ > O.

In this section we will use the problem Graph k-
Colorability. An instance of this problem is a graph
consisting of n vertices connected by some number
of edges and k allowed colors. A solution is an as-
signment to each vertex of one of the k colors so that
no edge has both endpoints given the same color.
Graph k-Colorability is NP-complete for k -> 3 and
approximate graph coloring (approximating the min-
imum number of colors needed to color a graph)
appears to be a hard problem in the worst case also
for a l l k ->3 .

THEOREM 6. For any network O~ E A with n inputs
and k >- 3 hidden nodes, any training algorithm with
one-sided error for 01 can be used to color any n-
vertex k-colorable graph with O(k log n) colors.

Theorem 6 implies, for instance, that training the
network O~ ~ A that has 3 hidden nodes so that 0~
will output correctly on all the positive examples and
on at least 10% of the negative examples (e = 0.1)
on a collection of training data which M is powerful
enough to correctly classify, is as hard in the worst
case as O(log n)-coloring a 3-colorable graph.

Finding O(k log n) approximations for the k-col-
oring problem is not known to be NP-complete, but

Training a 3-Node Network 125

O(k log n) is much lower than the bounds achieved
by the current best approximation algorithms which
all grow as n" for a constant o~ < 1. Thus, Theorem
6 suggests that one-sided error training in the worst
case is "probably hard."

A second form of approximate training we con-
sider is that given a set of training examples that is
hard for a particular network, one might try to add
power to the network in some way in order to make
training easier. For the 2-layer networks of the kind
discussed in this paper, one natural way to add power
is to add more nodes to the hidden layer. We show
that for networks of the class A, if one adds only
relatively few nodes to the hidden layer, then there
will be training sets that are hard for both the original
and the enlarged network, so this approach will likely
not help in the worst case.

DEFINITION 5. Given two networks ':~l and ~ ' , and
~,')l'/~:~-training algorithm is one that given any set o f
training data that ~:~ is powerful enough to correctly
classify, will correctly train ~l'.

Thus, for instance, in the last section we showed a
P2/3NX-training algorithm.

for networks other than those specifically mentioned.
They do, however, suggest that one cannot escape
computational difficulties simply by considering only
very simple or very regular networks.

On a somewhat more positive note, we present
two networks such that the second is both more pow-
erful than the first and can be trained in polynomial
time, even though the first is NP-complete to train.
This shows that computational intractability does not
depend directly on network power and provides the-
oretical support for the idea that finding an appro-
priate network and input encoding for one's training
problem is an important part of the training process.

An open problem is whether the NP-completeness
results can be extended to neural networks that use
the differentiable logistic linear functions. We con-
jecture that training remains NP-complete when these
functions are used since it does not seem their use
should too greatly alter the expressive power of a
neural network (though Sontag (1989) has demon-
strated some important differences between such
functions and thresholds). Note that Judd (1990), for
the networks he considers, shows NP-completeness
for a wide variety of node functions including logistic
linear functions.

THEOREM 7. Given network ~.'~ E A with k hidden
nodes and ~:~' E A with k' hidden nodes (k' > k),
then ~:~l' /v)l-training is as hard as coloring a k-colorable
graph with k' colors.

Theorem 7 implies that to avoid NP-completeness,
one must in general at least double the number of
hidden nodes, since it is NP-hard to color a k-col-
orable graph with 2k - ~ colors for general k. Cur-
rent state-of-the-art coloring approximation algo-
rithms (Wigderson, 1983; Blum, 1989b) suggest that
one may wish to add at least n ° hidden nodes, (0 <
o~ < 1) for t~ depending on the original number of
hidden nodes k. Of course there is no guarantee here
that adding this number of hidden nodes will actually
help, in a worst-case computational complexity sense.

7. CONCLUSIONS

We show for many simple two-layer networks whose
nodes compute linear threshold functions of their
inputs that training is NP-complete. For any training
algorithm for one of these networks there will be
some sets of training data on which it performs poorly,
either by running for more than an amount of time
polynomial in the input length, or by producing su-
boptimal weights. Thus, these networks differ fun-
damentally from the perceptron in a worst-case com-
putational sense.

The theorems and proofs are in a sense fragile;
they do not imply that training is necessarily hard

REFERENCES

Baum, E. B., & Haussler, D. (1989). Wiaat size net gives valid
generalization? In D. S. Touretzky (Ed.), Advances in neural
information processing systems 1 (pp. 81-90). San Mateo, CA:
Morgan Kaufmann.

Blum, A. (1989a, May). On the computational complexity of train-
ing simple neural networks. Master's thesis, MIT Department
of Electrical Engineering and Computer Science, Cambridge,
MA. (Published as Laboratory for Computer Science Tech-
nical Report MIT/LCS/TR-445.)

Blum, A. (1989b). An O(n°~)-approximation algorithm for 3-col-
oring (and improved approximation algorithms for k-coloring).
Proceedings of the Twenty-First Annual ACM Symposium on
Theory of Computing, Seattle, 535-542.

Blum, A., & Rivest, R. L. (1988). Training a 3-node neural net-
work is NP-Complete. Proceedings of the 1988 Workshop on
Computational Learning Theory, 9-18. San Mateo, CA: Mor-
gan Kaufmann.

Blum, A., & Rivest, R. L. (1989). Training a 3-node neural net
is NP-Complete. In D. S. Touretzky (Ed.), Advances in Neural
Information Processing Systems 1, (pp. 494-501). San Mateo,
CA: Morgan Kaufmann.

Garey, M., & Johnson, D. (1979). Computers and intractability:
A guide to the theory of NP-completeness. San Francisco, CA:
W. H. Freeman.

Haussler, D. (1989). Generalizing the PAC model for neural net
and other learning applications (Tech. Rep. UCSC-CRL-89-
30). Santa Cruz, CA: University of California.

Judd, J. S. (1988). Neural network design and the complexity of
learning. Unpublished PhD thesis, University of Massachusetts
at Amherst, Department of Computer and Information Sci-
ence, Amherst, MA.

Judd, J. S. (1990). Neural network design and the complexity of
learning. MIT Press.

Kearns, M., Li, M., Pitt, L., & Valiant, L. (1987). On the learn-
ability of boolean formulae. Proceedings of the Nineteenth An-

126 A . L . B l u m a n d R . L . R i v e s t

nual A C M S y m p o s i u m on Theory o f Comput ing , New York,
285-295.

Kearns, M., & Valiant, L. (1989). Cryptographic limitations on
learning boolean formulae and finite automata. Proceedings

o f the Twenty-First A n n u a l A C M S y m p o s i u m on Theory o f
Comput ing , Seattle, Washington, 433-444.

Megiddo, N. (1986). On the complexity of polyhedral separability.
(Tech. Rep. RJ 5252) IBM Almaden Research Center , San
Jose, CA.

Raghavan, P. (1988). Learning in threshold networks. First Work-

shop on Computa t iona l Learning Theory. San Mateo, CA:
Morgan-Kaufmann.

Rumelhar t , D. E., Hinton, G. E., & Williams, R. J. (1986).
Learning internal representat ions by error propagation. In D.
E. Rumelhar t and J. L. McClelland, (Eds.) , Parallel distrib-
uted process ing- -Exp lora t ions in the microstructure o f cogni-

tion (318-362, Chapter 8), Cambridge, MA: MIT Press.
Sejnowski, T. J., & Rosenberg, C. R. (1987). Parallel networks

that learn to pronounce English text. Journal o f Co mp lex Sys-

tems, 1(1), 145-168.
Sontag, E. D. (1989). Sigmoids distinguish better than Heavisides.

Neural Computa t ion , 1 , 4 7 0 - 4 7 2 .
Tesauro, G. , & Janssens, B. (1988). Scaling relationships in back-

propagation learning. C o m p l e x Systsems, 2, 39-44.
L. Valiant, & Warmuth , M. K. (1989). Predicting symmetric dif-

ferences of two halfspaces reduces to predicting halfspaces.
Unpublished manuscript .

Wigderson, A. (1983). Improving the performance guarantee for
approximate graph coloring. Journal o f the A C M , 30(4). 729-
735.

APPENDIX A

THEOREM 8. The training p rob l em f o r a Restricted 3 -Node Ne twork
is NP-comple te .

P r o o f o f Theorem 8. The reduction proceeds as follows. Given
an instance of the Set-Splitting problem on n / 2 elements in which
each subset c, has at most three elements:

s = {s,}, c = {c,}, c, c_ s , IsI = n/2, Ic, I <- 3,

create labeled points in n-dimensional space as follows:

• Label the origin ' + " as before;
• For each s,, put a ' - ' point at the location with l 's in bits

2i - 1 and 2i and O's in all other bits. We will call the bits
2i - 1 and 2i the bits "corresponding" to s,;

• For each c,, there are two cases: Ic,[= 2 or Ic, I = 3. Create 2-' =
4 or 2' = 8 ' + ' points respectively, such that for each ' + ' point,
exactly one of the two bits corresponding to each s, ~ c, is 1.

For example, consider S = {s~, sz, s3}, C = {cl, c.,}, c~ = {sl, s,.}
and c. = {s.. s3}. Then the ' - ' points are: (110000), (001100),
(000011) and the ' + " points are: (000000), (101000), (100100).
(011000), (010100), (001010), (001001), (000110). (000101).

We will also need a "gadget" as we did to prove Theorem 1,
in order to force the planes to have all ' + " points in one region
and the ' - " points in the others. This "gadget" is essentially the
same as in the proof of Theorem 1. In six new dimensions,

put points labeled ' + " at locations:

(0 - - -0001111) , (0 . . - 0 110011)

and points labeled ' - ' at locations:

(0 ... 0 110000), (0 ... 0 001100),

(0 .-. 0 000011), (0 ... 0 111111)

where the bits in the n old dimensions are zero. That is, we replace
each bit in the old gadget by two in the new gadget.

CLAIM 1. Given a solution for an instance of the Set-Splitting
problem, we can find parallel hyperplanes with coefficients in
{ - 1, + 1} that separate the ' + ' and ' - ' points.

Proof . Given S,, create
- 1 , where a~_, = a,., =

s, f t S,.

the plane Pt: a~x~ + ... + a , x , =
- 1 if s, ~ S~ and a2,_~ = a2i = +1 if

Note that for all ' - ' points corresponding to s, ~ S~, a,x~ +
... + a , x , = - 2 a n d f o r a l l o t h e r ' - ' p o i n t s , a~x~ + ..- + a , x , =
+2. For all ' + ' points, a~xt + ... + a , x , ~ { - 1 , 0, +1} since
each c, has at most three elements of which at least one contributes
a " - 1" and at least one contributes a " + 1 ." Therefore , the plane
P~ separates exactly the ' - ' points derived from si E S~ from the
' + ' points since for all ' + ' points, a~xj + ... + a , x , -> - 1 and
for all ' - ' points corresponding to s, ~ S~, we have a,x, + ... +
a,,x, < - 1. Define the second plane analogously.

To correctly "slice" the gadget, for one plane let the coefficients
a,,+~ a , .6 in dimensions n + 1, . . . , n + 6, respectively,
be - 1, - 1. - 1, - 1, + 1, + 1, and for the other plane, let the
coefficients be + 1, + 1, + 1, + 1, - 1, - 1. One can just "plug
in" the 6 gadget points to see that this works.

Planes P~ and P, are parallel since the coefficients a~
a,,+6 of plane P~ are just the negation of the corresponding coef-
ficients of plane P,. •

CLAIM 2. Given splitting planes (not necessary parallel, any coef-
ficients allowed) we can find a solution to the Set-Splitting in-
stance.

PART 1. The gadget cannot be split with the ' - ' points all in one
quadrant .

Proof . Exactly the same as for the reduction in the proof of Theo-
rem 1.

PART 2. A single plane cannot have all ' - ' points corresponding
to a subset c~ on one side and all ' + ' s on the other.

Proof . Suppose one did. Given a plane a~x~ + ... + a , x , = ao,
without loss of generality assume that for the ' + ' points, a~x~ +
• .. + a , x , > a., and that for all the ' - ' points corresponding to
the e lements of c,, we have a~x~ + ... + a , x , <- ao. Since the
origin is a ' + ' point, we know that a,~ must be negative.

For each s, E c,, since s~ has l ' s in bits 2i - 1 and 2i, we have
a.., ~ + a,, <- a,, which implies that either a2,_ ~ --- ,~a0 or a,, -< ~a~,
(or both). Therefore, if Ic, I = 2, then at least one of t h e ' + : points
corresponding to cj will have l 's in bits i~ and i, for which a a,, -<
½a,, and thus will force atxl + "" + a , x , <-- 2 x ½a.. If Icil' = 3,
then at least one of the " + ' points corresponding to cj will force
a~x~ + ... + a,,x, <- 3 x ½a,,. This presents a contradiction
since we assume that for all the ' + ' points, we had a~x~ + ... +
a,,x, > a..

APPENDIX B

P r o o f o f Theorem 3. Given an instance of Set-Splitting on n ele-
ments , we create training examples of length n + 2 (alternately
' + ' and ' - ' points in (n + 2)-dimensional space) as follows.

1. Create labeled points as in the reduction in the proof of Theo-
rem 1 (except we have added two extra dimensions):

• Let the origin be labeled ' + ' n . ; . , . :
• For each s, ~ S, put a " - ' point at p; = (00--.010..- 0).
• For each c~ = {s,L sj~}, put a ' + ' point at Pit + "'" +

Note that all these points created have zeros in bits n + 1 and
n + 2 .

2. For each of r - 2 hidden nodes in the network, we will create
labeled points as follows:

• Choose any arbitrary empty (unlabeled) position in
{0, 1} "+-" with l ' s in bits n + i and n + 2 such that the total
number of l 's in the vector for that position is odd and
put a ' - ' point there. For example, we might pick position:
0110010011 (i f n were 8).

Training a 3-Node Network 127

• Label all neighbors of (all positions differing in exactly one
bit from) that ' - ' point as ' + ' points.

For each ' - ' point p created in Step 2, there must be some
plane that separates it from the ' +" points. Since all the neighbors
of p are labeled ' + ", a separating plane will have p on one side
and the result of the (n + 2)-dimensional hypercube of the other.
Thus , only two planes remain to separate the ' - " points created
in step 1 from the ' + ' points. The proof of Theorem 1 shows that
two planes that separate these ' - ' points from the ' + ' points will
yield a solution to the Set-Splitting instance.

Given a solution to the Set-Splitting instance, we can create r
hyperplanes that separate the ' + ' and ' - ' points with all the ' + '

points in one region (which we want since the output node com-
putes the A N D function) by using r - 2 hyperplanes to separate
the ' - ' points created in Step 2 and two planes to separate those
from Step I. The two planes that separate the ' - ' points created
in Step 1 from the rest of the hypercube are formed exactly as in
the proof of Theorem 1 except that the coefficients in dimensions
n + 1 and n + 2 are large positive integers (a , . , = a,+z = n) so
that all the ' + ' points from Step 1 are in the same region as the
' + ' points from Step 2.

We can handle up to 2 + 2 "-j hyperplanes (hidden nodes),
and therefore certainly any fixed polynomial in n of them as n
becomes large, using about as many labeled points (training ex-
amples) as the total number of weights in the network. •

