
J. Cryptology (1999) 12: 117–139

© 1999 International Association for
Cryptologic Research

Translucent Cryptography—An Alternative
to Key Escrow, and Its Implementation via Fractional

Oblivious Transfer

Mihir Bellare∗

Department of Computer Science & Engineering, Mail Code 0114,
University of California, San Diego,

9500 Gilman Drive, La Jolla, CA 92093, U.S.A.
mihir@cs.ucsd.edu

Ronald L. Rivest
Laboratory for Computer Science,

Massachusetts Institute of Technology,
Cambridge, MA 02139, U.S.A.

rivest@theory.lcs.mit.edu

Communicated by Joan Feigenbaum

Received 19 September 1996 and revised 1 November 1997

Abstract. We present an alternative to the controversial “key-escrow” techniques for
enabling law enforcement and national security access to encrypted communications.
Our proposal allows such access with probabilityp for each message, for a parameter
p between 0 and 1 to be chosen (say, by Congress) to provide an appropriate balance
between concerns for individual privacy, on the one hand, and the need for such access
by law enforcement and national security, on the other. (For example, withp = 0.4,
a law-enforcement agency conducting an authorized wiretap which records 100 en-
crypted conversations would expect to be able to decrypt (approximately) 40 of these
conversations; the agency would not be able to decrypt the remaining 60 conversations
at all.) Our scheme is remarkably simple to implement, as it requires no prior escrowing
of keys.

We implement translucent cryptography based on noninteractive oblivious transfer.
Extending the schemes of Bellare and Micali [2], who showed how to transfer a message
with probability 1

2 , we provide schemes for noninteractive fractional oblivious transfer,
which allow a message to be transmitted with any given probabilityp. Our protocol is
based on the Diffie–Hellman assumption and uses just one El Gamal encryption (two
exponentiations), regardless of the value of the transfer probabilityp. This makes the
implementation of translucent cryptography competitive, in efficiency of encryption,
with current suggestions for software key escrow.

Key words. Key escrow, Translucent, Oblivious transfer, Discrete logarithms, Com-
munications policy.

∗ Supported in part by a 1996 Packard Foundation Fellowship in Science and Engineering.

117

118 M. Bellare and R. L. Rivest

1. Introduction

Our nation is in the midst of an important and critical debate on cryptographic policy.
The current administration seems committed to the idea that the government should be
able to read encrypted communications to support law enforcement or national security
objectives, when appropriately authorized. (See [21].) This position is highly unpopular
with many (most?) citizens and with much of the business community.

The purpose of this paper is not to contribute to the political debate directly. (For the
record, the views of the second author are strongly libertarian.) The reader is referred to
[17], [11], or [20] for some discussion of the issues involved. Rather, our purpose here
is to contribute as technologists by pointing out that there are other possible ways we
might try to achieve an appropriate balance between individual privacy and government
access to communications. Key escrow is not the only game in town. Just as technology
can produce or exacerbate a basic conflict, technology can also provide means for its
solution.

1.1. Translucent Cryptography

This paper introduces a new dimension along which debate can be framed and com-
promise can be considered: the probabilityp with which a particular message can be
decrypted by the government. A fractionp of the messages sent from a user Alice to a
user Bob will be decryptable by the government, and the remaining 1− p fraction will
not be decryptable by the government. (To recover messages from one user to another,
the government would wiretap the communication between them. Of the recovered mes-
sages, it will be able to decrypt ap fraction.) Of course, the intended recipient of an
encrypted message can always decrypt it; it is only the government that gets a “partial
view.” The sender of an encrypted message does not know whether or not that mes-
sage will be decryptable by the government. A small value ofp (say,p = 0.02) favors
a libertarian viewpoint, while a large value ofp (say, p = 0.9) favors law enforce-
ment.

In comparison, we see that debate about key escrow is a difficult one because there is
no “middle ground”: either the government has access (if the keys are escrowed) or it
does not (if the keys are not escrowed). With our proposal, values ofp strictly between
0 and 1 form a “middle ground” where each side of the debate has some gain, and some
loss. A value ofp can be chosen that balances the relative concerns. Congress might
pick the appropriatep.

The scheme is called “translucent” because it explores the space between “opaque”
(strong encryption with no key escrow) and “transparent” (no encryption or encryption
with key escrow).1 With our translucent scheme, the government can decryptsomeof the
messages, but not all. Just as a translucent door on a shower stall provides some privacy,
but not perfect privacy, translucent crypto provides some communications privacy, but
not perfect privacy. In our scheme the degree of “translucency” can be controlled by
varying p.

1 Other adjectives we considered instead of “translucent” were “variable-opacity,” “fractional-access,”
“partial-access,” and “probabilistic-access.” Translucent seemed the simplest choice.

Translucent Cryptography 119

The value ofp does not even need to be fixed once and for all, nor need it be the same
for each kind of encryption equipment. The value ofp might be chosen small today
(sayp = 0.02), and increased or reduced later as judged appropriate. Alternatively, one
could have one value ofp for cellular phones and a different one for email encryption
programs; or, a larger value ofp could be used in export versions of programs than
is used for domestic versions. The value ofp used is built into the encrypting device
or program. It is possible for the government to measure the effective value ofp used
by an encrypting device or program, and so to monitor compliance with the overall
scheme.

Because a criminal does not know which messages are decryptable and which are
not, he runs the risk every time he uses encryption that this particular message will be
decrypted and will be used against him.

Our proposal also has the advantage, compared with key-escrow techniques, that
there is practically no “setup” required. Users and manufacturers do not need to register
or escrow their cryptographic key information. More specifically, a manufacturer of
cryptographic circuits does not have to manufacture, record, and deliver secretly to
escrow agents the secret keys of each chip, as is the case for the “Clipper chip.” Indeed,
the chips can be all made identically in a nonsecret manner. Analogously, there is no need
for users of public-key cryptosystems to submit their private keys for escrowing; their
private keys remain forever their own secrets. These are consequences of the fact that our
scheme discloses only the message or session key to the government, not the long-term
keys of the devices or of the users. The only setup required is for the government to
publish a list of public keys, and for Congress to pick an appropriate value(s) forp.

This proposal can combined with previously known techniques (such as secret sharing)
to achieve other objectives, such as requiring more than one government agency to
cooperate before any messages can be decrypted, or limiting the effective time period of
a wiretap warrant.

This proposal is hardly perfect. One can object to it on many fronts, both political (the
“other side” of the debate gets to win a little, and could win more later ifp changes)
and technical (like key escrow, our scheme is easy to subvert by techniques such as
double-encryption).

Nonetheless, this proposal will serve its purpose if it opens our imaginations a bit,
enlarges our sense of the possible, and helps to bring a difficult national debate closer to
a resolution we can all live with.

1.2. Fractional Oblivious Transfer

We suggest an implementation of translucent cryptography based on an implementation
of noninteractive fractional oblivious transfer. The resulting translucent scheme is as
efficient, in terms of encryption, as current suggestions for software key escrow. Specifi-
cally, we need one El Gamal encryption (two exponentiations), which is the same as the
cost of encryption in the Diffie–Hellman system.

Noninteractive oblivious transfer was introduced by Bellare and Micali [2], who
provided an implementation achieving transfer probability1

2. We extend this to
achieve transfer probability any fractionp ∈ [0,1], at no added encryption cost.
We call our scheme the “polynomial” scheme because it exploits properties of low

120 M. Bellare and R. L. Rivest

degree polynomials over finite fields. Its security is based on the hardness of the Diffie–
Hellman problem in groups of prime order.

In any suggestion for technical solutions to the policy debate we have been discussing,
efficiency is a key issue. Although a scheme cannot, of course, stand on efficiency alone,
it can certainly fail due to its inefficiency. By providing an implementation of translucent
cryptography which is competitive, in encryption efficiency, with implementations of key
escrow, we have surmounted at least the first barrier to its discussion.

Furthermore, we suggest that our implementations of fractional oblivious transfer,
described in Section 5, may be of independent interest.

We stress that our implementation of translucent cryptography based on noninteractive
oblivious transfer will not incur any “extra flows.” When Alice wishes to communicate
with Bob, her only transmission is to Bob. (In particular, she does not communicate
on-line with the government.) If the government wants to know something about what
Alice is saying to Bob, it must wiretap their communications, and then it will be able to
decrypt a fractionp of the messages it picks up.

1.3. Version History

The first version of this paper (by the second author) was titled “Translucent Cryptogra-
phy: An Alternative to Key Escrow,” and was presented at the Rump session of Crypto 95.
The current version first appeared as the Technical Report [3].

2. Preliminaries

The security of our examples and schemes is based on the presumed computational
hardness of computing discrete logarithms or solving the Diffie–Hellman problem in
appropriate finite groups. It will be helpful to briefly pin down the setup.

We work in some cyclic groupG. We letg denote a generator, namely, a group element
such thatG = { gi : i ∈ Zq

}
, whereq = |G| is the order ofG. We let logg(x) denote

the discrete logarithm ofx ∈ G to baseg, namely, the unique indexi ∈ Zq such that
x = gi .

A typical choice of group isG = Z∗ρ whereρ is a large prime. (We denote this global
prime byρ, since we are already usingp to stand for something else, namely, the transfer
probability.) In this case,q = ρ−1. The discrete logarithm problem here is hard as long
asq has at least one large prime factor.

Sometimes, we want more special groups. Specifically, we work in groups of prime
order. This meansq, the order of the group, is a prime number. (Note aboveq = ρ − 1,
which is not prime. In fact, it is always even.) There are many ways to get groups of prime
order in which the discrete logarithm problem is hard. A simple, concrete implementation
is to choose a primeρ = 2q+1 whereq is also prime, and letG be a subgroup of order
q of Z∗ρ . (Specifically, we can fix and publicize an elementg ∈ Z∗ρ of orderq, and let
G = {

gi : i ∈ Zq
}

be the subgroup generated byg. Under this implementation, the
arithmetic operations are all inZ∗ρ , so have the usual costs.)

We will see that the technical motivation for working in a group of prime order is
that the set from which the exponents are chosen, namelyZq, is a field, and thus every
nonzero exponent valuei has an inverse in this field.

Translucent Cryptography 121

Recall that the Diffie–Hellman problem forG is: givengx, gy, computegxy, where
x, y are chosen at random inZq. The security of El Gamal encryption relies on the
assumption that this problem is computationally hard. Since El Gamal encryption is
used in the noninteractive oblivious transfer schemes we discuss, the security of these,
too, relies ultimately on this assumption. Recall also that if the Diffie–Hellman problem
is hard, so is the computation of discrete logarithms.

Finally, a piece of notation: for any integerm we let [m] = {1, . . . ,m}.

3. Noninteractive Oblivious Transfer

Since our proposal uses noninteractive oblivious transfer techniques, we provide some
background and a sketch of the technology in this section.

Oblivious transfer. Rabin [24] was the first to introduce the notion ofoblivious transfer
(OT), in which one party (Alice) can transfer a message to another party (Larry2) in such
a way that:

• Larry receives the message with probability exactly1
2.

• Alice does not know whether Larry received the message or not—that is, she is
obliviousas to whether the transfer was successful or not.

Rabin introduced the notion of oblivious transfer to help solve the problem of “exchang-
ing secrets,” a problem also studied by Blum [5].

Protocols for oblivious transfer have been studied by Even et al. [13], Fischer et al.
[15], Berger et al. [4], Cr´epeau [7], and others [19], [10], [16], [1]. These protocols
are interactive: they require the recipient, Larry, to participate actively in the protocol
by sending messages to Alice. For our purposes, we need the oblivious transfer to be
noninteractive: Larry should not have to send any messages in order to receive Alice’s
message with probability12. With noninteractive oblivious transfer, Larry needs merely
to receive (or overhear) Alice’s message in order to decrypt it with probability1

2.

Noninteractive oblivious transfer. The notion of noninteractive oblivious transfer, and
the first protocol for it, are due to Bellare and Micali [2]. Further protocols were given
by De Santis and Persiano [9] and De Santis et al. [8].

To make this paper concrete and self-contained, we describe the simplest proposal
made by Bellare and Micali for implementing noninteractive oblivious transfer. (This
scheme achieves transfer probability1

2.) Our proposal does not depend on the details
of how noninteractive oblivious transfer is implemented, however, so that other imple-
mentation techniques may be used. The rest of this section may be skipped by those not
familiar with number theory or those not wishing to get involved in the mathematical
details.

An initial global setup phaseestablishes the following three public values: a large
global primeρ (say at least 1024 bits in length); a generatorg of the multiplicative group

2 We explain the cast of characters: Alice and Bob are citizens, who may or may not be up to something.
Larry works for a law-enforcement agency.

122 M. Bellare and R. L. Rivest

Z∗ρ ; and a valueU such that no one knows the discrete logarithm logg(U)of U , moduloρ.
More precisely, computingU ’s discrete logarithm should be computationally infeasible
for anyone. Bellare and Micali suggest ways that values forρ, g, andU could be chosen.
In our application, perhaps the ACLU (American Civil Liberties Union) could choose
these values.

The second phase ispublication of public keys. Like the global setup phase, this phase
needs to be done only once, no matter how many oblivious transfers will be performed.
Larry publishes as his public key a pair of values(V1,V2) satisfyingV2 = V1U , modulo
ρ. Larry should know either the discrete logarithm ofV1, or the discrete logarithm of
V2. (He cannot know both, as argued below.) We say thatVi is agood key(for Larry)
if Larry knows the discrete logarithm ofVi , otherwise we say thatVi is abad key(for
Larry), for i = 1,2.

In the finalcommunication phase, we suppose now that Alice wishes to send Larry a
messages ∈ Z∗ρ obliviously. (We uses to denote the message, since laters will denote a
session key in Alice’s conversation with Bob.) Alice can do so by picking one of Larry’s
two public keys at random, and encryptings using that public key and the El Gamal
encryption algorithm [12], as follows: ifi ∈ {1,2} is Alice’s choice, then

• Alice picks a valuey from {0,1, . . . , ρ − 2} uniformly at random, and sends Larry
(i, E(s,V)), where

E(s,V) = (c1, c2) = (gy, sVy
i).

(All values computed moduloρ.)
• If (and only if) Larry knows the discrete logarithmx of Vi , he can computes via

s= c2/cx
1(mod ρ).

Thus, Larry receivess with probability exactly1
2, since only one of his two public keys

is good. The protocol is oblivious since Alice does not know which of Larry’s keys is
good.

Notice that if both of Larry’s public keys are good (namely, he knows the discrete
logarithm of bothV1 andV2), then he can cheat, since he would receive the message
s with probability 1. However, we claim he cannot make both his keys good. Indeed,
anyone can check thatV2 = U V1, and thus if bothV1 andV2 are good for Larry, the latter
could easily compute the discrete logarithm ofU via logg(U) = logg(V2) − logg(V1)

(mod ρ − 1). So as long as computing the discrete logarithm ofU is computationally
infeasible, Larry cannot successfully cheat.

Note that this protocol is noninteractive. Also note encryption takes two exponentia-
tions. This is the same as in the Diffie–Hellman public-key system. (There, Bob would
have public keyV = gx and private keyx, and Alice would send him a messages by
sendingE(s,V).)

The above protocol differs in presentation and inessential minor respects from that
proposed by Bellare and Micali; see their paper [2] for other methods and discussion.

It is important to note that successive oblivious transfers are not independent: if
Alice sends two successive messages using Larry’s public keyV , Larry either receives
them both or receives neither of them. This property of noninteractive OT has often
been pointed out in the literature, and has relevance to our application, as discussed
later.

Translucent Cryptography 123

Recall that Larry can cheat if he can compute the discrete logarithm ofU . This task
gets harder as the primeρ gets bigger. Since the role of Larry in our context is played
by the government or a law-enforcement agency, who have more computing power than
most people, it would be advisable to makeρ larger than the norm.

4. Translucent Cryptography

In the previous section we have explained how noninteractive oblivious transfer can be
achieved, where the probability isp = 1

2 that Larry receives the message. In the next
section, Section 5, we explain how to achieve noninteractivefractionaloblivious transfer,
so that transfer with a wide range of probabilitiesp can be implemented. Before diving
into the mathematics required to implement noninteractive fractional oblivious transfer,
however, we explain in this section how noninteractive (fractional) oblivious transfer
can be used to implement translucent cryptography. This is rather straightforward. The
reader should, for the moment, accept our promise that we will explain how to implement
noninteractive fractional oblivious transfer with a variety of values forp; this promise
is kept in Section 5.

We denote byp-NFOT a noninteractive fractional oblivious transfer protocol with
transfer probabilityp.

Assume that a probabilityp has been determined, and that the global quantities needed
to setup ap-NFOT have been determined.3 We also assume that Larry (the government)
has published his public key(s), again according to the algorithm specified by whichever
scheme we are using. Thus he can obtain a message sent via oblivious transfer with
probability p.

The above computation and publication by Larry is theonly setup required by our
translucent cryptography scheme; there is no need for each user to escrow shares of his
private key, or for manufacturers to escrow shares of keys stored in each cryptographic
device produced. Each cryptographic product can be made in an identical manner, em-
bodying the quantities just described. In practice, each product would also presumably
have a unique identifying serial number, so that its messages can be distinguished from
those of other products. This number does not need to be secret.

How can a user Alice now send a messageM in encrypted form to another user Bob,
in such a way that Larry (who is authorized to eavesdrop on the message) can decrypt it
with probability p?

First, Alice determines a “message key” (or “session key”) keys in an arbitrary
manner. The keys might, for example, be freshly generated, or might be the result of a
prior agreement between Alice and Bob. Then Alice computes, as a function of Larry’s
key, a stringL which comprises the message she would send to transfers to Larry under
the p-NFOT scheme in use. (For example, if we are using the polynomial scheme of
Section 5 and Larry’s public key is(V1, . . . ,Vm,W0, . . . ,Wa), then Alice picksi ∈ [m]

3 For the schemes described in Section 5, these quantities are denotedρ, g, andU if one is using the binary
scheme, orG, g, andU if one is using the polynomial scheme, where no one can feasibly compute the discrete
logarithm ofU to the baseg.

124 M. Bellare and R. L. Rivest

at random and letsL = (i, E(s,Vi)).) Now, Alice transmits a message to Bob consisting
of the following fields:

(F1) The encryption of messageM using a standard algorithm (e.g., DES) and the
message keys.

(F2) Information, if necessary, that allows Bob to determine what secret message key
s is being used.

(F3) The stringL she computed above.

The third field, namelyL, is the “LEAF” (Law-Enforcement Access Field). With proba-
bility p this information allows Larry to determine the message keys, and thus to decrypt
the first field to obtain the messagem.

The second field would typically consist of the encryption ofs under Bob’s public
key, as is done for example in Privacy Enhanced Mail [18]. Bob can reliably decrypt
this field to obtains, and thus to decrypt the first field to obtain the messagem. In a
variation, the session keys would be encrypted in a DES key known only to Alice and
Bob. Alternatively, this information might consist of a message that can be used in a
Diffie–Hellman key-agreement protocol to establishs. There are a variety of methods
by which Alice can let Bob know whats is, any of which can be used in our scheme.

The message might also contain the identifying serial number of Alice’s cryptographic
product. This could be in the clear, or be part of the information transferred obliviously
to Larry in the third field.

To clarify this transmission, we stress thatL is not sent to Larry; it is sent to Bob.
Larry obtains it only if he wiretaps the line between Alice and Bob. There is no direct
communication from Alice to Larry at any time.

We note that Bob can verify that Alice is following the translucent cryptography
protocol properly, by checking that the LEAF is properly constructed. In this way a
correct implementation can refuse to work with “rogue” implementations that do not
build proper LEAFs.

This completes our description of the basic translucent cryptography protocol. We
now move on to implementations of fractional oblivious transfer. Refer to Section 6 for
a more in-depth discussion of translucent cryptography issues.

5. Noninteractive Fractional Oblivious Transfer

We call an oblivious transfer schemefractionalif the probabilityp that Larry successfully
receives the message may be chosen to be different from1

2. The only previous literature
on fractional oblivious transfer schemes that we know of is by Brassard et al. [6], who
discuss the special case of transferring one message out of a set ofn messages. We now
explain how to achieve noninteractive fractional oblivious transfer schemes for a variety
of values forp.

We say that ap-NFOT is a noninteractive fractional oblivious transfer protocol in
which the transfer probability isp. Our goal is to design such protocols for given values
of the probabilityp ∈ [0,1]. We begin by noting simple solutions for certain values of
p. Then we move on to the general case, and present two protocols.

Translucent Cryptography 125

5.1. Some Simple Special Cases

A one out of n NFOT. To obtain a simple form of fractional capability, it is easy to modify
the basic scheme discussed above to provide “one ofn” capability noninteractively. (That
is, givenn, we can design ap-NFOT with p = 1/n.) For this scheme, we work over a
groupG of prime orderq, as described in Section 2. As before,g is a generator (now
of G) andU ∈ G is such that logg(U) is both unknown and infeasible for anyone to
compute. Larry publishes a list of values(V0,V1, . . . ,Vn−1) such thatVi = V0Ui , in
such a way that only one of these keys is good for Larry. (See below for how.) Alice
checks that indeedVi = V0Ui for i = 0, . . . ,n − 1, then picks one of Larry’s public
keys at random, and uses it to encrypt the message to be sent to him.

To make his key, Larry picksx ∈ Zq at random andi ∈ Zn at random. He sets
Vi = gx, and then setsVj = Vi U j−i for j 6= i . One can check thatVj = V0U j for all
j = 0, . . . ,n− 1.

On the other hand, no matter how Larry makes his key, he cannot know the discrete
logs of two (or more) members of the list of group elements which comprises his key.
For, say, he knewxi , xj such thatVi = gxi and Vj = gxj where 0≤ i < j < n.
Dividing, we see thatU j−i = gxj−xi . It follows that logg(U) can be computed, as
logg(U) = (j − i)−1(xj − xi) modq, where(j − i)−1 represents the multiplicative
inverse ofj − i in the fieldZq. (It is to ensure this inverse exists that we work in a group
of prime order.)

An n− 1 out of n NFOT. Similarly for any n it is easy to obtain ap-NFOT with
p = (n−1)/n. Larry publishes a list of values(V0,V1, . . . ,Vn−1)such that

∏n
i=0 Vi = U ,

in such a way thatn − 1 of these keys are good for Larry. (See below for how.) Alice
checks the product constraint, then picks one of Larry’s public keys at random, and uses
it to encrypt the message to be sent to him. The product constraint implies that Larry
cannot know the discrete logs of all the keys, so the transfer probability is(n− 1)/n.

It is easy for Larry to pick keys satisfying the constraints. He first picksi ∈ Zn at
random. Then he picksVj ∈ G so that he knows the discrete logarithm ofVj , for all
j 6= i , and setsVi = U/

∏
j 6=i Vj .

This time we do not require a group of prime order; any group in which the discrete
logarithm problem is hard will do.

Arbitrary p. Now our goal is to accomplishp-NFOT for an arbitrary, given value of
p ∈ [0,1]. We would like, ideally, to be as efficient as the above schemes, and use just
one encryption. We do not accomplish this in our first scheme, the binary scheme of
Section 5.2 below, where we use a number of encryptions proportional to the number of
bits in the binary expansion ofp. Then in Section 5.3 we present another scheme which
requires only one encryption.

5.2. The Binary Scheme

Here is a way to extend the basic scheme to get a fractional scheme where the probability
p can be any finite binary fractionp = a/2n, wherea is an integer in the range 1 to
2n−1. (The casesp = 0 andp = 1 can be easily handled without any oblivious transfer;
for p = 1 Alice merely needs to encrypts with an additional public key known to be

126 M. Bellare and R. L. Rivest

good for Larry.) In this solution Alice will use a number of encryptions depending onp
to accomplish the transfer. (Specifically, 2n encryptions, which is 4n exponentiations.)

Let then-bit binary expansion ofp = a/2n = 0 · a1a2 · · ·an, so that

p =
n∑

i=1

ai 2
−i . (1)

We assume the values ofn, a, and p are public knowledge, as areρ, g, andU—the
global setup phase is the same as for the scheme in Section 3. We letG = Z∗ρ be the
group over which we work, and letq = ρ − 1 be the order of this group. Recall that
exponents range inZq.

Key setup. In the publication of public keys phase, Larry publishes a sequence ofn pairs
of public keys:

(V1,V ′1), (V2,V ′2), . . . , (Vn,V ′n),

where exactly one key in each pair is good for Larry. For eachi ∈ [n], Larry picks
xi ∈ Zq at random. He then flips a coinbi ∈ {0,1} to determine whetherVi or V ′i will
be good for him, and proceeds to generate thei th pair of keys as

(Vi ,V ′i) =
{
(gxi ,Ugxi), bi = 0,
(gxi /U, gxi), bi = 1.

Thus he knows the logarithm ofVi if bi = 0 and ofV ′i if bi = 1. Note thatV ′i = U Vi

in either case, which can be checked by anyone. Of course, Larry should not tell anyone
which public keys are good for him.

Transfer. We now describe how, in the communication phase, Alice can noninteractively
and obliviously transfer a messages to Larry so that he receives it with probabilityp.
She will send a sequence ofn triples

T1, T2, . . . , Tn (2)

to Larry, where each triple contains two values encrypted with Larry’s keysVi andV ′i ,
in a manner to be described. (In our application, we imagine thatn probably need not
be larger than about five to obtain satisfactory precision in the value ofp, so that this
sequence is actually quite short.)

First, Alice chooses a sequence ofn keysK1, K2, . . . , Kn as random values inZρ and
computes their running sums:

L0 = 0,

and

Li = K1+ K2+ · · · + Ki (mod ρ), for i = 1,2, . . . ,n.

She also determines a valueJi for eachi ∈ [n], via

Ji =
{

0 if ai = 0,
s+ Li−1 (mod ρ) if ai = 1.

EachJi is either “junk” (0, if ai = 0) or a “jewel” (s+ Li−1, if ai = 1).

Translucent Cryptography 127

Second, Alice chooses a sequence ofn random bitsr1, r2, . . . , rn. Now thei th triple in
the sequence (2), namelyTi , containsri and the encrypted versions ofJi andKi , where
the encryption is performed using Larry’s public keysVi andV ′i as follows:

• If ri = 0, thenJi is encrypted withVi andKi is encrypted withV ′i ; the i th triple is
Ti = (0, E(Ji ,Vi), E(Ki ,V ′i)).
• Otherwise (ifri = 1) the public keys are switched:Ji is encrypted withV ′i andKi

is encrypted withVi ; the i th triple isTi = (1, E(Ji ,V ′i), E(Ki ,Vi)).

Since each triple containsri , Larry knows which way his public keys were used. For
eachi , Larry can decrypt eitherJi or Ki ; he knows which he can decrypt and which he
cannot.

This completes our description of the binary noninteractive fractional oblivious trans-
fer scheme.

Why this works. To see that this scheme works as advertised, note that Alice sends Larry
exactlyn triples, and that Larry can decrypt exactly one ciphertext of each triple. On the
i th triple, if ai = 0, Larry gets either junk (0) or a key (Ki). If ai = 1, Larry either gets
a jewel (s+ Li−1) or a key (Ki). Larry knows whether he gets junk, a jewel, or a key,
since he knowsai andri . Larry obtainss if and only if he getst − 1 keys followed by a
jewel, for somet , 1≤ t ≤ n. He can tell if he is able to obtains or not. Since succeeding
in positiont happens only ifat = 1, and then only with probability 2−t , Larry receives
s with probability exactlyp, by (1).

Alice’s random bits r. Note that as long as Larry chooses which of each pair of public
keys are good for him at random, then it does not matter whether or not Alice chooses
the bitsri randomly; Larry has a chance of exactlyp of reading any particular message.
Similarly, as long as Alice chooses her bitsr at random, then Larry will have a chance
of exactly p of reading any particular message, even if Larry did not randomly decide
which of each pair of public keys would be good.

However, we observe that Alice can in principle, if she wishes, choose herr bits to be
identical or correlated from message to message. In some situations this might give her a
perceived advantage, since this might allow Larry to read all of a sequence of messages,
or none of them.

To help ensure that Alice uses appropriate randomness, one could require that Alice’s
random bitsr be determined in some fixed manner, say by cycling sequentially through
all possible values forr , or by hashing (taking a message digest of) the first field (the
encrypted messagem). It is easy for Larry to determine whether or not Alice is complying
with this standard procedure. The second procedure is not perfect, since Alice can encrypt
several variants of the same message, and only transmit those with desiredr values, but
this approach may not help her, inasmuch as she does not know which keys are good for
Larry.

On the other hand, if Alice is known to be choosing her “random” bits in some nonran-
dom way, say by cycling through all possible values, Larry may have some advantage.
For example, he could choose his public key so as to be able to decrypt a particular
“burst” of messages. That is, out ofN messages Alice sends he would still get only

128 M. Bellare and R. L. Rivest

about apN fraction, but might be able to arrange that this was a consecutive sequence,
or even the first messages. Thus, Alice may prefer to use real randomness.

5.3. The Polynomial Scheme

We now propose a different scheme in which Alice needs only a single encryption
(costing two exponentiations) in order to accomplish the transfer, regardless of the value
of p. (However, the size of Larry’s public key will be larger than in the scheme above.)

Preliminaries. We consider a transfer probability of the formp = a/m wherea,m are
integers satisfying 0< a ≤ m. (In the binary scheme,m = 2n was a power of two.
Here we do not make this restriction.) The scheme is based, as before, on the hardness
of discrete logarithms, but this time in a groupG of prime orderq ≥ m+ 2 for which
the discrete logarithm problem is hard. (See Section 2.)

Notice that all nontrivial elements ofG are generators ofG. We letg be a randomly
chosen generator ofG, soG = { gi : i ∈ Zq }. As before, we letU ∈ G be an element
for which logg(U) is unknown and infeasible to compute. We letα0 = 1 ∈ Zq. We also
fix m distinctelementsα1, . . . , αm of Z∗q − {α0}. (It must be thatα0 = 1. However, it
does not matter whatα1, . . . , αm are as long as they are distinct, nonzero, and non-one,
and we suggest the reader think of them as 2,3, . . . ,m+ 1. Thatα0, . . . , αm must be
distinct is the reason we haveq ≥ m+ 2.)

The valuesp, a, m, ρ, q, g, andα0, . . . , αm are all fixed and public.

The idea. Before specifying the scheme, we try to give a brief, informal overview of the
ideas. Larry will form a public keyV1, . . . ,Vm,W0, . . . ,Wa consisting ofm+ a + 1
elements ofG. The lasta+ 1 elements will be used only by Alice to verify that Larry’s
key is properly made. Lettingxi = logg(Vi) ∈ Zq for i = 1, . . . ,m, the key will be
chosen so that:

(1) Larry knows a random, sizea subset of{x1, . . . , xm}.
(2) There exists a degreea polynomial f (x) = f0+ f1x+ · · · + faxa ∈ Zq[x] such

that
(2.1) xi = f (αi) for all i = 1, . . . ,m, and
(2.2) Larry does not know f.

Furthermore, this will be done in such a way that Alice can check property (2). Now
if Larry does not knowf , then he cannot knowmore thana of the valuesx1, . . . , xm

(otherwise he could interpolate to find the coefficients off). Thus, in fact, he knows
exactlya of these values. Now to accomplish the transfer, Alice can choose one key out
of V1, . . . ,Vm at random, and use it as before. This calls, on the part of Alice, for only
a single encryption.

The problem is how to set up the constraints we have discussed. Obviously we cannot
have Larry choosef , since then he would know it. Instead, we make Larry specify
W0, . . . ,Wa in some particular way, and then view the coefficients of the polynomial
asimplicitly specified byfi = logg(Wi) for i = 0, . . . ,a. Furthermore, we will ensure
(and Alice will check) thatW0 ·W1 · · ·Wa = U , which implies that Larry does not know
all of f0, . . . , fa, and hence does not knowf . (In our scheme if Larry is honest he will in

Translucent Cryptography 129

fact know the discrete logs of none of theWi ’s.) Furthermore, Alice can verify item (2.1)
above using a technique of Feldman [14] and Pedersen [23] used for verifiable secret
sharing.

Larry will proceed by first specifying a random, sizea subset ofV1, . . . ,Vm in such a
way that he knows the discrete logs of thesea elements. Then we will show how he can
computeW0, . . . ,Wa by a linear algebraic technique. Finally, he will use these values to
specify the remainingm−a elements amongstV1, . . . ,Vm. We now describe the scheme
in full.

Key setup. Larry chooses at random a sizea subset of [m] = {1,2, . . . ,m}. This choice
can be thought of as specifying an injective mapπ : [a] → [m], whereπ(1), . . . , π(a),
all distinct, are thea chosen indices. He now chooses elementsxπ(1), . . . , xπ(a) ∈ Zq at
random and sets

Vπ(l) = gxπ(l) ∈ G for l = 1, . . . ,a. (3)

(This specifiesa of the elementsV1, . . . ,Vm in such a way that Larry knows their discrete
logs. The otherm−a still need to be specified, in such a way that Larry does not know, and
cannot compute, their discrete logs.) Now Larry defines thea+1 bya+1 Vandermonde
matrix

A =


α0

0 α1
0 · · · αa

0
α0
π(1) α1

π(1) · · · αa
π(1)

...
...

...
...

α0
π(a) α1

π(a) · · · αa
π(a)

 .
SinceA is Vandermonde it is invertible. Larry computes its inverse

B = A−1 =


β0,0 β0,1 · · · β0,a

β1,0 β1,1 · · · β1,a
...

...
...

...

βa,0 βa,1 · · · βa,a

 .
The arithmetic here is over the fieldZq. (Notice that in saying this inverse exists and can
be computed we need the fact thatZq is a field. This is why we chooseG to be of prime
orderq.) Larry now sets

W0 = Uβ0,0 ·
a∏

l=1

Vβ0,l

π(l),

W1 = Uβ1,0 ·
a∏

l=1

Vβ1,l

π(l),

...
...

Wa = Uβa,0 ·
a∏

l=1

Vβa,l

π(l),

(4)

the arithmetic here being inG. (We will see that by doing this, Larry has implicitly
chosen the polynomialf (x) = f0 + f1x + · · · + faxa ∈ Zq[x] where fi = logg(Wi).

130 M. Bellare and R. L. Rivest

However, Larry does not knowf0, . . . , fa.) Now Larry specifies the remainingVi ’s as
follows—he sets

Vi =
a∏

j=0

W
α

j
i

j for all i ∈ [m] that are not in the range ofπ, (5)

the arithmetic being inG. Finally, Larry outputs(V1, . . . ,Vm,W0, . . . ,Wa) as his public
key.

Properties of this key. To understand what follows better, it is worth saying something
about what Larry accomplishes by the above steps. The following claim says that he is
implicitly defining the polynomialf (x) = f0+ f1x+· · ·+ faxa ∈ Zq[x] by the matrix
equation (6), and that his key is related to this polynomial as we would like.

Claim 5.1. Suppose Larry follows the key generation procedure described above. De-
fine 

f0

f1
...

fa

 =

β0,0 β0,1 · · · β0,a

β1,0 β1,1 · · · β1,a
...

...
...

...

βa,0 βa,1 · · · βa,a




logg(U)
xπ(1)
...

xπ(a)

 , (6)

the arithmetic being in Zq, and let f(x) = f0+ f1x + · · · + faxa ∈ Zq[x]. Then

(i) logg(Wj) = f j for all j = 0, . . . ,a,
(ii) logg(Vi) = f (αi) for all i = 1, . . . ,m, and, finally,

(iii) f0+ f1+ · · · + fa = logg(U).

The proof of this claim is in the Appendix. Note that from item (i) we haveWj = g fj ,
and thus from item (iii) we haveW0 ·W1 · · ·Wa = U , which is the product constraint
that Alice will check.

Verification. Alice verifies the public key(V1, . . . ,Vm,W0, . . . ,Wa) as follows. First
she checks the size, namely, that it really consists ofmelements ofG followed by another
a+ 1 elements ofG. Then she checks two things:

U = W0 ·W1 · · ·Wa, (7)

Vi =
a∏

j=0

W
α

j
i

j for all i = 1, . . . ,m. (8)

If these checks pass, she accepts the public key as valid.
One can check that Claim 5.1 implies that if Larry is honest, then these checks do

succeed. More important, however, is that even if Larry is not honest, this verification
guarantees Alice that Larry will not receive the oblivious transfer with probabilitymore
than p. Why this is true is discussed below.

We note that Alice has to perform this verification step only once, no matter how many
messages she sends.

Translucent Cryptography 131

Transfer. As we have already indicated, to perform thep-NFOT, Alice picksi ∈ [m]
at random, and usesVi as the key with which to encrypt her messages ∈ G. Namely,
she picksy ∈ Zq at random and sendsE(s,Vi) = (c1, c2) = (gy, sVy

i), the operations
being inG.

Efficiency. The key feature is that the transfer needs only one El Gamal encryption
(which is two exponentiations), regardless of the value ofp = a/m. We pay for this in
the size of the public file, which isO(k(m+a))wherek = |ρ| is the security parameter.
(In the binary scheme, it wasO(k log2(m)).) However, this is not too important. The
public file is down-loaded once (or at not too frequent intervals) and stored by Alice on
her machine. The time needed to compute a ciphertext and the size of the ciphertext do
not depend on the size of this file.

Security for Alice. The verification is for Alice’s security; it is supposed to guarantee
her that even if Larry is dishonest, he will not get her data with probability more than
p. So consider a Larry who tries to cheat. His goal is to create the public key somehow
so that he ends up knowing logg(Vi) for more thana values ofi ∈ [m]. The following
claim implies Larry cannot cheat in this way. To state it we first need some terminology.
Given elementsW0, . . . ,Wa of G, we define thepolynomial defined by W0, . . . ,Wa

as f (x) = f0 + f1x + · · · + faxa where f j = logg(Wj) for j = 0, . . . ,a. Now, the
following claim says that if verification succeeds, then exactly the same conditions as
in Claim 5.1 hold with respect to the polynomial defined by Larry’s public key, even if
Larry had tried to cheat.

Claim 5.2. Suppose Alice’s verification of key(V1, . . . ,Vm,W0, . . . ,Wa) is successful,
and let f(x) = f0+ f1x+· · ·+ faxa ∈ Zq[x] be the polynomial defined by W0, . . . ,Wa.
Then

(i) logg(Wj) = f j for all j = 0, . . . ,a,
(ii) logg(Vi) = f (αi) for all i = 1, . . . ,m, and, finally,

(iii) f0+ f1+ · · · + fa = logg(U).

The proof is in the Appendix. In consequence of item (iii), Larry can know at mosta of the
values f0, . . . , fa, no matter how he plays, because otherwise he would know logg(U).
Intuitively, this means he does not knowf . However, now, from item (ii), it follows that
Larry can know at mosta of the values logg(V1), . . . , logg(Vm). This, intuitively, means
that Larry cannot receive the transfer with probability higher thana/m= p. Notice that
Alice’s security depends on the intractability of the discrete logarithm problem for Larry.

Security for Larry. We want to argue that we have security for Larry, meaning that Alice
does not know which subset ofa out of n keys is the one for which Larry knows the
discrete logs.

Claim 5.3. Suppose Larry uses the procedure prescribed above to construct his public
key(V1, . . . ,Vm,W0, . . . ,Wa). Then the distribution on this key is the same as if the key

132 M. Bellare and R. L. Rivest

were generated by the following experiment:

(i) Pick f0, . . . , fa ∈ Zq at random subject to f0+ f1+ · · · + fa = logg(U).
(ii) Let f(x) = f0+ f1x + · · · + faxa ∈ Zq[x].
(iii) For i = 1, . . . ,m let Vi = g f (αi).
(iv) For j = 0, . . . ,a let Wj = g fj .
(v) Output(V1, . . . ,Vm,W0, . . . ,Wa).

The proof of Claim 5.3 is in the Appendix. Now, clearly, presented with a key from this
distribution, Alice has no idea of what Larry knows about the logg(Vi)’s, even if she can
compute discrete logs.

Based on this, one can argue that there is no “key-choosing” strategy for Alice un-
der which her expected transfer probability is reduced belowp. By this we mean the
following. Suppose that instead of using a randomVi as key, Alice chooses, somehow,
probabilitiesp1, . . . , pm summing to 1, and transfers as follows—she picksi ∈ [m]
according to the distribution Pr[i = j] = pj for all j ∈ [m], and then usesVi as the key.
(If she is honest,pj = 1/m for all j ∈ [m].) Then her expected transfer probability is
still p, regardless of the values ofp1, . . . , pm.

As for the binary scheme, it may be simplest to specify that Alice’s “random” choices
are to be made in a specific manner, say by cycling through all values. This, how-
ever, might disadvantage Alice slightly if Larry cheats, as discussed at the bottom of
Section 5.2.

6. Discussion and Variations

Setup. Note that Alice needsno“setup” to follow the translucent cryptography protocol.
She does not need to be a registered user, have any private keys escrowed, etc.

Efficiency. With the proposal of Section 5.3 described above, Alice needs to perform
two modular exponentiations (one El Gamal encryption) in order to compute the
desired LEAF. An implementation can, if it wishes, precompute future session keys
and their associated LEAFs as a means of decreasing the latency in encrypting a new
message.

The value of p. The value ofp that is effective is the value ofp that is embedded in
Alice’s translucent cryptography implementation.

Different categories of equipment could have different probabilitiesp. For example,
software and hardware that are exported could havep = 1, while domestic versions
could havep = 0.02.

Larry can monitor whether or not Alice is using the correct value ofp, by monitoring
what fraction of the time he actually succeeds in gettings.

Warrants. To ensure that Larry must get a warrant in order to decrypt his allowed fraction
of the translucent crypto, the value transmitted obliviously should be the message key
s encrypted with the public key of Jerry (the judge), or his designated agent who can

Translucent Cryptography 133

be available in real-time to decrypt LEAFs. This encrypted block could also include the
ID of the software or hardware generating the message, if the search warrant is to be
restricted to messages from a single source.

Multiple agencies and multiple probabilities. The LEAF could easily contain messages
for two or more agencies that need to cooperate to get the final message key. Larry might
receive message keys1 encrypted with his public key, and Louis (who works for another
organization) might receive message keys2, encrypted with his public key. The actual
message keys might be the sum (or the exclusive-or) ofs1 ands2.

Differing agencies could even receive the message key with different probabilities.
The FBI might receive the message key with probability 0.02, whereas an escrow agent
of the user’s choice might receive the message key with probability 1.

Stewart Baker (in a private communication that was probably intended to tease the
authors) suggested that law enforcement might find this proposal more attractive if
it were implemented in a related variant, making 1% of the messages accessible to
law enforcement (without even a warrant!). Another 20% or so of the messages would
become accessible if suspicious activity is detected in the first 1%, and the remainder
would become available to law enforcement with a court order. It is straightforward to
implement such a variation based on our ideas. (It is not so easy, fortunately, to get
around the Constitution!)

Export. Of course, non-U.S. companies may object to Larry accessing their commu-
nications, whether this access was obtained through key escrow or through translucent
cryptography. Translucent cryptography is likely to fare no better in an international
market than key escrow fares.

On the other hand, it is easy, for example, for U.S. manufacturers to develop products
(say for France) that give U.S. access with probability 0.5 and the French government
access with probability 1.0. This would merely require the use of two LEAF fields, one
for each government.

The opening problem. A weakness of our implementations, inherited from a weakness
of noninteractive oblivious transfer, is that in some circumstances, if Larry does exercise
his privilege and decrypts the fractionp of Alice’s traffic to which he is entitled, Alice
may learn some information about Larry’s secret key which would enable her, in future,
to decrease the probability that Larry recovers her messages. This happens if Larry
not only decrypts, but also revealswhich ciphertexts he decrypted. (As long as Larry
keeps secret the decrypted information, nothing is revealed.) For this reason it may
be desirable for Larry to have many public keys, with different keys used in different
programs, different devices, or products produced in different months. We explain this
issue by an example.

Sayweareusing thepolynomial scheme,andLarry’spublic key is(V1,V2,V3,W0,W1),
and Larry knows logg(V1) = x1. (The transfer probability here isp = 1

3.) Thus, Larry’s
secret key consists of two things: a secret index, namely 1, saying which of the three
keys is a “receiving” one for Larry, and the valuex1, which enables the actual receipt.
Larry’s security relies on the fact that Alice does not know his secret index; if she did,

134 M. Bellare and R. L. Rivest

she could encrypt using only the other keys, and Larry would never be able to recover
the message.

Now suppose Alice encrypts five messages, and her choices of keys areV2,V1,V2,V3,

V2. Suppose Larry decides to wiretap. He will obtain the second message. A priori Alice
does not know which message Larry got. However, suppose now she learns, somehow,
that Larry got the second message. Then she knows that Larry knows logg(V1), because
V1 was the key she used in the second message. Thus she has determined Larry’s secret
index. Now she can fool him; in future, she will never use keyV1.

How could Alice learn which ciphertext Larry decrypted? The issue is how wiretap
information is used. We expect that often Larry wiretaps for his own information; the
recovered plaintexts are not revealed to the public. In such a case, Alice, or other users,
learn nothing about Larry’s secret index. However, suppose Larry needs to use the wiretap
information, say as evidence in a court case. The plaintexts are then revealed, and, by
their examination, Alice can determine which of her messages were decrypted. This tells
her what Larry’s secret index is.

The extent to which this is a problem thus depends on the extent to which Larry intends
to publicize information obtained by wiretaps. Since this must happen to some extent, we
need to mitigate its effects. Our suggestion, as indicated above, is that Larry have many
public keys, with different keys used in different programs or devices at different times.

For the benefit of a reader familiar with noninteractive oblivious transfer (NIOT), we
add some historical notes and comparison. The underlying issue of revelation of the
secret index of a recipient in an NIOT based on some action of the recipient arose, and
was recognized, in the context of implementing noninteractive zero-knowledge based
on NIOT [2]. There the problem was that if the sender learned that her proof had been
rejected, then the receiver’s secret index would leak. The suggestion of [2] to overcome
this was to change the public key when a proof was rejected. However, this is not too
practical, because the sender canforcerevelation by sending bad proofs. (This issue, and
attacks based on it, have been discussed a few times in the literature.) In comparison, in
translucent cryptography, there is much less of a problem, because it is much harder to
force Larry to reveal which ciphertexts he decrypted. Thus, our suggestion above, that
Larry have many different public keys, seems to provide an acceptable resolution to this
“opening” problem in this context.

Other ways of getting around these schemes. With sufficient work, these schemes, like
other proposals, are easy to get around. Two particularly relevant references are Wyner’s
papers on the “wiretap channel” [26], [22]. Superencryption also defeats this approach,
of course; these sorts of “workarounds” on the part of a user are problems common to
any such proposal for government access to messages.

It may be worth adding mechanisms to prevent some very simple workarounds like
the following. Alice buys a commercially available crypto-box that implements the
translucent protocol given Larry’s keys as input. (The keys cannot be embedded in the
box because they may need to be changed now and then.) Alice then feeds incorrect
keys into the box, so that useless LEAFs are produced. This can be prevented by having
Larry’s key digitally signed under some global public key which is embedded in the box.

Why NIOT? A reader may ask why NIOT is used at all. Specifically, how about the

Translucent Cryptography 135

following instead? Let Larry publicize a public key of a conventional public-key cryp-
tosystem such as RSA, and letE denote encryption under this key. (Larry knows the
corresponding decryption key.) When Alice is to send a messagem to Bob, she picks,
as before, a session keys, uses it to produce the first field (F1) as described in Section 4.
The second field too is as before. She now letss∗ equals with probability p, and 0
otherwise. She then lets the LEAF beE(s∗). Larry can access the LEAF, and hass a
fraction p of the time.

This is certainly much simpler than NIOT. However, the problem is that it puts greater
trust in Alice. Alice could cheat very easily, and yet evade detection. For example,
wheneverm is an “important” message she would chooses∗ = 0, and otherwise choose
s∗ = s, doing this in such a way that she choosess∗ = s a fraction p of the time.
Then Larry gets only the unimportant stuff, but, because he is getting a fractionp of
the plaintexts, he cannot really complain. In contrast, in NIOT, there is no key-choosing
strategy for Alice which lowers the transfer probability belowp.

All implementations, whether of key escrow or translucent cryptography such as we
discuss, rely on some trust in Alice. The question is thedegreeof this trust. Our goal is
to make it as hard as possible for Alice to cheat. As discussed above, there will always
be ways around the schemes; but let us not make ittooeasy.

Comparison with key escrow. The approach proposed has the following advantages over
key-escrow schemes:

(A1) Setup is particular easy with our scheme; there is no escrow procedure required
of users or manufacturers. We feel that this is a very significant advantage of
our proposal.

(A2) There are no escrow agents holding users’ keys, who might be tempted (or
ordered) to abuse users’ privacy. In our scheme the corresponding agents are
those parties holding the private keys corresponding to the published public
keys.

(A3) There is a firm upper bound on the extent to which law enforcement can encroach
on individual privacy; a certain fraction of Alice’s messages will be private from
everyone except their intended recipients.

(A4) There is a firm lower bound on the extent to which cryptography will prevent au-
thorized wiretapping from being effective; a certain fraction of Alice’s messages
will be wiretappable (on the average).

(A5) The scheme contains a variable-access ratep that may be changed according to
the specific use or the perceived risks.

(A6) Compliance with the scheme can be monitored.
(A7) The scheme can be easily elaborated or combined with other approaches to meet

more detailed requirements.

Our scheme has the following possible disadvantages:

(D1) Law enforcement may be frustrated that when it has an authorized wiretap, it is
not getting decryption ofall of the messages. (Too bad; that is the nature of the
compromise proposed here.)

(D2) Individuals may be frustrated that this scheme does not provide absolute privacy

136 M. Bellare and R. L. Rivest

for their messages; law enforcement can read some fraction of their messages.
(Too bad; that is the nature of the compromise proposed here.)

Related work. Upton [25] has suggested usinginteractiveoblivious transfer as a replace-
ment for key escrow. In his suggestion, every time Alice wishes to communicate with
Bob, she must first communicate with Larry, engaging in an oblivious transfer protocol in
which she transfers to Larry either the session key or a random string, she does not know
which. However, this means Larry must actively participate in every communications
session, which creates some significant practical problems.

7. Open Questions

Can one build an efficient noninteractive fractional oblivious transfer scheme based on
RSA or the Rabin function rather than on the Diffie–Hellman assumption?

8. Conclusions

We have presented a novel alternative to standard key-escrow schemes, that may allow
a generally acceptable compromise to be reached on a difficult issue of national crypto-
graphic policy. We have proposed an efficient implementation of it, based on a primitive
that may be of independent interest, namely fractional oblivious transfer.

Acknowledgments

We thank Stewart Baker, Tony Eng, Rosario Gennaro, Oded Goldreich, Burt Kaliski,
and an anonymous referee for helpful comments and suggestions.

Appendix. Proofs of Claims

Proof of Claim 5.1. From (6) we have

f j = βj,0 logg(U)+
a∑

l=1

βj,l xπ(l) for j = 0, . . . ,a. (9)

Now from (4) we have

logg(Wj) = logg

(
Uβj,0 ·

a∏
l=1

V
βj,l

π(l)

)

= βj,0 logg(U)+
a∑

l=1

βj,l logg(Vπ(l))

= βj,0 logg(U)+
a∑

l=1

βj,l xπ(l)

= f j ,

Translucent Cryptography 137

proving item (i) of the claim. (Here we used (3), namely the fact thatVπ(l) = gxπ(l)

by definition.) Now, multiply both sides of (6) by the matrixA, and use the fact that
AB= I , to get 

α0
0 α1

0 · · · αa
0

α0
π(1) α1

π(1) · · · αa
π(1)

...
...

...
...

α0
π(a) α1

π(a) · · · αa
π(a)




f0

f1
...

fa

 =


logg(U)
xπ(1)
...

xπ(a)

 .
In other words,

a∑
l=0

αl
0 fl = logg(U) (10)

a∑
l=0

αl
π(j) fl = xπ(j) for j = 1, . . . ,a. (11)

However, recall thatα0 = 1. Thus (10) directly gives us item (iii) of the claim. Further-
more, note that (11) is the same as

f (απ(j)) = xπ(j) for j = 1, . . . ,a,

which establishes item (ii) for alli in the range ofπ . Now we must check item (ii) fori
not in the range ofπ . For thesei we know thatVi is defined by (5). Taking discrete logs
of both sides of that equation we have

logg(Vi) = logg

(
a∏

j=0

W
α

j
i

j

)
=

a∑
j=0

α
j
i logg(Wj) =

a∑
j=0

α
j
i f j = f (αi),

as desired. This completes the proof.

Now, we would like to discuss the security. Refer to Section 5.3 for the definition of
the polynomial defined by some elements ofG.

Proof of Claim 5.2. Item (i) is a tautology. Taking discrete logs of both sides of (8)
gives

logg(Vi) = logg

(
a∏

j=0

W
α

j
i

j

)
=

a∑
j=0

α
j
i logg(Wj) =

a∑
j=0

α
j
i f j f (αi),

establishing item (ii). Finally, taking discrete logs of both sides of (7) proves
item (iii).

Proof of Claim 5.3. Fix the mapπ chosen by Larry. Now letf0, . . . , fa ∈ Zq be
arbitrary subject to their sum being logg(U). We argue that there is a unique choice of

138 M. Bellare and R. L. Rivest

xπ(1), . . . , xπ(a) ∈ Zq such that (6) holds, namely,

xπ(1)
...

xπ(a)

 =
α

0
π(1) α1

π(1) · · · αa
π(1)

...
...

...
...

α0
π(a) α1

π(a) · · · αa
π(a)




f0

f1
...

fa

 . (12)

To see that this choice makes (6) hold, first note that sinceα0 = 1 and f0 + · · · + fa =
logg(U) we have

logg(U)
xπ(1)
...

xπ(a)

 =

α0

0 α1
0 · · · αa

0
α0
π(1) α1

π(1) · · · αa
π(1)

...
...

...
...

α0
π(a) α1

π(a) · · · αa
π(a)




f0

f1
...

fa

 ,
and now multiplying both sides byB yields (6). On the other hand the choice of (12) is
unique because multiplying both sides of (6) byA recovers it.

This means that, for any fixedπ , any vectorf0, . . . , fa with f0+· · ·+ fa = logg(U)has
the same probability of being defined by Larry’s choices in his key construction process.
Since the other quantities, namely,V1, . . . ,Vm,W0, . . . ,Wa, are uniquely defined given
f0, . . . , fa, we have established Claim 5.3.

References

[1] D. Beaver. How to break a “secure” oblivious transfer protocol. In R. A. Rueppel, editor,Proc. EURO-
CRYPT92, pages 285–296. Lecture Notes in Computer Science, volume 658. Springer-Verlag, Berlin,
1993.

[2] M. Bellare and S. Micali. Non-interactive oblivious transfer and applications. In G. Brassard, editor,
Proc. CRYPTO89, pages 547–559. Lecture Notes in Computer Science, volume 435. Springer-Verlag,
Berlin, 1990.

[3] M. Bellare and R. Rivest. Translucent cryptography—an alternative to key escrow, and its implementation
via fractional oblivious transfer. Technical Report TR-683, MIT Laboratory for Computer Science,
February 1996.

[4] R. Berger, R. Peralta, and T. Tedrick. A provably secure oblivious transfer protocol. In T. Beth, N. Cot,
and I. Ingemarsson, editors,Proc. EUROCRYPT84, pages 379–386. Lecture Notes in Computer Science,
volume 209. Springer-Verlag, Berlin, 1985.

[5] M. Blum. How to exchange (secret) keys.Trans. Comput. Systems, 1:175–193, May 1983. (Previously
published inACM STOC’83 Proceedings, pages 440–447.).

[6] G. Brassard, C. Cr´epeau, and J.-M Robert. Information theoretic reductions among disclosure problems.
In Proc. 27th IEEE Symp. on Foundations of Computer Science, pages 168–173, Toronto, Ontario, 27–29
October 1986.

[7] C. Crépeau. Equivalence between two flavours of oblivious transfers. In C. Pomerance, editor,Proc.
CRYPTO87, pages 350–354. Lecture Notes in Computer Science, volume 293. Springer-Verlag, Berlin,
1988.

[8] A. De Santis, G. Di Crescenzo, and G. Persiano. Zero-knowledge arguments and public key cryptography.
Inform. Comput., 121(1):23–40, 1995.

[9] A. De Santis and G. Persiano. Public-randomness in public-key cryptography. In I.B. Damg˚ard, editor,
Proc. EUROCRYPT90, pages 46–62. Lecture Notes in Computer Science, volume 473. Springer-Verlag,
Berlin, 1991.

Translucent Cryptography 139

[10] B. den Boer. Oblivious transfer protecting secrecy. In I.B. Damg˚ard, editor,Proc. EUROCRYPT90,
pages 31–45. Lecture Notes in Computer Science, volume 473. Springer-Verlag, Berlin, 1991.

[11] D. Denning. Resolving the encryption dilemma: the case for the Clipper Chip.Technol. Rev., pages 48–55,
July 1995.

[12] T. El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.IEEE
Trans. Inform. Theory, 31:469–472, 1985.

[13] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.Comm. ACM,
28:637–647, 1985.

[14] P. Feldman. A practical scheme for non-interactive verifiable secret sharing. InProc. 28th IEEE Symp.
on Foundations of Computer Science, pages 427–438, Los Angeles, 1987.

[15] M. Fischer, S. Micali, and C. Rackoff. A secure protocol for the oblivious transfer.J. Cryptology,
9(3):191–195, 1996. Presentation made at Eurocrypt 84.

[16] L. Harn and H. Lin. An oblivious transfer protocol and its application for the exchange of secrets. In
H. Imai, R. L. Rivest, and T. Matsumoto, editors,Advances in Cryptology—ASIACRYPT ’91, pages 312–
320. Lecture Notes in Computer Science, volume 739. Springer-Verlag, Berlin, 1993.

[17] L. Hoffman, editor.Building in Big Brother: The Cryptographic Policy Debate. Springer-Verlag, New
York, 1995.

[18] S. Kent. Internet privacy enhanced mail.Comm. ACM, 36(8):48–60, August 1993.
[19] J. Kilian. Founding cryptography on oblivious transfer. InProc. 20th ACM Symp.on Theory of Computing,

pages 20–31, Chicago, 1988.
[20] S. Micali. Fair public-key cryptosystems. In E. F. Brickell, editor,Proc. CRYPTO92, pages 113–138.

Lecture Notes in Computer Science, volume 740. Springer-Verlag, Berlin, 1992.
[21] National Institute of Standards and Technology (NIST). FIPS Publication 185: Escrowed Encryption

Standard, February 9, 1994.
[22] L. Ozarow and A. Wyner. Wire-tap channel II. In T. Beth, N. Cot, and I. Ingemarsson, editors,Proc.

EUROCRYPT84, pages 33–50. Lecture Notes in Computer Science, volume 209. Springer-Verlag, Berlin,
1985.

[23] T. Pedersen. Distributed provers with applications to undeniable signatures. In D.W. Davies, editor,Proc.
EUROCRYPT91, pages 221–242. Lecture Notes in Computer Science, volume 547. Springer-Verlag,
Berlin, 1991.

[24] M. Rabin. How to exchange secrets by oblivious transfer. Technical Report TR-81, Harvard Aiken
Computation Laboratory, 1981.

[25] J. Upton. Unpublished comment made to Whit Diffie before Crypto 93, and mentioned by Diffie in the
Crypto ’93 rump session.

[26] A. Wyner. The wire-tap channel.Bell Systems Tech. J., 54:1355–1387, 1975.

