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Abstract

We propose the field of “geometric cryptography,” where messages and ciphertexts may
be represented by geometric quantities such as angles or intervals, and where computation is
performed by ruler and compass constructions.

We describe a elegant little zero-knowledge identification scheme, based on the impossibility
of trisecting an angle using ruler and compass operations.

While geometric cryptography may have little practical application, it may facilitate the con-
struction of pedagogic examples making cryptographic principles accessible to a wider audience,
and may also by contrast illuminate those cryptographic principles.

1 Geometric Cryptography

The modern theory of computation, following Turing, is based on representing data as sequences of
symbols (typically bits), and performing operations from a small set of primitive operations (such as
ANDs and ORs). But the notion of computation is compatible with other data representations. For
example, the classic geometric notion of constructability with ruler and compass operations yields
a rich theory analogous in many ways to the modern theory of computation. The impossibility of
trisecting an angle can be viewed as analogous to the impossibility of solving the halting problem.
The difficulty, or impossibility, of solving geometric problems can be used as a foundation for
“geometric cryptography”—a field which we propose for further study. By way of getting this field
of study off the ground, we propose here a simple zero-knowledge identification protocol, based on
the impossibility of trisecting an angle by ruler and compass.
We begin by reviewing the standard operations allowed in ruler and compass constructions:
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1. Given two distinct points, one can construct the unique line on which both lie.
2. Given two distinct lines that meet, one can construct their point of intersection.

3. If A and B are distinct points, then one can construct three points €', (s, and Cj, distinct
from A and B, such that:

(a) Cy is on the line determined by A and B, and between A and B.
(b) C5is on the line determined by A and B, and B is between A and C’.
(c) C3is not on the line determined by A and B.

4. If AB is any interval and C'D is any ray, then one can construct a point F on C'D such that
ADB and C'F are congruent.

5. Given any circle and a line that meets it, one can construct the point(s) of intersection.

These axioms are paraphrased from the excellent survey of geometry [3]. The undefined terms (such
as “points,” “interval,” “between,” “congruent,” and so on) are used in other axioms (not given
here) that delimit their meaning. Given the above primitives, one can show that it is possible to
perform other constructions, such as bisecting an interval or an angle, constructing a perpendicular
to a line through a point on that line, or determining the point(s) of intersection of two circles. The
theory of geometric constructability is a rich one. We do not elaborate this theory here, since we
will be using only the simplest techniques. In “geometric cryptography,” messages and ciphertexts
are represented by geometric objects such as intervals or angles. More complicated representations
could of course be used.

For cryptographic purposes, one needs to be able to generate and keep random “secrets” that
are unpredictable to the adversary. These should not be constructable by ruler and compass
from previously constructed objects, otherwise the adversary can find them. To model this within
geometric cryptography, we require an additional axiom for the selection of random points.

6. One can select uniformly distributed random points in the unit circle.

Selecting such points amounts to generating secrets that are unknowable to an adversary. We also
assume that parties can flip coins.

It is well known that trisecting an arbitrary angle is impossible with a ruler and (an unmarked)
compass. However, tripling an angle is easy. Thus, the operation of tripling an angle is a “one-way
function” for geometric cryptography.

We assume that an adversary can do unbounded computation (in the classical sense), but is lim-
ited to performing ruler and compass constructions in terms of manipulating geometric information,
and to selecting random points in the plane.

2 An Identification Protocol

Alice (the Prover) wishes to establish a means of proving her identity later to Bob (the Verifier).

Initialization Alice publishes a (copy of) an angle Y4, which is constructed by Alice as the triple
of an angle X4 she has constructed at random. Because trisecting an angle is impossible, Alice is
confident that she is the only one who knows X 4.

Identification Protocol



This has the standard form of an iterated “atomic” three-round protocol:

1. Alice gives Bob a copy of an angle R, which she has constructed as the triple of an angle K
that she has selected at random.

2. Bob flips a coin, and tells Alice the result.

3. If Bob says “heads,” Alice gives Bob a copy of the angle K and Bob checks that 3« K = R.
If Bob says “tails,” Alice gives Bob a copy of the angle L = K + X4, and Bob checks that
3xL=R+Y,.

The three steps are repeated t-times independently. Bob accepts Alice’s proof of identity only if
all ¢ checks are successful.

This protocol is an interactive proof of knowledge of the angle X4 (the identity of Alice) with
error 27¢. The protocol is also zero-knowledge. Below we sketch a simplified proof for this (a formal
proof can easily be obtained by using the approach in [5]).

If Alice and Bob follow the protocol then clearly Bob will always accept Alice’s proof of identity.
However an imposter, who does not know the secret angle X 4, cannot construct both the angles K
and L in step 3 (otherwise he could construct L — K = X 4). Thus Bob will accept with probability
no better than 1/2 for each iteration, and no better than 27 for the ¢ iterations.! It follows that
the protocol is proof of knowledge of X 4 [6].

Next we show that the protocol is zero-knowledge. That is, it is possible to simulate Bob’s
“view” during the execution of the protocol. Now Bob “sees” the messages of Alice and his own
coin flips. The transcripts of these are of type (R, “heads”, K') or (R, “tails”, ). To simulate the
former, select the angle K at random and take R = 3 % K; for the latter, select the angle L at
random and solve 3% I = R+ Y, for R.? So Bob can simulate his interaction with Alice, and
therefore gains zero knowledge about X 4.

We feel that this protocol is simple and clear enough that it forms an excellent pedagogical
example of a zero-knowledge identification protocol, such as may be used for high-school students.
For a general discussion on interactive proofs, zero-knowledge and identification schemes the reader
is referred to [7, 5, 6].

3 Security — the model and background

The goal with the classical constructions is to find a theoretical solution to geometrical problems by
using a ruler and a compass, assuming that these have perfect precision. The difficulty of finding
solutions is not an issue: if a problem cannot be solved by ruler and compass then this is because
there is no solution with these tools (and not because it is hard to find one). We stress that
with geometrical constructions the ruler should be a simple straight-edge, and cannot be used for
marking distances.

!Formally, the knowledge of the prover is checked by an “extractor” M. If a prover succeeds in convincing the
verifier with probability greater than the error 27%, then M can extract X4 (or an equivalent geometric object) by
“probing and resetting” the prover [5]. With geometric cryptography there are no complexity bounds on M.

2Bob may use a non-uniform distribution. The following proceedure is used to simulate Bob’s view [6]. Suppose
that the transcripts of r < ¢t rounds have been simulated. Flip a fair coin and construct the corresponding transcript.
Give this to Bob and get his coin flip. If this is the same, append the transcript to the list and proceed to the next
round. Otherwise “reset” Bob to “his state at the beginning of the r-th round” and repeat the trial. Halt when all
rounds are simulated. The expected number of trials for this simulation 2¢. If the protocol is executed in parallel (as
in Section 4), then the expected number of trials is 2°.



3.1 Galois extension fields and impossibility proofs

Analytic geometry provides us with the means to associate the quantitative aspects of geometri-
cal objects (line segments, angles, etc) with real numbers (Desargues). We choose a coordinate
system, and the points are represented by pairs (z,y) of reals. In particular, ruler and compass op-
erations will generate points whose coordinates are in number fields Q" = Q(ay,as,...,a,), where
ai,as,...,a, are roots of quadratic extensions of the rationals ¢ (Galois). We call the roots,

radicals. For example 3v5 + 24/6 — /7 is an element of @)’ with radicals \/5, ﬁ, \/6 — /7.

Let Y be an angle to be trisected and Q(cosY') the field of all rational functions of cosY
over () (that is, numbers of type f(cosY)/g(cosY'), where f, ¢ are rational polynomials). ;From
trigonometry, cos Y = 4 cos® % — 3 cos % . Then the angle Y can be trisected by ruler and compass
only if,

cosY = 4a° -3z (1)
has a solution z in some extension field of Q(cosY') with radicals ay,...,a,. It follows that cosY
must satisfy an algebraic equation over Q(ay,...,a,) which is not trivial.> Therefore cosY is an

algebraic number, and the set of angles which can be trisected is a subset of the reals which has
measure zero. Hence almost all angles Y cannot be trisected.

A similar argument applies for the non constructibility of /2 (doubling the cube), and more
generally the non constructibility /z, where z is the length of randomly selected line segment. Tt
follows that the operation of taking cubic powers of the lengths is also a one-way function.

3.2 Random geometrical objects

Geometric constructions often involve selections of arbitrary geometrical objects (for example when
constructing the midpoint of a line segment one uses an arbitrary circumference). In such cases it
is normally understood that the corresponding numbers are in extensions of the rationals ¢) with
radicals. If an angle X is chosen this way, then the angle ¥ = 3 % X can be trisected by ruler and
compass (in this case equation (1) has the solution # = cos X, with cos X a rational expression
with radicals).

The angle K (and X4) used in the identification protocol is not constructable by ruler and
compass because it was chosen at random in the unit circle of the real plane. Consequently, cos K
does not belong to any extension field of ¢} with radicals, and the angle 3 * K cannot be trisected
by ruler and compass given all previous constructions except K, as pointed out in the previous
section.

3.3 Historical background

According to the Pythagorean doctrine, the number (that is, the rational number) was the essence
of all things. Mathematics, philosophy and physics, were all based on numbers. Pythagoras himself
may not have been aware of the irrationality of /2, but his followers did discover it. This must
have caused them considerable consternation, and was kept secret for some time (irrational =
alovyos, which, according to some scholars means, unutterable). It was said that Hippasus, the first
Pythagorean to divulge the unutterable, was thrown off a ship and so perished [2]. The school
however overcame this setback and later, according to Fuclid, was the first school to develop a
general theory of irrationality [2].

?For ruler and compass constructions such as angle bisections, this equation is trivial: only radicals are involved,
and these cancel out.



In the hth and 4th centuries BC there was a proliferation of geometrical constructions and
theorems, many of which overlapped or were flawed. It became necessary to organize these results
in some way. Tradition has it that Plato insisted that this task be based on ruler and compass
constructions. This approach was adopted by Euclid in his treatise on the FElements of geometry.

One of the most famous classical problems is “squaring the circle”. Other such problems are
“doubling the cube” and trisecting a general angle. More than a century ago it was shown that
these problems cannot be solved by ruler and compass (alone). Recently Peter Neumann proved
that Ptolemy’s spherical mirror problem (finding the point on a sperical mirror where a ray is
reflected from a source to an observer) cannot be solved by ruler and compass [8].

For a general discussion on this topic the reader is referred to [7, 1, 3].

4 Extensions of the identification protocol and other applications

Many conventional cryptographic constructions can be replicated in geometrical cryptography. Here
we consider some of these, starting with two extensions of the identification protocol in Section 2.
The first extension is a parallel execution. The second, a “multiple-secret” version.

For the parallel execution, the ¢ iterations of the protocol are performed at the same time: Alice
gives Bob t copies of the angles R; (step 1), Bob flips ¢ coins (step 2), and finally Alice gives Bob ¢
copies of appropriate angles (step 3). The expected number of trials to simulate this execution is
2! (see Footnote 2). Since there are no complexity bounds with ruler and compass constructions,
the protocol can be simulated. Therefore the parallel execution of the identification protocol is also
zero-knowledge. This is in contrast with conventional cryptography, for which it is not known if
parallel executions of zero-knowledge protocols are zero-knowledge.

Next we consider a multiple-secret identification protocol. For this, Alice selects k& random
angles X4 1,X40,...,X4y, and publishes their triples Y4 1,Y40,...,Y4 ;. Then Alice proves to
Bob that she knows all k angles X4 1, X4,..., X4, by using the following three-round protocol,
which is repeated ¢ times independently.

1. Alice gives Bob a copy of an angle R, constructed as the triple of a random angle K.

2. Bob gives Alice the bit string by, bs, ..., b, which is determined by & coin flips (0 is “heads”,
1is “tails”).

3. Alice gives Bob a copy of the angle I = K + Zzzlf b; X4, and Bob checks that 3 x L =
R+ 200V

Bob accepts only if the checks are valid for all ¢ iterations. For this protocol the error is 27%%.

4.1 An authentication protocol

The identification protocol in Section 2 can easily be modified to get an authentication protocol.
Let m be the message which Alice wants to authenticate. We require that the message be an
integer. This constraint is not very restrictive and, essentially, confines the messages that Alice can
authenticate to constructable geometrical objects, since these objects are enumerable.

For the authentication protocol Alice needs two secret angles X, 1, X4 ». Alice publishes their
triples Y4 1,Y4 5. To authenticate m to Bob, Alice proves to Bob that she knows the angle Z =
m* X414+ Xao, by using the identification protocol in Section 2 as follows.



In step 1, Alice gives Bob a copy of the angle R, constructed as the triple of a random angle
K. In step 2, Bob flips a coin and tells Alice the outcome as a bit b. Finally in step 3, Alice gives
Bob the angle L = K +b(m* X471+ X452), and Bob checks that 3« L = R+b(m* Y4, + Yao).

4.2 Adding usable structure to geometric constructions

Let N be an additional angle. We can use N as a modulus when adding or subtracting angles with
ruler and compass constructions. Suppose that ¥ is an angle which is to be trisected modulo V.
There are three solutions to the equation ¥ = 3% X mod N in X, which differ by multiples of
N/3. Anyone who knows two different solutions X, X, can therefore trisect the modulus N. This
property makes it possible to replicate many of the cryptographic constructions we use in number
theory, where knowledge of two different square roots of a number y modulo a number n can lead
to the factorization of n. Here is one such application.

Suppose that the distribution of the random points in Axiom 5 is not uniform. Then the
identification protocol in Section 2 may fail to be zero-knowledge, because it may not be possible
to simulate the transcripts (R, “tails”, L) by selecting L at random and solving 3x L = R+ Y,
for R (R may not have the proper distribution). This means that the protocol may “leak” some
knowledge to Bob and make it possible for Bob to construct the secret angle X, of Alice. We
shall show have our earlier observation may be used to strengthen the security of the identification
protocol when the distribution of the random angles is not uniform.

First we observe that the distribution of the random angles should be continuous. In particular,
the probability that any specific angle K is selected should be zero. Otherwise Bob will get both
the angles K and L = K 4+ X4, from which he can construct Alice’s secret angle X 4. Now suppose
that N is an angle that cannot be trisected by either Alice or Bob (e.g., N is selected randomly
by a Trusted Center). To protect her secret angle X4, Alice will give Bob in the identification
protocol, not absolute angles but angles modulo N. That is, she gives Bob the angle R mod NV in
step 1, and either Kmod N or L modN in step 3. This will not turn the distribution of the angles
to uniform, but it will destroy any possible discovery by Bob about which of the three trisections
of Ya: X4, Xa+ N/3, X4 +2N/3, Alice used in L. Even if Bob were given one of these, he would
not know with probability better than 1/3 whether this was Alice’s.

If we assume that this scheme is breakable and that Bob can construct a trisection of Y, by
analyzing the communication, then with probability 2/3 this trisection will not be the one actually
used by Alice. Therefore it will lead with reasonable probability to an impossible trisection of the
angle N.

A similar technique was used to prove the security of parallel execution of the Fiat-Shamir
identification protocol [5], which is not known to be zero knowledge.

5 Discussion and Conclusions

We suggest that the field of geometric cryptography may be a fruitful one for further study, as it
may yield both illuminating examples and insight into cryptographic fundamentals.

We leave as interesting open problems the development of other primitives of geometric cryptog-
raphy, such as secure encryption techniques or secure signature schemes. (We note that Rompel’s
proof [4] that “one-way functions are necessary and sufficient for secure signatures” may not apply
here, since his proof depends upon the binary representation of messages and ciphertexts.)
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