
Journal of Computer Security 9 (2001) 285–322 285
IOS Press

Certificate chain discovery in SPKI/SDSI

Dwaine Clarkea, Jean-Emile Elienb, Carl Ellisonc, Matt Fredetted,
Alexander Morcose and Ronald L. Rivestf,∗
a Room 226, MIT Lab for Computer Science, 200 Technology Square, Cambridge, MA 02139, USA
E-mail: declarke@theory.lcs.mit.edu
b Microsoft, One Microsoft Way, Redmond, WA 98052, USA
E-mail: hbm@alum.mit.edu
c Intel Corporation, 2111 NE 25th Ave, Hillsboro, OR 97124, USA
E-mail: carl.m.ellison@intel.com
d aQuery, 100 Fellsway West, Somerville, MA 02145, USA
E-mail: fredette@alum.mit.edu
e Tower Research Capital, 377 Broadway 11th Floor, New York, NY 10013, USA
E-mail: morcos@alum.mit.edu
f Room 324, MIT Lab for Computer Science, 200 Technology Square, Cambridge, MA 02139, USA
E-mail: rivest@mit.edu

SPKI/SDSI is a novel public-key infrastructure emphasizing naming, groups, ease-of-use, and flexible
authorization. To access a protected resource, a client must present to the server a proof that the client is
authorized; this proof takes the form of a “certificate chain” proving that the client’s public key is in one
of the groups on the resource’s ACL, or that the client’s public key has been delegated authority (in one
or more stages) from a key in one of the groups on the resource’s ACL.

While finding such a chain can be nontrivial, due to the flexible naming and delegation capabilities
of SPKI/SDSI certificates, we present a practical and efficient algorithm for this problem of “certificate
chain discovery”. We also present a tight worst-case bound on its running time, which is polynomial in
the length of its input.

We also present an extension of our algorithm that is capable of handling “threshold subjects”, where
several principals are required to co-sign a request to access a protected resource.

Keywords: Certificate, certificate chain, certificate chain discovery, public-key infrastructure, PKI, SPKI,
SDSI, naming, local names, authorization, delegation, threshold subjects

1. Introduction

This paper studies the problem of “certificate chain discovery” within the
SPKI/SDSI (“s-p-k-i/sudsy”) public-key infrastructure.

The problem addressed here is a fundamental one. Any security mechanism should
be able to answer the basic authorization question, “Is principal X authorized to do
Y?” The difficulty of answering this question depends primarily on the expressive-
ness of language used to make elementary security assertions.

* Corresponding author.

0926-227X/01/$8.00 2001 – IOS Press. All rights reserved

286 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

If the language used to make security assertions is too flexible, then the autho-
rization question may be undecidable. Harrison, Ruzzo, and Ullman [18] give such
an undecidability result for a general protection system based on the access matrix
model. (Speaking strictly, their undecidability result is about the more general ques-
tion of safety rather than just authorization per se.)

On the other hand, Jones, Lipton, and Snyder [21] give an efficient (linear time)
algorithm for deciding the authorization question in thetake-grant model.

More recently, Blaze, Feigenbaum, and Strauss [6] show that “compliance check-
ing” (their term for answering the authorization question) in their PolicyMaker model
is in general undecidable, and that it remains NP-hard even when restricted in sev-
eral natural ways. They also give a polynomial-time algorithm for a special case
of their problem. The PolicyMaker scheme has evolved into their “KeyNote” trust
management system [5].

We believe that SPKI/SDSI provides an elegant and simple framework for naming
and authorization in a distributed environment. Its conceptual framework is natural
and easy to understand; it is expressive enough for a large range of applications.

The basic point of the current paper is that the expressive power of SPKI/SDSI
does not come at the expense of computational difficulty. We demonstrate here
that there is an efficient algorithm for answering the authorization question within
SPKI/SDSI.

We imagine the following typical scenario. A client (say, Alice) makes a request to
access a resource which (unknown to her) is protected. The server replies that access
can only be granted if Alice can prove that she is a member of one of the groupsG1,
G2, or G3. That is, the access-control list (ACL) for the protected resource specifies
that access may only be granted to members of those groups. Alice has a collection
of certificates that she may use in her proof. She finds a first certificateC1 that states
that all members of groupH are members of groupG2, and another certificateC2

that states that she (actually, her public key) is a member of groupH . The sequence
(C1,C2) is a “certificate chain” proving that she may access the protected resource.
She sends this sequence to the server, signs her request to the protected resource with
her private key, and gains access.

Informally the technical problem is the following: given an access-control list for
a protected resource, and a collection of SPKI/SDSI certificates, determine whether
a given principal or set of principals, represented by their public keys, is authorized
to access the protected resource. Because of the way that certificates can be chained
in SPKI/SDSI, the problem is non-trivial; the fact that a polynomial-time algorithm
exists for this problem is interesting.

The current paper is self-contained but brief, and the reader is encouraged to con-
sult the references for additional background and motivation.

Section 2 gives a brief historical synopsis of the evolution of SPKI/SDSI.
The paper begins by treating the SPKI/SDSI naming subsystem. Section 3 intro-

duces SPKI/SDSI names and gives our favorite representation of name certificates:
as “rewrite rules” for transforming one string or certificate into another. Section 4

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 287

gives a simple graph-theoretic algorithm for evaluating the meaning of a SPKI/SDSI
name in the absence of “extended” names. The case for extended names is made
in Section 5, where it is shown how extended names can increase ease-of-use and
modularity.

Section 6 then shows how two certificates can be composed to yield another
one. This certificate composition operation is the fundamental “inference rule” of
SPKI/SDSI. An efficient algorithm for computing the “name-reduction closure” of a
given set of certificates is then described, proved correct, and analyzed.

Section 7 introduces authorization certificates, or “auth certs”, and shows how
they can also be represented as rewrite rules.

Section 8 gives an overview of the general certificate chain discovery problem, by
way of a specific example. Section 9 then gives the details of our certificate-chain
discovery algorithm, including an analysis of its running time.

Finally, Section 10 discusses how the certificate-chain discovery algorithm can be
extended to handle “threshold subjects”, where more than one party must sign an
access request in order for it to be honored.

We assume the reader has a basic familiarity with public-key cryptography and
digital signatures (see, for example, Menezes et al. [25]), although the details of
particular signature schemes are not important here. For convenience and brevity,
we say that a message was signed by a public keyKi when we really mean that it
was signed by the secret key whose corresponding public key isKi.

2. SPKI/SDSI history

In 1996 Lampson and Rivest [28] proposed a new public-key infrastructure, called
“a Simple Distributed Security Infrastructure”, abbreviated “SDSI”, and pronounced
“sudsy”. Its most interesting feature is probably its decentralized name space. In
SDSI, the owner of each public key can create a local name space relative to that
key. These name spaces can be linked together in a flexible and powerful manner to
enable chains of authorization and define groups of authorized principals.

Concurrently, Carl Ellison, Bill Frantz, Brian Thomas, Tatu Ylonen and others
developed a “Simple Public Key Infrastructure”, or “SPKI”, pronounced “s-p-k-i”,
which emphasized exceptional simplicity of design and a flexible means of specify-
ing authorizations.

The SDSI and SPKI efforts were both motivated in part by the perceived complex-
ity of the X.509 public-key infrastructure, and also by its perceived lack of power and
flexibility.

In 1997 the SDSI and SPKI efforts were merged; the resulting synthesis has been
called “SPKI/SDSI”. Sometimes, for brevity, it has been called just “SPKI” or just
“SDSI”, but the reference is now always to the merged design.

A SPKI working group of the IETF was formed in 1996 that has continued to
refine the design [20]. Various RFC’s and Internet drafts [10,12–14] document this
work. Two web sites [11,27] give further pointers to work on SPKI/SDSI.

288 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

Several MIT EECS Master’s theses [8,9,16,24,26] have studied various algorith-
mic and implementation aspects of SPKI/SDSI. Of most relevance is Jean-Emile
Elien’s master’s thesis [9], which focuses on the certificate chain discovery problem
and gives an early version of the algorithm presented in this paper. Elien’s thesis
is especially recommended reading for further background and discussion both of
SPKI/SDSI in general and the certificate chain discovery problem in particular. The
algorithm presented here is an extension of the one presented in his thesis.

SDSI’s naming scheme has generated some interest in its own right; for example,
Abadi [1] has studied SDSI’s naming scheme in some detail.

Halpern and van der Meyden [17] have also studied SDSI’s naming scheme. They
critique Abadi’s treatment, and have produced a Logic of Local Name Containment
and an associated semantics that explicates the operation of SDSI’s local names,
based on treating (as we also do) the meaning of a name as a set of keys, and treating
a name certificate as asserting an inclusion relationship between two such sets.

Howell and Kotz [19] model SDSI’s naming scheme within the framework of the
Logic of Authentication due to Abadi, Lampson, and others [2,22], with particular
emphasis on the possible advantages and dangers of various proposed extensions to
SDSI.

Li [23] shows how to interpret SPKI/SDSI’s local names (including authorization
certifications and threshold subjects) using logic programs and proves that his inter-
pretation is equivalent to the original SPKI/SDSI definitions; he also shows how to
interpret local names as distributed roles.

We note that the terminology used here may differ in small respects from that
used in other SPKI/SDSI documentation; we do not expect this to cause the reader
any difficulties.

3. SPKI/SDSI names

We begin with a description of naming within SPKI/SDSI, leaving authorization
for later. We do this for several reasons:

• The naming scheme within SPKI/SDSI is a fascinating object of study in its
own right, with great flexibility and interesting computational problems.

• The SPKI/SDSI naming scheme is orthogonal to and conceptually separable
from the authorization scheme.

• It will be easier to understand the issues arising in the full SPKI/SDSI scheme
once the naming subsystem is fully understood.

In SPKI/SDSI there is alocal name space associated with every public key. There
areno global names in SPKI/SDSI. (The first version of SDSI [28] did have global
names; these were eliminated in the merger of SDSI with SPKI.) A local name is a
pair consisting of a public key and an arbitrary identifier.

A public key can sign statements (certificates) binding one of its local names to a
value. Values can be specified indirectly in terms of other names, so the name spaces
can become linked and interdependent in a flexible and powerful manner.

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 289

3.1. Keys

In SPKI/SDSI, all principals are represented by their public keys. A principal is
an individual, process, or active entity whose messages are distinctively recogniz-
able because they are digitally signed by the public key that represents them. It is
convenient to say that the principalis its public key.

Definition 1. We letK denote theset of public keys.

We typically useK,KA,KB,K ′,K1,K2, . . . to denote specific public keys. We
omit discussion of the corresponding secret keys. In particular, as noted earlier, when
we say that a message was signed by keyKi, we mean that it was signed by the secret
key whose corresponding public key isKi.

In practice, a key is represented by a data structure that specifies the algorithm
name (e.g., RSA with MD5 hashing and OAEP formatting) and the associated pa-
rameters (e.g., modulusn = 3871099. . .8763 and exponente = 17). In this paper
we use meta-symbols such asKi to stand for such data structures.

3.2. Identifiers

Because the most important function of a name is to serve as a mnemonic handle
for some human user, it is important that users be able to create names rather freely
using well-chosen identifiers.

Definition 2. An identifier is a word over some given standard alphabet. We letA
denote the set of all possible identifiers.

Our examples use specific identifiers such asA,B,Alice,Bob, . . . , usually in
typewriter font.

3.3. Local names and local name spaces

Each (public) key has its own associated local name space; there is no global name
space or even a hierarchy of name spaces. SPKI/SDSI does not require a “root” or
“root key”; it can be built “bottom-up” in a distributed manner from a collection of
local name spaces.

Definition 3. A local name is a sequence of length two consisting of a keyK fol-
lowed by a single identifier.

Example. Typical local names might be “K Alice” or “ K project-team”.
HereK represents an actual public key.

290 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

Notation 1. We say that the local name “K A” belongs to thelocal name space of
keyK. We letNL denote the set of all local names, and letNL(K) denote the local
name space of keyK.

The original SDSI syntax for the local name “K A” was “K ’s A”; the use of the
possessive syntax emphasizes that this local name belongs toK ’s namespace. While
this syntax is appropriately suggestive, we stick to the simpler syntax “K A” in this
paper.

Local names in different name spaces are unrelated to each other, even if they use
the same identifier. Local names may be chosen in an arbitrary manner. In one local
name space the identifiers might be people’s names, in another name space identifiers
might be nicknames, social security numbers, phone numbers, IP addresses, credit-
card numbers, organizational role names, committee names, or group names. The
owner of the public key can decide arbitrarily what conventions he wishes to use
when assigning names.

There are many reasons to use local names:

• To provide a convenient user-friendly handle for referring to another principal.
For example, it is much simpler to refer to “Bob” than to refer to the Bob’s
specific public key “RSA-MD5 with parametersn = 3549. . .413 ande = 17”.

• To provide a level of abstraction that separates the name one uses to refer to
the principal from the keys the principal uses, since the latter may change. If
Bob changes his key, no certificates that refer to Bob’s key by a local name
need to change; only those certificates that give his actual public key need to be
updated.

• To allow another party to provide the desired definition, by having one name
defined in terms of a name defined by another party. For example, Alice can de-
fine her “MIT” in terms of VeriSign’s “Massachusetts Institute of
Technology”.

• To have a name that refers to a collection (orgroup) of principals. Bob can
conveniently define groups for various purposes; for example, he may define
groups “friends”, “ personnel-committee”, “ EECS-faculty”, or
“sysadmins”.

• To have a name that can be used as an binary attribute – by defining the group
of principals that possess that attribute. The state of California might define
groups “age-over-21”, “ state-employee”, “ registered-voter-
for-2000”, or “welfare-recipient”.

3.4. Extended names, names, and terms

SPKI/SDSI has “extended names” as well as local names. (These are called “com-
pound names” by Li [23].)

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 291

Definition 4. An extended name is a sequence consisting of a key followed bytwo
or more identifiers.

A name is thus either a local name or an extended name. Extended names ex-
pand the expressive power of SPKI/SDSI, but do not have separate definitions; their
meaning is defined in terms of the meaning of related local names.

Example. Typical extended names might be “K Alice mother”, “ K
microsoft engineering windows project-mgr”, or “K MIT EECS
personnel-committee”.

(In the syntax of SDSI 1.0, the first extended name would be represented asK ’s
Alice’s mother.)

Notation 2. We letNE denote the set of all extended names. We letN = NL ∪
NE denote the set of all names. We letNE(K) denote the set of extended names
beginning with keyK, and letN (K), which we call thename space of key K,
denote the set of all names (local or extended) beginning with keyK.

The SPKI/SDSI “expressions” that we will be dealing with will be calledterms;
intuitively, a term is something that may have a value. In SPKI/SDSI values are
always sets of keys.

Definition 5. We say that aterm is either a key or a name. We letT = K∪N denote
the set of all terms.

Section 5 discusses extended names in more detail, and describes their benefits.

3.5. Certificates

SPKI/SDSI has two types of certificates, or “certs”:name certs, which provide
a definition for a local name, andauthorization certs, or auth certs, which confer
authorization on a key or a name.

Compared to X.509 public-key infrastructure schemes [15], our name cert is com-
parable to an “ID certificate”, and to some forms of “attribute certificates”, while our
auth cert is comparable to an “attribute certificate” that conveys authorization. How-
ever, the details and semantics differ significantly, and the reader should not interpret
these comments as more than a very crude approximation.

We defer further discussion of auth certs until Section 7, in order to focus for now
on naming and name certificates within SPKI/SDSI.

3.6. Name certificates

A name cert provides a definition of a local name (e.g.,K A) belonging to the
issuer’s (e.g.,K ’s) local name space. Only keyK may issue (that is, sign) certificates
for names in the local name spaceNL(K). A name certC is a signed four-tuple
(K,A,S,V):

292 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

• Theissuer K is a public key; the certificate is signed byK.
• Theidentifier A (together with the issuer) determines the local name “K A” that

is being defined; this name belongs to the local name spaceNL(K) of key K.
We emphasize that name certs only definelocal names (with one identifier);
extended names are never defined directly, only indirectly.

• Thesubject S is a term inT . Intuitively, the subjectS specifies a new additional
meaning for the local name “K A”.

• The validity specification V provides additional information allowing anyone
to ascertain if the certificate is currently valid, beyond the obvious verification
of the certificate signature. Normally, the validity specification takes the form
of a validity period (t1, t2): the cert is valid from timet1 to time t2, inclusive.
Sometimes, the validity specification takes the form of an on-line check to be
performed. Certificates that are not currently valid can be ignored, so for this
paper we presume that all certificates considered are currently valid, and we do
not explicitly mention or discuss validity specifications further.

3.7. Valuation function

We shall be concerned with thevalue of various terms. (Recall that a term is a key
or a name.) In SPKI/SDSI, these values aresets of public keys (possibly the empty
set). The value of a termT is defined relative to a setC of certificates.

Notation 3. We letVC(T) denote thevalue of a termT with respect to a setC of cer-
tificates. WhenC may be understood from context, we may use the simpler notation
V(T). The value of a term is a set of public keys, possibly empty.

3.8. Value of a key

A public key is the simplest kind of a SPKI/SDSI term – it is a constant expression
evaluating to itself (as a singleton set).

Definition 6. We define

VC(K) = {K}

for any public keyK and any setC of certificates.

3.9. Value of a local name

A local name has a value that is a set of public keys; this value may be the empty
set, a set containing a single key, or a set containing many keys. This value is deter-
mined by one or more name certificates.

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 293

A local name, such asK Alice, need not have the same meaning as the local
nameK ′ Alice whenK 	= K ′; the owner of keyK may defineK Alice how-
ever he wishes, while the owner of keyK ′ may similarly but independently define
K ′ Alice in an arbitrary manner.

A name certC = (K, A,S,V) (intuitively, defining local nameK A in terms of
subjectS) should be understood as a signed statement by the issuer asserting that

V(K A) ⊇ V(S); (1)

that is, every key in the valueV(S) of subjectS is also a key in the valueV(K A) of
local nameK A.

One name certificate does not invalidate others for the same local name; their
effect is cumulative. That is why the above equation saysV(K A) ⊇ V(S) and
not V(K A) = V(S); each additional name cert forK A may add new elements to
V(K A). A local name in SPKI/SDSI may thus, without any special fanfare, represent
a group of public keys.

We note that the semantics of SDSI local names provided by Halpern and van der
Meyden [17] is very similar to our treatment here of the meaning of local names as
sets of keys.

3.10. Value of an extended name

Although a name certificateC = (K, A,S,V) has the explicit function of provid-
ing a definition for the local nameK A, it also, as we now show, gives meaning to
related extended names.

Conversely, we may need to utilize the meaning of an extended name in order to
interpret a local name. If the subjectS of a name certificate is an extended name, then
it is necessary to have a definition for the valueV(S) in order to interpret Eq. (1).

The value of an extended name is implied by the values of various related local
names as follows.

Definition 7. The value of an extended nameK A1A2 . . . An is defined recursively
for n � 2 as:

V(K A1A2 . . . An) =
{
K ′′: K ′′ ∈ V(K ′ An)

for someK ′ ∈ V(K A1A2 . . .An−1)
}
. (2)

An equivalent definition is:

V(K A1A2 . . .An) =
⋃

K′∈V(K A1)

V(K ′ A2A3 . . .An). (3)

294 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

Example. Let K0 denote the MIT public key,K1 denote the EECS public key, and
let K2 denote Rivest’s public key. Then

V(K0EECS rivest) ⊇ V(K1rivest) ⊇ {K2}

assuming thatK1 ∈ V(K0EECS) andK2 ∈ V(K1rivest).
Having taken the necessary step of showing how extended names acquire a mean-

ing in a straightforward manner from the meanings of related local names, we now
make precise our definition of the value of a termT .

Definition 8. We defineVC(T) for any termT to be the smallest set of public keys
that is consistent with any constraints of the form of Eqs. (1) and (2) implied by the
name certificates inC.

Figure 1 gives a typical example; it presents a setC of name certs and givesVC(T)
for various termsT .

We note that SPKI/SDSI has no “negative certs”; you can not issue a cert to remove
some key from a group.

One can also think ofV(K A) as the set of keys that may “speak for” that name –
see Lampson et al. [22] for a definition of “speaks for”. Any privileges or authoriza-
tions that have been given to the name are given to each key in its group. (See Howell
and Kotz [19] for an expanded discussion of the relationship between SPKI/SDSI
names and the “speaks for” relation, and see Halpern and van der Meyden [17] for a
contrary view.)

3.11. Name certs as rewrite rules

Here we explain how to represent a name certificate as a “rewrite rule” operating
on strings of symbols. The symbols used are keys and identifiers. A rewrite rule
allows one to replace a given sequence of symbols with another.

Rewrite rules are expressive enough to represent both the definitions given by
name certs and the delegations expressed by auth certs.

By starting with a given name and performing rewrites in all possible ways (using
a given set of certificates), one can determine the value of a name. One can use a
similar procedure to find out which keys are authorized to perform a given action, as
we shall see in Section 9.

Our representation of name certs as rewrite rules suppresses the validity specifica-
tion. This omission is justified, since in practice as noted above any certificates that
are not currently valid will be set aside initially, and ignored thereafter.

We represent a name certificateC = (K,A,S,V) as the rewrite rule:

KA → S.

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 295

Fig. 1. A typical example of name certs.

We may also write the syntax of a name rule as:

KA → T

(as in a rule for a context-free grammar, where any key inK may be followed by any

296 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

identifier inA, etc.) or even

NL → T .

3.12. A typical example

Figure 1 gives an example of a set of name certs and the values of the names it
defines.

4. A simple case: no extended names

In this section we show that it is easy to find the value of a term given a collection
of SPKI/SDSI name certs that have no extended names as subjects, that is, when
every subject is either just a key or a local name. In practice we expect that many or
most certificates will be of this form. In Section 9 we give an efficient algorithm for
the general case.

The problem we are concerned with here is the problem of evaluating the meaning
VC(T) of a termT , given a set of certificatesC that contain local names but no
extended names.

Without loss of generality, we assume thatT is a local name appearing in some
certificate inC. (If T is a keyK, or if T does not appear in the certificates at all, then
the problem is trivial. In the first caseVC(K) = {K}; in the second caseVC(T) = ∅.)

The following simple algorithm solves our problem:

• Create a directed graphG = (V ,E) by creating a vertexv for each local name
or key appearing inC, and an edge from vertexL to vertexR if C contains a
name cert of the form:

L → R.

See, for example, Fig. 2, which illustrates the graphG arising from the subset
of certificates of Fig. 1 that contain no extended names.

• Then

VC(T) =
{
K: (K ∈ K) ∧ (T

∗→ K)
}

,

whereT
∗→ K means that there is a directed path fromT to K in G.

The reason this algorithm works is that when there are no extended names present,
there is no need to consider any names outside of those already present in the input
set of certificates. Thus we need merely to trace dependencies between the local
names and keys appearing in the input. When extended names are present, this rea-
soning no longer applies, as we shall see.

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 297

Fig. 2. The graph corresponding to the certificates of Fig. 1, except for the certificates (6) and (10) which
have extended names as subjects. Each key and local name appearing in the certificates corresponds to a
vertex, each certificate corresponds to an edge.

The running time of our algorithm above to find the meaning of a single termT
is linear in the size of the input setC of certificates when the second step above is
implemented using an efficient graph-searching algorithm such as depth-first search
or breadth-first search. (See Cormen et al. [7] for details.) The same algorithm and
running time applies for the simpler problem of determining whether a givenK is a
member ofVC(T) for a given termT .

5. Extended names

Given the simplicity of the previous algorithm, one can reasonably ask: “why
bother with extended names at all?” Although, as we shall see, extended names can
be handled efficiently, it is nonetheless fair to ask if they are worth the extra bother.

For some applications it may indeed be the case that extended names are not really
needed, and that by constraining certificates to have only keys or local names as
subjects one can simplify things a bit without paying too severe a penalty in terms of

298 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

expressive power. The system so implemented would be a proper subset of standard
SPKI/SDSI.

As an example, consider the certificate set in Fig. 1. Certificates (6):

KA Ted → KB CarolJones Ted

and (10):

KA friends→ KA Bob my-friends

are the only certificates that have extended names as subjects. These could conceiv-
ably be rewritten as:

KA Ted → KC Ted

and:

KA friends→ KB my-friends.

Yet we would argue that such a style is awkward and exhibits poor modularity.
What if Bob or Carol should change their public keys? It would make more sense,
from a human-engineering point of view, to haveno keys, other than the issuer’s own
key, appearing in local names. From this viewpoint, certificates (5) and (6), which
have local names beginning with Bob’s key, should instead be rewritten witheven
longer extended names as subjects:

KA Carol→ KA Bob CarolJones

KA Ted→ KA Bob CarolJones Ted

so that these certificates do not need to be re-issued should Bob change his key. (Of
course, Bob needs to re-issue his certificates using the same naming conventions. . .)

Along the same lines, it is simpler to expect someone to write a symbolic ACL
entry of the form:

KA VeriSignIBM Research DonCoppersmith

than to have the actual public key of IBM’s research division wired into the ACL
entry.

Similarly, it is simpler to write a symbolic ACL entry of the form:

KA MIT faculty secretary

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 299

than to spell out one ACL entry of the form

KF secretary

for each keyKF of an MIT faculty member (assuming that the faculty can be per-
suaded to use the name “secretary” in a standard way).

Thus, we strongly endorse using extended names whenever possible to improve
modularity and simplify the writing of ACLs.

In the next sections we see how to efficiently handle a set of certificates with
extended names. This turns out to be an interesting problem, since the simple graph-
theoretic model used above is no longer adequate. Instead, we will need to return to
our view of certificates as “rewrite rules”.

6. Composition of certs

In this section we define how a cert can be used to rewrite a string, or to rewrite
another cert. This latter operation is also called the composition of certs (also called
composition of rules), and is the fundamental operation of SPKI/SDSI.

In this section we define a “string” to be a term; later on when we are dealing with
auth certs we shall expand this definition slightly.

6.1. Using a cert to rewrite a string

Definition 9. Suppose thatS is a string, thatC = L → R is a rewrite rule, and that
L is a prefix ofS: that is,S = LX for some (possibly empty) sequenceX . Then we
defineS ◦ C to be the stringS′ = RX . We say say that we haverewritten the string
S according to the ruleC to obtainS′.

Example.

(KA Bob my-friends) ◦ (KA Bob → KB)

= (KB my-friends)

6.2. Using one cert to rewrite another (composition)

We can also apply a ruleC2 to rewrite another ruleC1 to obtainC3 = C1 ◦C2, by
usingC2 to rewrite the subject (right-hand side) ofC1.

Definition 10. SupposeC1 is a rule of the form

L1 → R1,

300 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

and supposeC2 is a rule of the form

L2 → R2,

whereL2 is a prefix ofR1. That is,R1 = L2X for some (possibly empty) stringX .
Then we define thecomposition of rules C3 = C1 ◦ C2 as

C3 = C1 ◦ C2

= L1 → (R1 ◦ C2)

= L1 → R2X.

We say that we haverewritten C1 (using C2) to obtain C3. If L2 is not a prefix ofR1

thenC1 ◦ C2 is undefined.

As an example, we can compose the following name certs:

KA friends→ KA Bob my-friends

KA Bob→ KB

to obtain the name cert:

KA friends→ KB my-friends.

That is, if KA says that one definition of her name “friends” is the name
“KA Bob my-friends”, and KA says that one possible definition of her name
“Bob” is KB, then one definition ofKA’s name “friends” is “ KB my-friends”.

Definition 11. We say that certsC1 = (L1 → R1) and C2 = (L2 → R2) are
compatible if their compositionC1 ◦ C2 is defined, that is, ifL2 is a prefix ofR1.
(More precisely, ifC1 ◦C2 is defined, we say thatC1 is left-compatible with C2, and
thatC2 is right-compatible with C1.)

The definition impliesC1 is (left-)compatible withC2 in the special case that
L2 = R1. Note that the definition of compatibility really applies to theordered pair
(C1,C2), sinceC1◦C2 may be defined (so thatC1 andC2 are compatible), butC2◦C1

may be undefined (so thatC2 andC1 and not compatible). Thus the need for the more
refined notions of left- and right-compatibility.

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 301

6.3. Properties of composition of certs

The important point about the composition of certs is that composition is the only
“rule of inference” needed for reasoning within SPKI/SDSI. Someone holding valid
certsC1 andC2 may inferC3 = C1 ◦ C2 and treat it as a valid cert having the
same status as any valid cert that had been actually issued. (As we shall see, these
statements remain true even when we add authorization certs to the picture.)

We note that composition is not associative. For example, if

C1 = (K1A → K2BC)

C2 = (K2B → K3)

C3 = (K3C → K4),

then (C1 ◦ C2) ◦ C3 = (K1A → K4), whereasC1 ◦ (C2 ◦ C3) is undefined because
(C2 ◦ C3) is undefined. However, it is easy to show that (C1 ◦ C2) ◦ C3 is defined
wheneverC1 ◦ (C2 ◦ C3) is defined, and that these expressions have equal values
when both are defined, so we may omit parentheses when desired and assume that
“◦” is left-associative:

C1 ◦ C2 ◦ C3 · · ·Cn =
(
· · ·

(
(C1 ◦ C2) ◦ C3

)
· · ·Cn

)
.

We also note that in the compositionC3 = C1 ◦ C2 whereC1 andC2 were both
issued (and not inferred), it may be the case thatC1 was issued beforeC2 or the
reverse. For example, Bob (controlling keyKB) may have issued the name cert

KB CarolJones→ KC

either before or after Alice (controlling keyKA) issues the name cert

KA Carol→ KB CarolJones

that specifies her name “Carol” in terms of Bob’s name “CarolJones”. This
gives SPKI/SDSI a certain flexibility lacked by PKI systems that require a key to be
created before it can be referred to.

6.4. Closure of a set of certs

The notion of the closure of a set of certificates is fundamental; the closure con-
tains all certs that can be derived by composition from the given set of certs.

Definition 12. If C is a set of certificates, we define the setC+, called the (transitive)
closure of C, as the smallest set of certificates that includesC as a subset and that is
closed under composition of certificates.

302 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

Informally, the closureC+ contains all certificates that can be inferred fromC
using any finite number of compositions.

The closureC+ need not be a finite set, even ifC is finite. For example,

{
(K A → K AA)

}+
=

{
(K A → K Ai): i � 2

}
.

While the setC+ need not be finite, each rule inC+ has a finite-length derivation
from the certificates inC.

As we shall see in Theorems 1 and 2, the closure can be easily used to define the
value of any term appearing in the given set of certificates.

We shall next define afinite subset of the closure, called the “name-reduction
closure”, that is easy to compute, and just as useful.

6.5. Reducing certificates

Given the utility of the closure, as seen above, it is of interest to compute it ef-
ficiently, if possible. But since the closure is potentially infinite, to be efficient we
need to compute just the relevant parts of it quickly.

This subsection defines thename-reduction closure C# (i.e., “C-sharp”) of a set
of certificatesC. The name-reduction closure is afinite subset ofC+, and can be
computed quickly. Intuitively, computingC# only performs compositions that are
useful to compute the valueV(S) of each subjectS.

Definition 13. We say that a certC = (L → R) is reducing if |L| > |R|, where|X |
denotes the length of sequenceX .

A reducing cert can only be a name cert of the form:

K A → K ′.

Fact 1. If C1 = (L1 → R1) is an arbitrary certificate, and C2 = (L2 → R2) is a
(right-)compatible reducing certificate, then C3 = C1 ◦ C2 = (L1 → R3) satisfies

|R1| > |R3|.

That is, rewriting C1 with a reducing certificate C2 gives a new certificate C3 with a
strictly shorter right-hand side.

For example, composing the cert:

K Alice→ K VeriSign MIT AliceSmith (26)

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 303

with the reducing certificate

K VeriSign→ Kv

yields the reduced certificate

K Alice→ Kv MIT AliceSmith

which has a shorter right-hand side than (26).

6.6. Name-reduction closure

Definition 14. If C is a set of certificates, then thename-reduction closure C# of C
is defined to be the smallest set of certificates containingC and closed under “name-
reduction” (rewriting with reducing certificates). That is, ifC# contains a certificate
C1 and it also contains a (right-)compatible reducing certificateC2, thenC# must
also containC1 ◦ C2.

Thus, to compute the name-reduction closure, we only perform rewritings that
cause a reduction in the length of the right-hand side, until no more such rewrit-
ings can be done. This is clearly a finite process. More precisely, our algorithm for
computing the name-reduction closure is the following:

Name-reduction closure algorithm.

1. InitializeC′ to be the input setC of certificates.
2. As long asC′ contains two compatible certificatesC1 andC2 such thatC2 is a

reducing certificate andC1 ◦ C2 is not yet inC′, addC1 ◦ C2 to C′.
3. ReturnC′ as the computed value ofC#.

To illustrate the operation of this algorithm, Fig. 3 shows the closure and name-
reduction closure of the certificates from Fig. 1.

Before studying the running time of this algorithm, we examine some of the prop-
erties ofC#.

6.6.1. Properties of the name-reduction closure
The importance of the name-reduction closure of a set of certificates is given by the

following theorems, which show that the name-reduction closure explicitly computes
the values of terms appearing on the right-hand side of the input certificates.

Theorem 1. Suppose that C is a set of certificates, and that

C = (L → R)

304 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

Fig. 3. The closure and name-reduction closure of the example of Fig. 1. The derivation of each certificate
is given on the right. For example, certificate (27) is obtained by composing certificates (5) and (12).

is a name cert in C. Then, for any key K ∈ VC(R), the certificate

L → K

is a cert in C#.

Proof. (See Elien’s thesis [9] for an earlier version of this theorem and proof.)
If R is a key, it must be the keyK, and the theorem is trivial. So assume thatR is

not a key. LetK be any key inVC(R), and suppose that

C1 ◦ C2 ◦ · · · ◦ Cn (40)

is a shortest possible certificate chain whose result is (L → K), where all of the
certificates are fromC#. Such a chain must exist ifK ∈ VC(R), sinceC ⊆ C#.

If n = 1 we are done, so assume thatn > 1.
Note that if n > 1, then C1 is not reducing, since there would be no

(right-)compatible certificatesC2 (no name certificates have just a key as their left-
hand side). Similarly,Cn must be a reducing certificate, since the right-hand sideRn

of Cn is just the keyK.
Let Ci be the last non-reducing certificate in the chain; thusi < n and Ci+1

must be reducing. Therefore the right-hand sideRi of Ci must satisfy|Ri| � 2, and
so Ci andCi+1 must be compatible. ThereforeCi ◦ Ci+1 is well defined, and an

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 305

element ofC#. This implies that the certificate chain (40) is not the shortest possible,
a contradiction. Thereforen = 1 and we are done.�

The natural converse of this theorem also holds.

Theorem 2. Suppose that C is a set of certificates, and that

C = (L → K)

is a cert in C#. Then there exists a cert

C′ = (L → R)

in C such that K ∈ VC(R).

Proof. If C = C1 ◦C2 ◦ · · · ◦Cn, then it follows easily from the definitions and the
fact thatC# ⊆ C+ thatC1 is the desired certificateC′. �

6.6.2. Running time of the name-reduction closure algorithm
Since the name-reduction closure algorithm is the most critical portion of our

certificate-chain discovery algorithm, we carefully analyze its running time in this
section.

We believe that this algorithm is very practical, and that it will be exceptionally
effective in practice.

In this subsection, we give a polynomial bound on the running time of the name-
reduction closure algorithm.

We first give a worst-case bound on the running time, and show that it is tight.
We then show that some realistic constraints on the input set of certificates make the
running time of the algorithm much better. The algorithm does not change; it just
runs faster when the input is not pathological.

Worst-case running time. Let C be the input set of certificates. Suppose thatC con-
tainsn certificates, and thatl is the length of the longest subject in any input certifi-
cate.

The first step in our analysis is to note that the maximum number of new cer-
tificates that can be produced during name-reduction closure is O(n2l). (We recall
that “O-notation” is used for stating worst-case upper bounds to within an unspec-
ified constant factor; the actual number of new certificates produced in a particular
instance may often be substantially less than this worst-case upper bound.)

We prove the bound as follows. A typical input certificate of the form

L → KiA1A2 . . . Am

306 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

can be rewritten by reducing certificates to produce new certificates only of the form

L → KjAkAk+1 . . . Am

for somej andk. That is, the subject of the resulting certificate consists of some key
Kj followed by some suffix of the subject of the input certificate. Since the choice of
the starting input certificate, the choice ofj, and the length of the suffix are arbitrary,
the bound follows.

To see that this bound is tight to within constant factors, consider the following
“worst-case” set of certificates:

KC → K0A
lBj for 0 � j < n, (41)

K0A → Ki for 0 � i < n, (42)

KiA → K(i+1) modnA for 0 � i < n, (43)

whereAl denotesl consecutive occurrences ofA. Name reduction yields all rules of
the form

KC → KiA
kBj

for 0 � i < n, 0 � k � l, and 0� j < n, as well as all reducing rules of the form

KiA → Kj

for 0 � i < n and 0� j < n.

Theorem 3. The running time of name reduction closure on an input set of n certifi-
cates, where l is the length of the longest subject in any input certificate, is O(n3l).

Proof. There are O(n2l) certificates produced. The number of reducing certificates
in C′ that are (right-)compatible with any given certificate is O(n): these reducing
certificates all have the same issuer and identifier, but have different keys as subjects.
Thus for each (input or derived) certificate there is work O(n) to do. This yields our
bound of O(n3l) on the total work performed. (There are some data structure details
required to make this actually work out, but they are relatively straightforward, such
as hashing rules by their left-hand sides, or by the key and first symbol of their right-
hand sides, etc.)�

Unambiguous sets of certificates. In practice, we expect that an input set of certifi-
cates will not be as pathological as the input set (41)–(43) above. For example, in
practice we expect that an input set of certificates will beunambiguous.

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 307

Definition 15. A setC of certificates is said to beunambiguous if any certificateC
in C+ is expressible in at most one way as the result of a certificate chainC1 ◦ C2 ◦
· · · ◦ Cm containing only certificates inC.

Example. If the certificates (43) are removed from the input set (41)–(43), the cer-
tificate set becomes unambiguous, but still generates O(n2l) certificates.

Theorem 4. The running time of name reduction closure on an unambiguousinput
set C of certificates is proportional to |C#|, the total number of certificates in the
name-reduction closure of C.

Proof. No certificate inC# is produced more than once, by the definition of unam-
biguity. �

The running time of our algorithm on an unambiguous setC of input certificates
C, wherel is the length of the longest subject in any input certificate, is thus O(n2l)
(since there are only O(n2l) certificates produced), a dramatic improvement of the
O(n3l) bound for the general case.

We expect even better behavior in practice, as we feel that it will often be the
case that|C#| is proportional to|C|, so that the running time of our algorithm will be
linear.

6.7. Production of certificate chain

From the computation of the name-reduction closure, we can derive a chain of
certificates that demonstrates explicitly how any given certificate is indeed in the
closure. The process of reconstructing a certificate chain is primarily one of just
working backwards through the computation.

For example, using the certificates of Figs. 1 and 3, we have that

(38)= (33)◦ (14)= (10)◦ (4) ◦ (14),

so the desired certificate chain is just the sequence of certificates (10), (4), (14).
However, there is one issue that needs to be addressed, which is the representation

of the certificate chain itself. There are two plausible choices for the format of a
certificate chain: alinear format and acompressed format. Because the compressed
format may be exponentially more compact than the linear format, and because it is
just as easy to create and process as the linear format, we recommend the compressed
format.

The linear format outputs the certificates fromC in an order

C1,C2, . . . ,Ct

308 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

such that

C = C1 ◦ C2 ◦ · · · ◦ Ct,

whereC is the desired derived certificate.
The problem with this format is that the lengtht of the certificate chain may be

exponential in the sizen of the input certificate set.

Example. Consider the following set of certificates:

KD → KnAn

KiAi → Ki−1Ai−1Bi

K0Bi → Ki−1Ai−1Ci

K0Ci → K0

K0A0 → K0

where 1� i � n. Then the length of the certificate chain proving that

KD → K0 (44)

is 2n+2 − 2, by induction. However, this chain is highly repetitious, and can be
represented much more compactly, as we now see.

Thus, it is of interest to have a compact format for certificate chains that will
be of polynomial size. The following “compressed” format works. Assume that
C1, . . . ,Cn are the input certificates.

Cn+1 = Ci1 ◦ Cj1

Cn+2 = Ci2 ◦ Cj2

Cn+3 = Ci3 ◦ Cj3

. . .

Cn+t = Cit ◦ Cjt .

Here eachik and eachjk is an integer in the range 1 ton + k− 1. In the compressed
format the output is a sequence of lines, where each line shows how a new certificate
can be derived by composing two previously input or derived certificates. The final
certificate is the desired certificate. This format is the same as that given in Figs. 1
and 3.

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 309

The size of the compressed format is always polynomial in the size of the input
(indeed, it is at most|C#|). The compressed format is easy to produce and easy to
check. See Elien’s thesis [9] for some implementation details. This representation is
never longer than the linear format, and may be exponentially shorter.

The compressed form is the most logical one to use – it reflects the process we use
to do the chain discovery. The linear form is thus unnatural but forced by requiring
someone to use just original (verifiable) certificates. The compressed form lets us
use derived rules.

We thus recommend the use of the compressed format for efficiency’s sake; there
is no reason why a polynomial-time computation should have to work for exponential
time to produce its output, as it might have to do for the linear format.

7. Auth certs

Now that we have mastered SPKI/SDSI naming, we turn our attention to autho-
rization certificates, or “auth certs”, and see how to adapt our previous algorithms to
handle an input set of certificates that contains both name and auth certs.

We will see how to represent auth certs as rewrite rules in such a way that the
composition of certs remains well-defined and satisfies all of the desired properties
(including delegation control).

Our final algorithm for determining authorization and computing certificate chains
is then a combination of name-reduction closure and a graph-theoretic algorithm
resembling that of Section 4.

The function of an auth cert is to grant or delegate a specific authorization from
the issuer to the subject. An auth certC is a signed five-tuple (K,S,d,T ,V):

• Theissuer K is a public key, which signs the cert. The issuer is the one granting
a specific authorization.

• Thesubject S is a term inT . The public keys inV(S) are receiving the grant of
authorization.

• The delegation bit d, if true, grants each key inV(S) permission to further
delegate to others the authorization it is receiving via this certificate.

• Theauthorization specification or authorization tag T specifies the specific per-
mission or permissions being granted. For example, it may specify the right to
access a particular web site, read a certain file, or login to a particular machine.

• Thevalidity specification for an auth cert is the same as that for a name cert.

For example, we might have an auth cert specifying:

• K is the public key of Bill Gates. Bill Gates is the principal granting the autho-
rization.

• S is “KA accounting”, whereKA is the public key of Aardvark Accounting
Corporation. The set of public keys inV(KA accounting) is receiving the
authorization.

310 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

• d = 1; any recipient of this authorization can further delegate this permission
(by issuing another authorization cert).

• the authorization tagT = “read 2000-tax-return” specifies what op-
erations are authorized by this auth cert.

One auth certificate does not invalidate others; their effect is cumulative. (Again,
there are no “negative auth certs”; a permission granted is good until one of the
relevant certs expires or becomes invalid.)

SPKI/SDSI auth certs integrate smoothly with SPKI/SDSI name certs; the name
certs are used to give useful symbolic names to individual keys or groups of keys,
and the auth certs can be used to authorize those keys or groups of keys for specific
operations.

We digress for just a moment to talk about authorization tags. The syntax and
details of authorization tags are not important to us here; we refer the reader to the
relevant documents [11–14]. We note the following important points about autho-
rization tags:

• An authorization tag can be viewed as a representation of the set of requests it
authorizes.

• Given two authorization tags, it is simple for anyone to form an authorization
tag that represents the intersection of the sets of requests the input tags autho-
rize.

• The semantics of a request and of authorization tags are otherwise up to the
owner of each protected resource.

To illustrate the second point, the authorization tag

(tag (ftp (* set read write)

(* prefix //www.mit.edu/classes/)))

might authorize ftp read and write access to any file in the “classes” directory on
thewww.mit.edu server, while the authorization tag

(tag (ftp read (* prefix //www.mit.edu/)))

allows ftp read access to any file on the same server. The intersection of these two
tags is the tag

(tag (ftp read

(* prefix //www.mit.edu/classes/)))

When authorization certificates are composed, their authorization tags are inter-
sected, so that the result represents only those rights that are authorized byboth
original certificates.

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 311

7.1. Access-control lists

In a security system with discretionary access control each protected resource has
an associated access-control list, or ACL, describing which principals have which
permissions to access the resource.

The ease with which SPKI/SDSI allows one to describe groups of principals can
make the writing of ACLs rather simple and straightforward. The ACL might typ-
ically list a single SPKI/SDSI group and its associated permissions. In some cases
several groups might be listed, each with associated permissions.

Although the ACL may seem to be a new kind of data object, it can most naturally
be interpreted as a convenient representation of one or more auth certs. We now
describe this interpretation.

The issuer of an auth cert in an ACL is the owner of the protected resource. In
SPKI/SDSI the special term “Self ” is used to designate the key of the owner of the
resource, although the owner’s key could of course be used directly.

The subject of an auth cert in an ACL denotes recipients of the permission. More
precisely, ifS is the subject of an ACL auth cert, then any request for access to the
protected resource that is signed by a keyK in V(S) will be honored (assuming that
the request matches that authorization tag as well).

Furthermore, if an ACL auth certSelf → S had the delegation bit turned on, then
any auth cert issued byK ∈ V(S) for the protected resource can be treated as if it
were an original ACL auth cert issued bySelf. (However,K can not grant access to
resources to which it itself does not have access, and it may use auth certs to pass on
only a subset of the access rights it has itself.)

7.2. Auth certs as rewrite rules

In this section we see how to represent an auth cert as a rewrite rule, so that we
may compose auth certs with each other, or with name certs, in a way that precisely
models the desired semantics of SPKI/SDSI. To accomplish this, we add to the auth
rewrite rules special “ticket” symbols whose presence enforces the desired behavior.

Definition 16. The special “ticket” symbols are “1 ” (“a live ticket”) or “ 0 ”
(“a dead ticket”). The meta-symbol “z ” may be used to represent a “zombie” ticket
that may be either live or dead.

A ticket may be thought of as a convenient artifice to represent a particular author-
ity or permission. (Elien [9] used the “turnstile” symbol “�” instead.) Tickets ensure
that the composition of certs will have the desired behavior, as we shall see. For the
purpose of our rewrite rules, however, a ticket is just a symbol, different than any key
or identifier. (Behind the scenes, the ticket represents both the delegation bit and the
authorization tag.)

312 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

The ticket “ 1 ” is considered to be “live” – it represents a permission obtained
with the delegation bit turned on, so it can be further delegated. The ticket “0 ” is
considered to be “dead” – it represents a permission obtained with the delegation bit
turned off, so it can not be delegated further.

To represent a ticket that may be either live or dead, we use the meta-symbol “z ”,
the “zombie ticket”. The zombie ticket does not actually appear in rewrite rules, but
is used when discussing a rewrite rule having a ticket which may be either live or
dead.

Definition 17. A string is either a term or a term followed by a ticket.

Examples of strings.

KA

KB 0

KB Alice friends

KA MIT EECS faculty 1

We can now represent an auth certificateC = (K,S,d,T ,V) as a rewrite rule. If
the delegation bitd is on, allowing propagation, we have the rewrite rule:

K 1 → S 1 .

If the delegation bitd is off, so that delegation is forbidden, we have the rewrite rule:

K 1 → S 0 .

These two forms can be encompassed by one:

K 1 → S z .

The ticket on the left of an auth rewrite rule is always live. The ticket on the right is
live if the delegation bitd of the auth cert is on (i.e., 1), otherwise the ticket is dead.

Such an auth cert can be interpreted as “K gives permission toS” (with the del-
egation bit turned on or off, according to whether the ticket on the right is live or
dead).

In particular, an ACL entry is represented by a rewrite rule of the form:

Self 1 → S z

where the subjectS is some term.

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 313

7.3. Why auth rules have tickets

We can now see why auth certs are represented as rewrite rules with tickets.
The presence of the tickets prevents the auth cert from being inappropriately used
in a composition as a name cert. For example, it isnot correct, according to the
SPKI/SDSI composition rules, to compose the following name and auth certs:

KA C→ KB C

KB 1 → KB D 1

to obtain

KA C → KB DC.

Were the tickets not used, this might erroneously be considered a legal composition.
With tickets, the two certs are not compatible. This restriction is consistent with the
viewpoint that the purpose of an auth cert is to grant permission, and not to rewrite
names. Only name certs can be used to rewrite names.

We now extend our previous discussion of the composition of name certs to con-
sider the general composition of two certificates, where either one or both may be
auth certs. Our definition of composition is unchanged. (This statement is true when
we view certs as rewrite rules; behind the scenes, however, authorization tags are
intersected when rules are composed. But we can ignore this detail here, since if two
auth certs have tags authorizing a given request, then the intersection of those tags
will also honor the given request.)

We note the following properties of the compositionC3 = C1 ◦ C2:

1. The type ofC3, as an auth or name cert, is the same as the type ofC1. (Rewrit-
ing can not create or destroy tickets.)

2. If C2 is an auth cert, thenL2 = R1.
3. If C1 is a name cert, then so isC2. (Equivalently, ifC2 is an auth cert, then so

is C1.)
4. If R1 contains a dead ticket, thenC2 must be a name cert.

To illustrate the second point: two auth certs can be composed, if the subject of
the first auth cert is the same as the issuer of the second: composing

KA 1 → KB 1

with

KB 1 → KC 1

yields

KA 1 → KC 1 .

314 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

7.4. How tickets enforce delegation control

It similarly follows that the distinction between a live ticket “1 ” and a dead ticket
“ 0 ” represents and supports the SPKI/SDSI rules on delegation. A rule having
a dead ticket on the right can only be rewritten by name certs, not by auth certs,
whereas a rule having a live ticket on the right may be rewritten by either name certs
or auth certs; effectively authority may be further delegated using auth certs. Thus,
the presence of tickets enforces the SPKI/SDSI rules on delegation.

7.5. Using closure to define which keys are authorized

The closureC+ of a setC of certificates is well-defined even ifC contains auth
certs. This closure intuitively captures all of the relevant inferences regarding which
keys are authorized.

For example, suppose that the given setC of certificates includes the certificate
C = (Self 1 → R z); such a certificate may have been obtained from the ACL for
a given resource.

Then every certificateC′ = (Self 1 → K z) in C+ that has a keyK in its
right-hand side and that is obtainable by iteratively rewritingC using certificates in
C specifies a keyK that is authorized using a certificate chain beginning with the
certificateC.

As before, we can not work directly withC+, as it is (potentially) infinite. We
work instead with the name-reduction closureC# (which is still well-defined) and
make appropriate modifications and extensions.

The following theorem is similar to Theorem 1, and derives a key property for the
name-reduction closure of a general set of certificates. Note that Theorem 1 remains
valid even ifC contains auth certs as well as name certs.

Theorem 5. If

C =
(
K 1 → S z

)

is an auth cert in C, then

K 1 → K ′
z

is a cert in C# for every K ′ ∈ VC(S). (Here the two zombies must represent the same
ticket.)

Proof. Essentially the same argument holds here as for Theorem 1.�

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 315

8. Illustration of the certificate-chain discovery problem

A typical instance of the problem we solve in this paper arises as follows. A user
Alice tries to access some protected resourceX . The guardian or reference monitor
for X denies her access, since Alice has not demonstrated that she is authorized to
accessX . The denial is accompanied by a copy of the ACL forX : a set of auth certs
that authorize access for certain keys or names. (If the ACL itself is protected, Alice
can invoke the entire process recursively in order to access the ACL.)

Alice must then use the certs in the ACL, together with certs she already possesses,
to prove that she is authorized. She repeats her request, including a “certificate chain”
demonstrating that her public key is authorized forX , and signs her request with (the
secret key corresponding to) her public key.

As an example, suppose that the ACL forX contains the certs:

Self 1 → K0engineering 1 (45)

Self 1 → K0finance 1 (46)

and that Alice possesses the following certificates, among others:

K0finance→ K1accounting (47)

K1accounting→ K1Bob (48)

K1Bob→ K2 (49)

K2 1 → K3Alice 0 (50)

K3Alice→ K4 (51)

The ACL (certs (45) and (46)) gives permission toengineering and fi-
nance, as defined byK0. Name cert (47) states thataccounting as defined
by K1 is part offinance as defined byK0. Name cert (48) states thatBob as
defined byK1 is part ofaccounting as defined byK1. Name cert (49), issued
by K1, states that one ofBob’s public keys isK2.

Auth cert (50), issued by Bob’s keyK2, gives permission toAlice, as defined
by K3. Here Bob, as a member of accounting, is passing on his permission to his
friend Alice. This is permitted because the previous auth cert (46) had the delegation
bit turned on, represented by the live ticket.

Finally, name cert (51), issued byK3, definesAlice to include the public keyK4.
Alice can include the “certificate chain”

(46) (47) (48) (49) (50) (51)

in her subsequent request to accessX , which she also signs with her public keyK4.
The guardian forX can examine the certificate chain to conclude that Alice is indeed
authorized.

316 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

The problem addressed in this paper is the problem of constructing a suitable
certificate chain, given a collection of certificates. Some of the certificates correspond
to the ACL (and are issued by “Self ”), and some of the certificates belong to the user
(or can be obtained by the user).

This problem bears a superficial resemblance to the problem of finding a path in
a graph from “Self ” to the user’s public key, where each certificate corresponds to a
single directed edge. The nodes of such a graph correspond to the names and keys
occurring in the certificates. In simple examples such as the one above where there
are no extended names, such an approach actually works fine, as noted in Section 4.

In other examples this simple graph-theoretic approach fails, because name certs
can interact to produce new names not previously appearing in any certificate. For
example, the two certificates:

Self 1 → K0MIT faculty secretary 1

K0MIT→ K5

can be composed to yield the new certificate:

Self 1 → K5faculty secretary 1 ,

but “K5faculty secretary” may be a new name not appearing previously in
any of the original certs.

9. Our certificate-chain discovery algorithm

In this section we present our algorithm for certificate chain discovery. It takes as
input:

• an initial setC of certificates,
• an authorization that is desired, and
• a public keyK∗ for which it is desired to prove that authorization.

The proof to be produced consists of a chain of certificates that allow one to derive
“K∗ z ” from “ Self 1 ”; that is, the proof consists of the derivation of the certifi-
cateSelf 1 → K∗ z .

It is worth digressing for a moment to discuss the question of where the setC of
certificates comes from. Our working assumption is that the requestor (e.g., Alice)
uses the set of certificates already in her possession. If that set is sufficient to prove
her authorization, then our algorithm will find a proof of authorization and Alice
is happy. If Alice’s set of certificates does not imply the desired authorization, then
Alice will be frustrated in her attempt to access the desired resource, since no suitable
proof of authorization will be found by our algorithm (since none exists based on

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 317

her certificate set). In this case, Alice may need to intervene personally to obtain
sufficient additional certificates. For example, if Alice is frustrated in attempting to
access her hospital medical records, she may naturally need to ask the hospital to
issue her a certificate authorizing such access. Of course, if access to certificates
is itself controlled, then the problem becomes much more complicated (we do not
address such complexities here).

One could consider a distributed scenario where the input set of certificates resides
on a variety of servers throughout the Internet. An algorithm based on depth-first
search for this version of the problem has been presented by Ajmani in his Master’s
thesis [3]; it is however incomplete (it is not guaranteed to find a proof even if one
exists). Aura [4] presents a related two-way distributed search algorithm for the case
we discuss above in Section 4 when there are no extended names. We do not consider
the distributed chain-discovery scenario or the problem of obtaining the relevant certs
in a distributed environment further here, but it is a promising direction for future
research.

We return to the presentation of our algorithm, assuming that a suitable auxiliary
procedure has been used to obtain the input set of certificates. Our algorithm has the
following steps.

1. Remove useless certificates.
• Remove fromC any certificate that is not currently valid, or which fails a

required on-line check. That is, remove a certificateC from C if the validity
specificationV of C shows that the certificate is invalid.

• Similarly, remove fromC any auth certC whose authorization tagT is not
equal to, or does not include, the desired authorization. These certs are of no
use in trying to derive the desired certificate chain.

2. Name reduction. Compute the name-reduction closureC# of C.
Recall thatC# includes, for each auth certificate

K 1 → S z

in C, whereS is a name, a certificate of the form

K 1 → K ′
z ,

for each keyK ′ ∈ VC(S).
3. Remove all names and name certs. Let C′ be C# with all name certificates

removed and all auth certs removed that do not have just a single key as their
subject. The only certs remaining have the form:

Ki 1 → Kj z (52)

(whereKi may be “Self ”).

318 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

4. Remove useless auth certs. Let C′′ be C′ after removing all certs of the
form (52) havingKj 	= K∗ and a dead ticket on the right; such certs are useless
for finding the desired certificate chain.

5. Use depth-first search (DFS) to find a path. Set up a graph with one vertex
for each key, and an edge fromKi to Kj if there is an auth certificateC in C′′

of the form (52).
Use depth-first search to determine if there is a path fromSelf to K∗. If not,
terminate with failure.

6. Reconstruct the certificate chain. From the information computed in the pre-
vious steps, output the desired certificate chain.

We now give some details in the following subsections.

9.1. Using depth-first-search to find a path

After name and name cert elimination, we work with all certificates (original or
derived) of the form (52) for variousi andj. There are at mostn2 such certificates,
since there are at mostn keys appearing as issuer andn keys occurring in the subjects
of the original set ofn rules. Another bound on the number of such certificates is of
course|C#|; this may be considerably less than O(n2).

We wish to find if there is a path fromSelf (a particular distinguished key) toK∗
(the user’s key).

This graph problem can be solved by depth-first search in time proportional to the
number of certificates of the form (52) that we are working with [7].

9.2. Running-time analysis

The running time of the certificate-chain discovery algorithm is bounded by the
size |C#| of the name reduction closureC# computed in step 2. As derived in Sec-
tion 6.6.2, this running time is bounded above O(n3l) for a general set ofn certifi-
cates with subjects having length at mostl. However, the running time improves to
O(|C#|) which is bounded by O(n2l) if the certficate setC is unambiguous.

This completes our presentation of the basic certificate chain discovery algorithm
and its analysis.

10. Threshold subjects

We now extend our algorithm to handle threshold subjects in auth certs. Threshold
subjects can be used to specify a requirement that “k out of m” keys must sign a
request in order that the request should be honored. (More precisely, the public keys
signing the request must belong tok out of m groups; there may be fewer thank
keys signing the request if some keys belong to more than one of them groups.)

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 319

The scenario is otherwise much as before: a set of parties Alice1, Alice2, . . . , Alicen

attempt to determine if they are authorized if they collectively sign an access request,
based on a set of certificates that may contain auth certs with threshold subjects.

Definition 18. A threshold subject is an expression of the form

θk(S1,S2, . . . ,Sm) z .

where 1� k � m and where eachSi is a term or another threshold subject.

Herek is the threshold value; at leastk of the m subjects must sign an access
request.

A threshold subject may appear only as a subject in an authorization cert; it may
not appear in a name cert. (The reason that a threshold subject may not appear in a
name cert is that a name cert is used to define a name as a set of public keys; if a
name cert could have a threshold subject as a subject then the notion of the value of a
name would have to be generalized from a set of keys to a set of sets of keys, which
would almost surely be too convoluted to be usable in practice.)

As an example of a threshold subject, consider the following certificate:

Self 1 → θ2(K0MIT faculty,
K0Intel researcher,
K0Alice) 1 .

(53)

This certificate requires that keys representing at least two of the three names sign
an access request; equivalently with two of the three groups (MIT faculty, Intel re-
searcher, or Alice) represented. (If Alice is an MIT faculty member, then her signa-
ture alone is good enough; otherwise two keys must be used to sign the request.)

Our previous algorithm can be adapted to handle threshold subjects; this technique
follows closely the algorithm presented by Elien [9].

As noted, there is now not just a single signerK∗ on the request, but aset K∗ of
signers; we want to determine if this set of signers is authorized.

The procedure is as follows.

1. Rewrite threshold subjects. Rewrite each auth cert with a threshold subject so
that the threshold subject contains no names. This is done by introducing new
dummy placeholder keys at each position in the threshold subject. For example,
the auth cert (53) could be rewritten as

Self 1 → θ2(K201,K202,K203) 1 , (54)

whereK201, K202, K203 represent new public keys that do not appear elsewhere
in the set of certificates.

320 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

2. Preserve semantics by adding new auth certs. Add additional auth certs so to
preserve the semantics of the original (now rewritten) auth cert. In this example
we would add the certs:

K201 1 → K0 MIT faculty 1

K202 1 → K0Intel researcher 1

K203 1 → K0Alice 1

(If the original auth certificate had a dead ticket instead of a live one on the
right-hand side, then these certificates would also have dead tickets on their
right-hand sides.)

3. Eliminate names and name certs. Temporarily set aside the rewritten auth
certs of the form (54), so that we have a set of certs containing no threshold
subjects whatsoever. We now apply steps 1–3 of our standard algorithm of
Section 9 to eliminate all names and name certs. Adding back the threshold
certs originally set aside, we now have just a set of auth certs, each of which
has as a subject either a key or a threshold subject on a list of keys.

4. Remove useless auth certs. Remove any auth cert whose right-hand side is
“Kj 0 ” whereKj is not a member of the setK∗ of keys that may participate
in this access request.

5. Label all keys. Label each key inK∗ as “marked”; label all others as “un-
marked”.

6. Propagate labels. Until no more progress can be made, iterate the following:

• If the keyKj is marked, and there is an auth certKi 1 → Kj z , then mark
Ki.

• If there is an auth cert of the form

Ki 1 → θk(Ki1,Ki2, . . . ,Kim) z

where at leastk of the keysKi1,Ki2, . . . ,Kim are marked, then markKi.

7. Finish. A certificate chain is found ifSelf is now marked.

With a bit of care, this algorithm can be implemented as a modified DFS algorithm
running in linear time; the running time of this modified algorithm is unchanged in
the worst case (if we letn denote the number of subjects appearing in the input set
of certificates collectively), since it is linear in the number of vertices and edges of
the graph.

The output format of the certificate chain needs to be extended slightly to handle
the threshold subjects. We leave this detail to the SPKI/SDSI standards documents.

D. Clarke et al. / Certificate chain discovery in SPKI/SDSI 321

11. Conclusions

We have presented an efficient algorithm for computing certificate chains for
SPKI/SDSI. Thus, SPKI/SDSI has an efficient procedure for answering the funda-
mental question, “IsA authorized to doX?”. While SPKI/SDSI is very expressive,
its expressiveness does not come at the price of intractability; sets of SPKI/SDSI
certificates are easy to work with.

Acknowledgments

We thank DARPA (contract DABT63-96-C-0018) and NASA for their support.

References

[1] M. Abadi, On SDSI’s linked local name spaces,J. Comput. Security 6 (1–2) (1998), 3–21.

[2] M. Abadi, M. Burrows, B. Lampson and G. Plotkin, A calculus for access control in distributed
systems,ACM Trans. Programming Languages Systems 15 (4) (1993), 706–734.

[3] S. Ajmani, A trusted execution platform for multiparty computation, Master’s thesis, EECS
Department, MIT, September 2000. Seehttp://www.pmg.lcs.mit.edu/∼ajmani/
projects.html#thesis.

[4] T. Aura, Fast access control decisions from delegation certificate databases, in:Proc. 3rd
Australasian Conference on Information Security and Privacy ACISP’98, Lecture Notes
in Comput. Sci., Vol. 1438, Springer Verlag, Brisbane, Australia, July 1998, pp. 284–
295. Seehttp://www.tcs.hut.fi/Publications/papers/aura/aura-acisp98-
abstract.html.

[5] M. Blaze, J. Feigenbaum and A.D. Keromytis, KeyNote: Trust management for public-key infras-
tructures, in:Proc. Cambridge 1998 Security Protocols International Workshop, 1998, pp. 59–63.
See also IETF RFC 2704.

[6] M. Blaze, J. Feigenbaum and M. Strauss, Compliance checking in the PolicyMaker trust man-
agement system, in: R. Hirschfeld, ed.,Proc. 2nd International Conf. on Financial Cryptography,
FC’98, Springer, 1998, pp. 254–274.

[7] T.H. Cormen, C.E. Leiserson and R.L. Rivest,Introduction to Algorithms, MIT Press/McGraw-Hill,
1990.

[8] G. Elcock, Web-based user interface for a Simple Distributed Security Infrastructure (SDSI),
Master’s thesis, EECS Department, Massachusetts Institute of Technology, June 1997. See
http://theory.lcs.mit.edu/∼cis/theses/elcock-masters.ps.

[9] J.-E. Elien, Certificate discovery using SPKI/SDSI 2.0 certificates, Master’s thesis, EECS
Dept., Massachusetts Institute of Technology, May 1998. Seehttp://theory.lcs.mit.
edu/∼cis/theses/elien-masters.pdf.

[10] C.M. Ellison, RFC 2692: SPKI requirements, The Internet Society, September 1999. See
ftp://ftp.isi.edu/in-notes/rfc2692.txt.

[11] C.M. Ellison, SPKI/SDSI certificate documentation, 2001. Seehttp://world.std.
com/∼cme/html/spki.html.

322 D. Clarke et al. / Certificate chain discovery in SPKI/SDSI

[12] C.M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas and T. Ylonen, Sim-
ple public key certificate, The Internet Society, March 1998. Seehttp://www.clark.
net/pub/cme/spki.txt; This isdraft-ietf-spki-cert-structure-05.txt.

[13] C.M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas and T. Ylonen, SPKI examples, The In-
ternet Society, March 1998. Seehttp://www.clark.net/pub/cme/examples.txt; This
is draft-ietf-spki-cert-examples-01.txt.

[14] C.M. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas and T. Ylonen, RFC 2693: SPKI
certificate theory, The Internet Society, September 1999. Seeftp://ftp.isi.edu/in-
notes/rfc2693.txt.

[15] W. Ford and M.S. Baum,Secure Electronic Commerce: Building the Infrastructure for Digital Sig-
natures and Encryption, Prentice-Hall, 1997.

[16] M.H. Fredette, An implementation of SDSI – the Simple Distributed Security Infrastruc-
ture, Master’s thesis, EECS Dept., Massachusetts Institute of Technology, May 1997. See
http://theory.lcs.mit.edu/∼cis/theses/fredette-masters.ps.

[17] J.Y. Halpern and R. van der Meyden, A logic for SDSI’s linked local name spaces, in:Proceedings
12th IEEE Computer Society Security Foundations Workshop (CSFW-12), 1999, pp. 111–122. Avail-
able at:http://www.cs.cornell.edu/home/halpern/abstract.html#conf110.

[18] M. Harrison, W. Ruzzo and J. Ullman, Protection in operating systems,Comm. ACM 19 (8) (1976).

[19] J. Howell and D. Kotz, A formal semantics for spki, in:Proceedings of the Sixth European Sympo-
sium on Research in Computer Security (ESORICS 2000), Lecture Notes in Comput. Sci., Vol. 1895,
pp. 140–158, 2000. Available at:http://www.cs.dartmouth.edu/∼jonh/research/
delegation/esorics-abs.pdf.

[20] Internet Engineering Task Force, Simple Public Key Infrastructure (SPKI), 1997. See
http://www.ietf.org/html.charters/spki-charter.html.

[21] A.K. Jones, R.J. Lipton and L. Snyder, A linear time algorithm for deciding security, in:Proc. FOCS
’76, IEEE, 1976, pp. 33–41.

[22] B. Lampson, M. Abadi, M. Burrows and E. Wobber, Authentication in distributed systems: Theory
and practice,TOCS 10 (4) (1992), 265–310.

[23] N. Li, Local names in SPKI/SDSI, in:Proceedings of the 13th IEEE Computer Security Foundations
Workshop (CSFW-13), IEEE Computer Society Press, 2000, pp. 2–15.

[24] A.J. Maywah, An implementation of a secure web client using SPKI/SDSI certifi-
cates, Master’s thesis, EECS Dept; Massachusetts Institute of Technology, June 2000. See
http://theory.lcs.mit.edu/∼cis/theses/maywah-masters.ps.

[25] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone,Handbook of Applied Cryptography, CRC
Press, 1997.

[26] A. Morcos, A Java implementation of Simple Distributed Security Infrastructure, Mas-
ter’s thesis, EECS Dept., Massachusetts Institute of Technology, May 1998. Seehttp:
//theory.lcs.mit.edu/∼cis/theses/morcos-masters.ps.

[27] R.L. Rivest, Cryptography and Information Security Group Research Project: A Sim-
ple Distributed Security Infrastructure (SDSI), 1996. Seehttp://theory.lcs.mit.
edu/∼cis/sdsi.html.

[28] R.L. Rivest and B. Lampson, SDSI – a simple distributed security infrastructure, August 1996. See
http://theory.lcs.mit.edu/∼rivest/sdsi10.ps.

