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Abstract

This report presents a preliminary analysis of the security o�ered by

the RC6
TM

block cipher. RC6 is an evolutionary improvement of RC5,
designed to meet the requirements of the Advanced Encryption Standard
(AES). Our analysis demonstrates that RC6 is highly resistant to di�er-
ential and linear cryptanalytic attack, which are currently the two most
e�ective analytical attacks on block ciphers. The data requirements to
mount an attack using either of these two attacks exceeds the amount of
available data with considerable margins for safety.
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1 Introduction

RC6
TM

is a new block cipher submitted to NIST for consideration as the new
Advanced Encryption Standard (AES). The design of RC6 began with a con-
sideration of RC5 [28] as a potential candidate for an AES submission. Modi�-
cations were then made to meet the AES requirements, to increase security, and
to improve performance. The inner loop, however, is based around the same
\half-round" found in RC5.

RC5 was intentionally designed to be extremely simple, to invite analysis
shedding light on the security provided by extensive use of data-dependent ro-
tations. Since RC5 was proposed in 1994, various studies [2, 4, 8, 9, 14, 31]
have provided a greater understanding of how RC5's structure and operations
contribute to its security. While no practical attack on RC5 has been found,
the studies provide some interesting theoretical attacks, generally based on the
fact that the \rotation amounts" in RC5 do not depend on all of the bits in
a register. RC6 was designed to thwart such attacks, and indeed to thwart all
known attacks, providing a cipher that can o�er the security required for the
lifespan of the AES.

Since RC6 is closely built on RC5, many of the same security considerations
come into play during analysis. We will concentrate most on the use of dif-
ferential and linear cryptanalysis in attacking RC6, but we will also consider
other styles of attack. First we review the design of RC6. A more complete
description of the cipher design, the motivation and issues such as performance
can be found in the companion paper The RC6 Block Cipher [29].

1.1 Description of RC6

RC6 is one of a fully parameterized family of encryption algorithms. A version
of RC6 is more accurately speci�ed as RC6-w/r/b where the word size is w
bits, encryption consists of a nonnegative number of rounds r, and b denotes
the length of the encryption key in bytes. Note that in the description of RC6
the term \round" is somewhat analogous to the usual DES-like idea of a round:
half of the data is updated by the other half; and the two are then swapped.
Since the AES submission is targeted at w = 32 and r = 20 we shall use RC6 as
shorthand to refer to such versions. When any other value of w or r is intended
in the text, the parameter values will be speci�ed as RC6-w/r. Of particular
relevance to the AES e�ort will be the versions of RC6 with 16-, 24-, and 32-byte
keys. For all variants, RC6-w/r/b operates on units of four w-bit words using
the following six basic operations. The base-two logarithm of w will be denoted
by lgw.
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a+ b integer addition modulo 2w

a� b integer subtraction modulo 2w

a� b bitwise exclusive-or of w-bit words
a� b integer multiplication modulo 2w

a<<<b rotate the w-bit word a to the left by the amount
given by the least signi�cant lgw bits of b

a>>>b rotate the w-bit word a to the right by the amount
given by the least signi�cant lgw bits of b

The user supplies a key of length k bytes and the 128-bit plaintext block
is loaded into words A;B;C; and D starting with the low-order byte of A.
These four w-bit words contain the output ciphertext at the end. The key
schedule of RC6 is described in the document The RC6 Block Cipher [29] and in
Part III of this report where it comes under closer examination. Here we describe
encryption and decryption. RC6 works with four w-bit registers A;B;C;D
which contain the initial input plaintext as well as the output ciphertext at the
end of encryption. The �rst byte of plaintext or ciphertext is placed in the
least-signi�cant byte of A; the last byte of plaintext or ciphertext is placed into
the most-signi�cant byte of D. We use (A;B;C;D) = (B;C;D;A) to mean the
parallel assignment of values on the right to registers on the left.

Encryption with RC6-w/r/b

Input: Plaintext stored in four w-bit input registers A;B;C;D
Number r of rounds
w-bit round keys S[0; : : : ; 2r + 3]

Output: Ciphertext stored in A;B;C;D

Procedure: B = B + S[0]
D = D + S[1]
for i = 1 to r do

f
t = (B � (2B + 1))<<< lgw
u = (D � (2D + 1))<<< lgw
A = ((A� t)<<<u) + S[2i]
C = ((C � u)<<<t) + S[2i+ 1]
(A;B;C;D) = (B;C;D;A)

g
A = A+ S[2r + 2]
C = C + S[2r + 3]
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Figure 1: Encryption with RC6-w/r/b. Here f(x) = x(2x+ 1).
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Decryption with RC6-w/r/b

Input: Ciphertext stored in four w-bit input registers A;B;C;D
Number r of rounds
w-bit round keys S[0; : : : ; 2r + 3]

Output: Plaintext stored in A;B;C;D

Procedure: C = C � S[2r + 3]
A = A� S[2r + 2]
for i = r downto 1 do

f
(A;B;C;D) = (D;A;B;C)
u = (D � (2D + 1))<<< lgw
t = (B � (2B + 1))<<< lgw
C = ((C � S[2i+ 1])>>>t)� u
A = ((A � S[2i])>>>u)� t

g
D = D � S[1]
B = B � S[0]

1.2 Overview of this report

The remainder of this report is split into four parts. In the �rst part we consider
the security of RC6 with regards to di�erential cryptanalysis [1]. Then we
consider linear cryptanalysis [22] and its application to RC6. Finally in the
last two parts we will briey address issues related to the key schedule and the
attack of di�erential-linear cryptanalysis [20].

To facilitate our analysis we make the simple observation that if we were to
drop the �xed rotation by lgw bits (FR) from RC6 along with the quadratic
function f(x) = x(2x+1) (i.e. replacing it with the identity function f(x) = x),
then the resulting cipher would be very similar to how we might imagine a
four-strand version of RC5 would look. This will be the starting point for our
analysis and we will gradually introduce additional complexity as we analyze
increasingly close approximations to RC6. We introduce some of these simpler
variants to RC6 here.
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RC6-I-NFR A version of RC6 in which f(x) = x(2x + 1) is replaced by the
identity function f(x) = x and there are no �xed rotations.

Encryption with RC6-I-NFR

Procedure: B = B + S[0]
D = D + S[1]
for i = 1 to r do

f
t = B
u = D
A = ((A� t)<<<u) + S[2i]
C = ((C � u)<<<t) + S[2i+ 1]
(A;B;C;D) = (B;C;D;A)

g
A = A+ S[2r + 2]
C = C + S[2r + 3]

RC6-NFR A version of RC6 in which there are no �xed rotations.

Encryption with RC6-NFR

Procedure: B = B + S[0]
D = D + S[1]
for i = 1 to r do

f
t = B � (2B + 1)
u = D � (2D + 1)
A = ((A� t)<<<u) + S[2i]
C = ((C � u)<<<t) + S[2i+ 1]
(A;B;C;D) = (B;C;D;A)

g
A = A+ S[2r + 2]
C = C + S[2r + 3]
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RC6-I A version of RC6 in which f(x) = x(2x+1) is replaced by the identity
function f(x) = x.

Encryption with RC6-I

Procedure: B = B + S[0]
D = D + S[1]
for i = 1 to r do

f
t = B<<< lg w
u = D<<< lg w
A = ((A� t)<<<u) + S[2i]
C = ((C � u)<<<t) + S[2i+ 1]
(A;B;C;D) = (B;C;D;A)

g
A = A+ S[2r + 2]
C = C + S[2r + 3]

RC6 The full version of RC6 as described in The RC6 Block Cipher [29] and
Section 1.1 of this report.

It might be illustrative to view these di�erent variants of RC6 as forming a
lattice with the most sophisticated variant (that is RC6) uppermost.

RC6-I-NFR

RC6-I RC6-NFR

RC6

c
cc
#
##

c
c
c

#
#
#

?

increasingly

simple

variants

1.3 Summary of current attacks against RC6

1.3.1 Brute force attacks

In [29] we conjecture that to attack RC6 the best approach is that of exhaustive
search for the b-byte encryption key (or the expanded key array S[0; : : : ; 43]
when the user-supplied encryption key is particularly long). Such brute force
attacks are applicable to any block cipher, and are only countered by using
appropriately long keys.
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Estimates of the Plaintext Requirements to Attack RC6

number of rounds

attack 8 12 16 20 24

di�erential cryptanalysis 256 2117 2190 2238 2299

linear cryptanalysis 247 283 2119 2155 2191

Table 1: A summary of the best di�erential and linear cryptanalytic attacks
against RC6. RC6 with 20 rounds is recommended. A box denotes when the
data requirements for a successful attack exceed 2128, the total number of pos-
sible plaintexts.

With RC6 the work e�ort required for an on-line search for a b-byte key
or for the expanded key array S[0; : : : ; 43] is minf28b; 21408g operations. In
principal at least, with considerable memory (in excess of 2700 bytes!) and
around 2704 o�-line pre-computations, one could mount a meet-in-the-middle
attack to recover the expanded key array S[0; : : : ; 43]. This would require 2704

on-line computations so the work e�ort for exhaustive search might best be
estimated by minf28b; 2704g operations [29]. For the key sizes speci�ed in the
AES e�ort, a brute-force attack appears to be infeasible.

1.3.2 Analytical attacks

In Table 1 we give the data requirements for the basic di�erential and linear
attacks we have considered against RC6. We have typically concerned ourselves
in this report with an investigation of the encryption properties of RC6. A
brief consideration of the decryption process suggests that the properties and
structure of the decryption process are very similar to those of encryption. The
attacks and considerations used in assessing the security of encryption appear to
apply equally to decryption and we have not found any styles of attack where
the security of the two processes would be widely di�erent. The text of this
report contains complete descriptions of a variety of attacks and an analysis of
simpli�ed variants of RC6. Table 1 provides the most advantageous �gures for
the cryptanalyst as a result of our analysis. A surrounding box denotes when
the data requirements for a successful attack exceed 2128, the total number of
possible plaintexts. We conclude that RC6 with 20 rounds is secure against
di�erential and linear cryptanalytic attacks.
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Part I

Di�erential Cryptanalysis

There are a variety of approaches that can be taken in assessing the security
of RC6. We attempt to do so by considering the strength of increasingly ac-
curate approximations to RC6, observing how the security might be enhanced
at successive steps. In Sections 3 and 4 we consider two variants of RC6 in
which the quadratic function is replaced by the identity function and where the
�xed rotation by �ve bits is either present (RC6-I) or not present (RC6-I-NFR).
In Section 5 we study the characteristics of the quadratic function. Then in
Section 6, we consider a variant of RC6 in which the �xed rotation is omit-
ted (RC6-NFR). Finally, we assess the strength of the complete version of RC6
against di�erential-style attacks in Section 7.

Even though the report is written so as to guide the reader through an in-
creasingly sophisticated set of di�erential attacks on increasingly complicated
variants of RC6, the eager reader should feel at liberty to move to Section 7
which deals exclusively with the cryptanalysis of RC6. We also feel that Sec-
tion 5 is rather technical and involved. For those readers interested in an
overview of the security of RC6 but less interested in an in-depth analysis,
Section 5 can be read over quickly without the loss of too much continuity.

2 Overview

In this section we review di�erential cryptanalysis, some of the advanced tech-
niques that might be useful during our analysis, and an overview of our approach
to the di�erential cryptanalysis of RC6. In particular we also consider existing
di�erential attacks on RC5 and how they might relate to RC6 (Section 2.2.1).

2.1 Di�erential cryptanalysis

Di�erential cryptanalysis is a chosen plaintext attack on iterative block ciphers.
By choosing the plaintext pairs that are encrypted, the di�erence between the
inputs to the �nal round of the cipher can be predicted with a certain probability.
The particular de�nition of \di�erence" depends on the block cipher under
attack. The aim is that the predicted di�erence between the pair entering the
�nal round can be used together with the di�erence in the ciphertext pair (which
is observed and hence known) to deduce information about the subkey used in
the �nal round of the cipher. Full details of this style of attack pioneered by
Biham and Shamir can be found in [1].

We note that the probability that a chosen plaintext pair will provide the de-
sired di�erence at the end of round (r�1) will typically decrease as r increases.
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Thus attacks on reduced versions of iterated ciphers can be devastatingly ef-
fective whereas the full version of the same ciphers can have su�ciently many
rounds to deter a cryptanalyst from embarking on such an attack.

The optimal choice for the di�erence in the plaintext pairs is calculated
by investigating characteristics; these specify the expected di�erences for each
round of the cipher. A characteristic has some associated probability which is
based on the likelihood that the expected di�erence in the last round (speci�ed
by the characteristic) actually occurs given that the speci�ed di�erence in the
�rst round is used.

Interesting theoretic work by Lai, Massey and Murphy [19] on the applica-
bility of di�erential attacks to certain types of iterated ciphers introduced the
idea of di�erentials which are a broader version of characteristics; only the input
and output di�erences are speci�ed while the di�erences at intermediate rounds
are not considered.

There are some variants to the basic di�erential attack. While the use of
di�erentials has become a routine consideration in the analysis of block ciphers,
other enhancements are more limited in their scope and applicability. As re-
search into the security of RC6 continues a more complete picture of these more
advanced techniques will undoubtedly become clear.

Knudsen has introduced the idea of truncated di�erentials (formally called
partial di�erentials) [11]. Here the cryptanalyst attempts to predict the be-
havior of part of the di�erence but not the full 128-bit di�erential. Instead, the
successful prediction of part of the di�erence can sometimes lead to the recovery
of key material. Truncated di�erentials can allow the cryptanalyst additional
exibility in attacking a cipher, though very often it seems that their application
can be somewhat limited. We have sometimes used a broad notion of truncated
di�erentials as enhancements to some of our basic attacks. At times we have
forgone the opportunity to predict the behavior of certain words of a character-
istic or di�erential in an attempt to improve the probability of a recognizable
di�erence occuring. This has helped provide a reduction in the plaintext re-
quirements, but might best be viewed as an optimization trick rather than as
a full attack using truncated di�erentials. Ciphers can be constructed that are
vulnerable to analysis with truncated di�erentials [12] but it is only very occa-
sionally that this attack, or close variants, is more useful against more serious
proposals. Two notable examples would be Safer [21, 13] and Skipjack [26, 17].

As an analogy to di�erentiation in calculus, higher-order di�erential attacks
have been considered by Lai [18]. Knudsen subsequently demonstrated that
ciphers could be constructed that were vulnerable to high-order di�erential at-
tack while being resistant to conventional di�erential attack [12]. Similarly,
interpolation attacks [5] have been demonstrated as e�ective attacks on some
constructed ciphers. However, both these attacks seem to be somewhat limited
when used on more sophisticated ciphers with a reasonable number of rounds.
This is our experience with RC6.

One �nal variation on the theme of di�erential cryptanalysis is to consider

13



the use of so-called quasi-di�erentials [13]. By changing the notion of di�erence
part way through an attack, the cryptanalyst might be able to work around
some of the incompatabilities that the designer intended to hinder cryptanal-
ysis. The two most obvious notions of di�erence for RC6 are exclusive-or and
integer subtraction. Much of the work we pursue during our analysis of di�er-
ential cryptanalysis provides a duality between these two notions. However, we
feel that there is little to be gained in switching between these two notions of
di�erence while trying to build up a useful characteristic or di�erential.

Future work will allow us, and others, to expand on the applicability of
these more advanced techniques to the cryptanalysis of RC6. One of the nicer
features of RC6 is its close relation to RC5. Since RC5 has been available to the
community since December 1994, and in that time there have been no reports
of these more sophisticated methods being used to attack RC5, it might be
tempting to conclude that applying such techniques to RC6 would be as hard.
Of course there is no guarantee that this is indeed the case. However we take
some comfort from the fact our early analysis seems to suggest that RC6 is as
resistant to these advanced methods of analysis as is RC5.

2.1.1 Notation and basic assumptions

Here we establish some of the notation that we will use during this report as
well as some of the basic assumptions that we have made.

Throughout we use ei to denote the 32-bit word which is zero except for
a single one in bit position i. In integer terms we have ei = 2i. At times we
will �nd the need to denote a \generic" di�erence. This we represent as �. As
our analysis of the di�erent variants gets more advanced, we add more detail to
de�ne the form of � thereby yielding a di�erence pattern of speci�c interest in
our analysis.

In general, we will be assuming in our attacks that in attacking an r-round
cipher, a di�erential for (r � 2) rounds will be required. This is a very typical
starting assumption, but it is one that is likely to change as analysis progresses.
For some ciphers [15] there is no easy way to use an (r � 2)-round characteris-
tic during an attack, whereas there are improved attacks on other ciphers [28]
that allow the cryptanalyst to use a shorter characteristic or di�erential. Sub-
sequent research will undoubtedly reveal the most e�ective way of measuring
the true security o�ered by RC6. But in anticipation of the discovery of some
advanced techniques that allow even a few more rounds to be removed from the
characteristic used by the attacker, we have built in a large margin of safety.

Very often, we will represent the evolution of characteristics in RC6 in a
graphical way. In such circumstances we will use # to represent the action of
one round of encryption.
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2.2 Di�erential cryptanalysis and RC6

Many readers are familiar with the fact that the notion of di�erence can be
adapted depending on the cipher under attack. We believe that the two most
natural measures of di�erence for attacking RC6 are those of bitwise exclusive-

or and integer subtraction modulo 232. We will be addressing both measures of
di�erence during our analysis of RC6.

Before starting, we stress that the security estimates we will be giving for
the simple variants of RC6 are only intended to o�er guidance. For example we
will only consider the bitwise exclusive-or measure of di�erence for these vari-
ants. It is straightforward (and often trivial) to �nd more data-e�cient attacks
for these simple variants since our estimates are often derived by using simple
characteristics or di�erentials in the most basic ways. Our purpose in consider-
ing these simple variants at all is to illustrate how the security of RC6 might be
built up as di�erent components are added. While we have not attempted to
be exhaustive in the cryptanalysis of these simple variants, we believe that the
estimates we derive for the full cipher will provide the reader with a reasonably
accurate picture of the security provided by RC6.

2.2.1 Di�erential cryptanalysis of RC5

Since the publication of RC5, there have been several results on the strength of
RC5 against di�erential attacks [2, 8, 14]. Analysis of RC5 [8, 9] has shown that
the most advantageous strategy for a cryptanalyst is to use di�erences that do
not a�ect the rotation amount. In fact, once there is a di�erence in the rotation
amount, a very quick avalanche of change takes place that appears to thwart
existing di�erential attacks. With this in mind, our strategy throughout our
attempts to cryptanalyze RC6 will be to use di�erences that do not provide
di�erent rotation amounts for a given pair.

We also mention here that it is in general to the attacker's advantage to keep
the Hamming weight of almost all the intermediate di�erences low so as to keep
better control over the evolution of the characteristic or di�erential. Despite
this, more recent work on RC5 has shown that heavier weight characteristics
can also be bene�cial in attacking a cipher [2]. However, due to the use of the
quadratic function in RC6, we feel that this style of attack is unlikely to apply
to RC6, even though it might apply to some simple variants of RC6 in which
the quadratic function is not present.
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3 Di�erential Cryptanalysis of RC6-I-NFR

In this section:

- We show that RC6-I-NFR o�ers reasonable resistance to di�erential

cryptanalysis but as many as 38 rounds might be necessary for the

purposes of the AES

- We demonstrate that there is a very signi�cant e�ect when considering

di�erentials instead of characteristics

RC6-I-NFR is a much simpli�ed version of RC6. In structure it might be
compared to two parallel versions of RC5 with the rotation amount for one
copy of RC5 being taken from the second copy and vice versa. By looking at
RC6-I-NFR we get a glimpse of the underlying structure of RC6 and we get a
feel for the likely propagation of di�erences through the cipher. In this way we
might identify the cryptographic components (addition, exclusive-or, rotation
and multiplication) that provide the biggest contribution to security, either in
isolation or in combination.

Following Section 2.1.1 we will use � to denote a \generic" di�erence, where
we will only use the exclusive-or di�erence to analyze this variant. We will
use � to denote the probability that a di�erence � remains unchanged across
an integer addition unit. We note that � depends primarily on the Hamming
weight of � and so we will denote this probability ��. We let �� denote the
probability that the di�erence � remains unchanged by the data-dependent
rotation.

Starting with a particular di�erence (��00) in the four input words, say, it
is interesting to note the path the di�erence follows through the cipher. Often a
word that has some non-zero di�erence in it will be used to provide the argument
for a rotation amount. We will assume in such situations that any di�erences
in the bits is not in the rotation amount, i.e., the �ve least signi�cant bits of �
are zero. All 15 non-zero di�erence patterns involving the di�erence � can be
\factored" into three cycles, and the cycles are shown in Table 2.

It seems that di�erences following the patterns in cycle (a) or (b) in Table 2
will be most useful in a di�erential attack, since cycle (c) will give a lower
probability when extended to cover the same number of rounds. Because of the
symmetry between cycle (a) and cycle (b), we will be mainly using cycle (a) as
the basic pattern for characteristics and di�erentials throughout our analysis of
RC6 and its variants. This cycle seems to be the best even when we consider
some of the other variants of RC6, but we note in Section 7.4 that there are
short iterative di�erentials for RC6 that are more closely related to the (c) cycle.

Immediately from Table 2, there are numerous characteristics that can be
identi�ed. Among them, by setting � = 231 we have �� = 1 and so in cycle
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(a) (b) (c)

� � 0 0 0 0 � � � � � �
# # #

� 0 0 0 0 0 � 0 � 0 � 0
# # #

0 0 0 � 0 � 0 0 0 � 0 �
# # #

0 � � 0 � 0 0 � � � � �
# #

� � 0 � 0 � � �
# #

� � � 0 � 0 � �
# #

� � 0 0 0 0 � �

�6��
6
� �6��

6
� �4��

4
�

Table 2: Basic characteristics for attacking RC6-I-NFR illustrating the contri-
bution of the addition unit (probability �) and the rotation unit (probability �).
Here � denotes a \generic" di�erence with speci�c choices for � being made in
Table 3 to maximize the resultant probability and each row-to-row transition
represents one round of encryption.

general a speci�c choice

et et 0 0 e31 e31 0 0
# #

et 0 0 0 e31 0 0 0
# #

0 0 0 es 0 0 0 e31
# #

0 eu es 0 0 e31 e31 0
# #

eu eu 0 ev e31 e31 0 e31
# #

eu eu ev 0 e31 e31 e31 0
# #

eu eu 0 0 e31 e31 0 0

Table 3: A generalized six-round characteristic and one particular embodiment
for RC6-I-NFR. Note that the values to s and v are internal to the cipher thereby
suggesting a likely role for di�erentials.
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(a) we obtain a six-round characteristic that holds with probability �6 = 2�30

(see Table 3). Note that addition operations can be crossed with probability
one when the single bit of di�erence is in the most signi�cant bit of the word.
For convenience we will drop the notation �� and just use � where this is
no ambiguity in the text. Note that for the variant RC6-I-NFR, most of the
security against low Hamming weight di�erences is derived from the rotation
unit.

More general characteristics can be constructed by allowing the di�erence to
take di�erent values while still maintaining the pattern in cycle (a). In Table 3
(left half) we illustrate such general characteristics. The only restriction on the
values t, s, u, and v is that they lie between 5 and 31, i.e., the di�erence is
not in the rotation amount. We see that any characteristic satisfying the above
condition holds with probability �6 � �6.

The general characteristics presented in Table 3 allow us to form di�erentials
for RC6-I-NFR. In particular, for a given starting t the variables s, u, and v
can each take on one of 32 � 5 = 27 choices. Hence, we obtain a six-round
di�erential1 which holds with probability

�6 � �6 � 273 � 2�36 � 273 � 2�22:

Since this six-round di�erential is iterative, we can use it to construct r-round
di�erentials for any value r. For example, to attack RC6-I-NFR with 20-rounds
under our assumptions in Section 2.1.1, we will need an 18-round di�erential
which can be obtained by concatenating three six-round di�erentials. This holds
with probability (2�22)3 = 2�66.

Since the data requirements for a di�erential attack are proportional to the
inverse of the probability of the di�erential, we can easily estimate the number
of chosen plaintext pairs that are needed to attack RC6-I-NFR with a selected
number of rounds (see Table 4). To derive these estimates for a di�erent number
of rounds we merely found the best window consisting of an (r � 2)-round
di�erential within the iterated di�erential given in Table 5. This is the technique
we will use for all the estimates we derive for this simpli�ed variants of RC6.

We remark that the most unimportant aspects of our results on RC6-I-NFR
are the data requirements to mount an attack. It is trivial to �nd further im-
provements that will give substantial savings in the data required for an attack.
Instead, this analysis is important because it points a way for developing attacks
on the version of RC6 and it also highlights the e�ectiveness of di�erentials and
how they might help to improve some attack beyond the level implied by the
analysis of a single characteristic.
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Di�erential Cryptanalysis of RC6-I-NFR

number of rounds

variant 8 12 16 20 24

RC6-I-NFR 230 250 265 290 2110

using basic characteristic

RC6-I-NFR 222 232 245 266 276

+ di�erential considerations

Table 4: An estimate of the number of plaintexts needed to mount a di�erential
attack on RC6-I-NFR with a varying number of rounds. The probability of the
di�erential for eight rounds has been veri�ed experimentally.

general a speci�c choice

et+5 et 0 0 e16 e11 0 0
# #

et 0 0 0 e26 0 0 0
# #

0 0 0 es 0 0 0 e26
# #

0 eu es 0 0 e26 e26 0
# #

eu eu�5 0 ev e26 e21 0 e26
# #

eu�5 eu�10 ev 0 e21 e16 e26 0
# #

eu�10 eu�15 0 0 e16 e11 0 0

Table 5: A generalized iterative six-round characteristic and one particular em-
bodiment for RC6-I. The �xed rotation forces certain conditions on these inter-
nal variables so we have that the values of t + 5, s + 5, v + 5, u + 5, u, u � 5,
and u� 10 all lie between 5 and 31.
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Di�erential Cryptanalysis of RC6-I

number of rounds

variant 8 12 16 20 24

RC6-I 236 260 278 2108 2132

using basic characteristic

RC6-I 223 234 247 269 280

+ di�erential considerations

Table 6: An estimate of the number of plaintexts needed to mount a di�erential
attack on RC6-I with a varying number of rounds.

4 Di�erential Cryptanalysis of RC6-I

In this section:

- We show that RC6-I o�ers reasonable resistance to di�erential cryptanal-

ysis but as many as 38 rounds might be necessary for the purposes of

the AES

- We demonstrate that there is a very signi�cant e�ect when considering

di�erentials instead of characteristics

- We note that by adding the �xed rotation to RC6-I-NFR we change the

course of the di�erentials, but not their e�ect

The major di�erence between the variant RC6-I and RC6-I-NFR is the �xed
rotation by �ve bits. Therefore, we will pay particular attention to how the �xed
rotation a�ects the evolution of the characteristics and di�erentials in RC6-I.

Once again we will use exclusive-or as the measure for di�erence and use ei
to denote 2i. Starting with the characteristics for RC6-I-NFR given in Table 3
we can construct characteristics for RC6-I. In Table 5, we demonstrate both a
general and a speci�c six-round characteristic for RC6-I. We remark that even
though these characteristics for RC6-I are similar to those for RC6-I-NFR it is
harder to line up the bit di�erences within each word. As a result, there are
more restrictions on the values to the variables t, s, v, and u. In particular,
the �xed rotation provides some constraints to these variables and we need the
values of t+ 5, s+ 5, v + 5 and u+ 5, u, u� 5, u� 10 all to lie between 5 and

1We do not need to �x the value of u at the end of the sixth round.
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31. This forces us to choose 0 � t; s; v � 26 and 15 � u � 26. It is easy to see
that a general characteristic satisfying these constraints holds with probability
�6��6. By setting t = u�15 = 11 and s = v = 26 we obtain a speci�c iterative
characteristic2 that holds with probability 2�36.

Taking into account the e�ect of di�erentials over these six rounds, we note
that starting with a given value t, there are 27 possibilities for the values of s
and v and 12 possibilities for the value u. So a useful six-round di�erential for
attacking RC6-I holds with estimated probability

�6 � �6 � 272 � 12 = 2�36 � 272 � 12 � 2�23:

Just as we did with RC6-I-NFR we can build (r�2)-round di�erentials using
these six-round iterative di�erentials and mount a di�erential attack on r-round
RC6-I. Table 6 gives an estimate for the resulting plaintext requirements. To
derive these estimates for a di�erent number of rounds we merely found the best
window consisting of an (r�2)-round di�erential within the iterated di�erential
given in Table 5.

5 The Quadratic Function

In this section:

- We establish some of the technical tools for analysis of the quadratic

function

- We conclude that integer subtraction is a better measure of di�erence for

the analysis of RC6 than exclusive-or

The introduction of the quadratic function is perhaps the major innovation
that took place during the evolution from RC5 to RC6. The main security
goal is to make the data-dependent rotation amount, which is derived from the
output of the quadratic function, dependent on all bits of the input word. This
should thwart existing di�erential attacks that apply to RC5.

To analyze the quadratic function under the di�erential framework, we need
to choose an appropriate measure for di�erence. Since the operations involved
are integer addition and multiplication, it seems quite natural to start with
integer subtraction as the measure for di�erence. As we will see in the analysis
of RC6 this measure turns out to be very useful, though for completeness and
comparison we will also be considering the use of exclusive-or.

2If we set t = 26 instead, we could get a non-iterative characteristic that holds with

probability 2�35. As stated at the beginning of the chapter, however, we do not consider such

optimizations for RC6 variants, but they will be taken into account during the analysis of the

full RC6.
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5.1 Basic properties of the quadratic function

We �rst show that the quadratic function f(x) = x(2x + 1) mod 232 is a per-
mutation by proving the following more general result.

Lemma 1 Let f(x) = x(ax + b) mod 2w where a is even and b is odd. Then

f(x) is a one-to-one mapping from f0; 1gw to f0; 1gw.

Proof. By contradiction. Suppose for some x1 6= x2 that f(x1) = f(x2): Then,
ax21 + bx1 = ax22 + bx2 mod 2w: Combining terms we get

(x1 � x2)(ax1 + ax2 + b) mod 2w = 0:

Since (ax1 + ax2 + b) is odd (x1 � x2) must be a multiple of 2w. This is a
contradiction. 2

We now consider some basic di�erential properties of the quadratic function.
For two inputs x1 and x2, let y1 = f(x1) and y2 = f(x2) and de�ne

�x = x2 � x1;

�y = y2 � y1:

Lemma 2 For inputs x1 and x2, let y1 = f(x1) and y2 = f(x2). De�ne �x =
x2 � x1 and �y = y2 � y1. Then

�y = (4x1�x + �x + 2�2x) mod 232:

Proof. Straightforward evaluation of f(x1) and f(x2). 2

Lemma 3 Given the notation in Lemma 2, �y = �x if, and only if, 4x1�x +
2�2x = 0 mod 232.

Proof. Follows immediately from Lemma 2. 2

While we will not use the following lemma directly, we feel that it is useful
in providing some justi�cation for the use of the high-order bits of the output
from the quadratic function as a rotation amount, instead of any others.

Lemma 4 Given an input x1 chosen uniformly at random from f0; 1g32, let
gi;j denote the probability that ipping bit i of x1 will ip bit j of y1 = f(x1).
Then,

gi;j =

8<
:

0 for j < i,
1 for j = i,
1 for j = 1 and i = 0, and

gi;j 2 [1=4; 3=4] for j > i � 1 or j � 2 and i = 0.

For the last case, gi;j is close to 3=4 if j = 2i+2, and for most of the other i; j
pairs gi;j is close to 1=2.
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Proof. Let x2 = x1 � 2i and let y2 = f(x2). Without loss of generality, we
assume that x1[i] = 0, i.e., the ith bit of x1 is zero. From Lemma 2, we obtain

�y = y2 � y1 = 2i+2x1 + 2i + 22i+1 mod 232 (1)

� 2i+2x1 + 22i+1 mod 232 (2)

� 2i+2x1 mod 232: (3)

Now consider each case of the lemma separately.
Case 1: j < i. From Equation 1, we see that bit j of �y is zero. So ipping

bit i of x1 does not ip bit j of f(x1).
Case 2: j = i. Again using Equation 1, we know that bit i of �y is one.

Hence ipping bit i of x1 always ips bit i of f(x1).
Case 3: j = 1 and i = 0. Using Equation 1, �y = 4x1 + 1 + 2. Since

x1[0] = 0, y1[0] = 0. Therefore, when computing y2 = y1 + �y, there is no carry
from bit 0 into bit 1. Since bit 1 of �y is one, ipping bit 0 of x1 always ips bit
1 of f(x1).

Case 4: j > i � 1 or j � 2; i = 0. We �rst consider the case where
j = i + 1. From Equation 1, bit i + 1 of �y is always zero and bit i of �y is
always one. When computing y2 = y1 + �y, there is a carry into bit i+ 1 with
probability approximately 1=2, and hence gi;i+1 � 1=2.

We next consider the case where j = 2i + 2. Since x1[i] = 0, bit 2i + 2
of 22i+1x is zero. We analyze the carry e�ect when computing y2 = y1 + �y
using approximation 2. If x1[i � 1] = 1, then there is always a carry into bit
2i + 2 by due to the term 22i+1. If x1[i � 1] = 0, then there is a carry with
probability about 1=2. Overall, there is a carry with probability about 3=4, and
so gi;j � 3=4.

We �nally consider the case where j � i+2 and j 6= 2i+2. Using Approxi-
mation 3, we obtain that bit j of �y is random since x1 is random. So ipping
bit i of x1 ips bit j of f(x1) with probability about 1=2. The inexact value is
due to the presence of a carry e�ect.

Experimental results showed that gi;j ranges between 1=4 and 3=4, and most
of the probabilities are very close to 1=2 especially when i � 16. 2

Lemma 4 demonstrates that even a change of a single bit is likely to change
at least one of the high-order bits that will be used as a rotation amount. This
will help provide a very fast avalanche of change. This lemma is also interesting
because it is closely related to the results presented in Lemma 6 and Lemma 7.

5.2 Using integer subtraction as a measure of di�erence

In this section, we will study characteristics of the quadratic function that have
the form �y = �x. These characteristics are quite useful since they can easily be
joined to give characteristics with a similar form as those derived in Section 3.
We will call these characteristics static characteristics for the quadratic function.
Other forms of characteristic will be discussed in Section 5.5.
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Lemma 5 If �x is odd then the characteristic �y = �x holds with probability

zero.

Proof. Since �x is odd, 2�2x = 2 mod 4. Hence 4x1�x+2�2x is never equal to zero
modulo 232. 2

Lemma 6 If �x = v2i for some odd integer v and 1 � i � 30, then the charac-

teristic �y = �x holds with probability 2i�30. If �x = 231, then the characteristic

�y = �x holds with probability one.

Proof. From Lemma 3, �y = �x if, and only if, 4x1v2
i+2(v2i)2 = 0 mod 232. For

1 � i � 15 this is equivalent to x1+ v2i�1 = 0 mod 230�i and for 16 � i � 30 it
is equivalent to x1 = 0 mod 230�i. Note that in either case, the most signi�cant
(i + 2) bits of x1 can take any value. The only constraint imposed is on the
least (30� i) bits of x1. Therefore, averaging over all possible values of x1, the

probability that �y = �x is 2i+2

232 = 2i�30. 2

The two lemmas just given cover all possible static characteristics, and they
show that the probability of such characteristics depends on the input di�erence
�x. The characteristics that we will use to analyze RC6 and RC6-NFR are those
in which the integer di�erence has Hamming weight one (i.e., �y = �x = 2i). It is
worth observing that for these characteristics, the probability the characteristic
holds drops quickly as i, the bit position involved in the approximation, moves
to less signi�cant bit positions. As we will see, this property of the quadratic
function is critical in reducing the threat of di�erential cryptanalysis.

5.3 Using exclusive-or as a measure of di�erence

In this section we will consider counterparts to the single-bit, static characteris-
tics �y = �x = 2i that we studied in Section 5.2. These counterparts are formed
by using exclusive-or as the measure of di�erence. Following the notation es-
tablished in Section 5.1 we de�ne

��x = x2 � x1; and

��y = y2 � y1:

Lemma 7 Let pi be the probability of the characteristic ��y = ��x = 2i. Then

pi =

8<
:

1 for i = 31
2i�30 for 15 � i � 20
0 for 0 � i � 14

(4)

and pi � 2i�31 for 21 � i � 30. (5)

Proof. There are two situations to consider when we have ��x = 2i. Either
(a) x2 = x1 + 2i and x1[i] = 0, or (b) x1 = x2 + 2i and x2[i] = 0. Since x1 is
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uniformly distributed, each case happens with probability 1=2. By symmetry
arguments we only need to consider (a). We will divide the proof into several
cases according to the value of i.

Case 1: 16 � i � 30. Based on Lemma 2, we have

y2 � y1 = 2i+2x1 + 2i + 22i+1 mod 232

= 2i+2x1 + 2i mod 232 (since i � 16):

Note that ��y = 2i if, and only if, both of the following events hold.

Event A 2i+2x1 = 0 mod 232:

Event B y1[i] = 0:

Following the argument in Lemma 6, we obtain prob(A) = 2i�30. Therefore,
the probability of the characteristic ��y = ��x = 2i is equal to

pi = prob(A)� prob(BjA) = 2i�30 � prob(BjA):

Let qi = prob(BjA). We will show that qi = 1 when 16 � i � 20 and
qi � 1=2 when 21 � i � 30. This will be su�cient to prove this case.

If 16 � i � 20, then Event A implies that the lower (30� i) bits of x1 are 0.
Hence, the lower 2(30� i)+1 = 61�2i bits of 2x21 are zero. Since y1 = 2x21+x1
we have y1[i] = x1[i] = 0.

If 21 � i � 30, then Event A implies that the upper (i + 2) bits of x1 are
random. Hence, bits (61� 2i) through 31 of 2x21 are approximately \random",
and bit i falls into this range when 21 � i � 30. Since y1 = 2x21 + x1 we have
that with probability approximately 1=2, y1[i] = x1[i] = 0.

This counter-intuitive approximation is due to the fact that each bit of x2

is not uniformly distributed even when x is uniformly distributed. The values
of pi for 21 � i � 30 are given by the following table.

i 231�i 1=pi

21 1024 819.200000
22 512 455.111111
23 256 248.242424
24 128 126.025089
25 64 63.750731
26 32 31.938838
27 16 15.992672
28 8 7.998251
29 4 3.999823
30 2 1.999954

Case 2: i = 15. This case follows essentially the same argument as pre-
sented for Case 1 but the details are slightly di�erent. Setting �x = 215 in
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Lemma 2, we have

y2 � y1 = 217x1 + 215 + 231 mod 232:

Note that ��y = 215 if, and only if, both of the following events hold.

Event A 217x1 + 231 = 0 mod 232:

Event B y1[15] = 0:

Following the argument in Lemma 6, we obtain

prob(A) = 2�15:

Therefore, the probability of the characteristic ��y = ��x = 215 is equal to

p15 = prob(A)� prob(BjA) = 2�15 � prob(BjA):

Note that Event A implies that the lower 14 bits of x1 are 0 and that bit 14 is
1. Hence, the lower (2� 14) + 1 = 29 bits of 2x21 are zero. Since y1 = 2x21 + x1,
we have y1[15] = x1[15] = 0. Therefore, p15 = 2�15 = 2i�30.

Case 3: 1 � i � 14. In this case, we have

y2 � y1 = 2i+2x1 + 22i+1 + 2i mod 232:

Now, y2 � y1 can be 2i if, and only if,

x1 = �2i�1 mod 230�i:

This condition says that bits (i� 1) through (29� i) of x1 must be 1. But this
contradicts the initial assumption that x1[i] = 0.

Case 4: i = 0 or i = 31. For i = 0, the result follows from Lemma 5. For
i = 31, the result is straightforward since integer subtraction and exclusive-or
are the same when the di�erence is in the most signi�cant bit. 2

We suspect the reader will �nd part of the result in Lemma 7 surprising. As
the next section will show, it does however give us the reason why we prefer to
use integer subtraction as the measure of di�erence when analyzing RC6 instead
of exclusive-or.

5.4 Comparing integer subtraction and exclusive-or

In the preceeding sections we studied static characteristics for the quadratic
function using both integer subtraction and exclusive-or as the measure of dif-
ference. Based on Lemma 6 and Lemma 7 we can now compare the probabilities
of these characteristics under both di�erence measures in Table 7.

From this table it is clear that the probabilities for characteristics using
integer subtraction are slightly higher than when using exclusive-or. More im-
portantly, for small values of i (that is, with i � 14), we can only use integer

26



bit position i probability �y = �x = 2i probability ��y = ��x = 2i

31 1 1
21 � i � 30 2i�30 � 2i�31

15 � i � 20 2i�30 2i�30

1 � i � 14 2i�30 0
0 0 0

Table 7: The probabilities of static single-bit characteristics for the quadratic
function. Probabilities are given using both integer subtraction and exclusive-or
as the measure of di�erence.

subtraction since the probabilities for the relevant characteristics become zero
when exclusive-or is used.

Before concluding that integer subtraction should be used to analyze RC6,
however, there is one more factor that we need to take into account. We need
to decide whether the chosen measure of di�erence will also work well with the
other operations present in RC6.

In particular, we will now consider how a single-bit di�erence under integer
subtraction propagates through the exclusive-or. At �rst glance, one might
think that to compute the probability of a characteristic across the function
w = z � f(x), one could just compute the probability across \�" and then
join it with the probability for the characteristic across f(x) (which was derived
in Lemma 6). However, the quadratic function f(x) has some complicated
di�erential behavior and it is better to study the function w = z � f(x) as a
single component.

For two sets of inputs x1; z1 and x2; z2 we de�ne w1 = z1 � f(x1) and
w2 = z2 � f(x2). Now set �x = x2 � x1, �z = z2 � z1, and �w = w2 � w1.

Lemma 8 Let pi be the probability of the characteristic (�x; �z) ! �w where

(�x; �z) = (2i; 0) and �w = 2i. Similarly, let qi be the probability of the charac-

teristic (�x; �z)! �w where (�x; �z) = (2i; 2i) and �w = 0. Then we always have

that pi = qi and further that

pi = qi =

�
2i�31 for 15 � i � 31;

x 2 [2i�35; 2i�30] for 0 � i � 14:

Proof. We will describe experiments and related arguments needed for com-
puting the probability pi. The probability qi can be computed in a similar way.
In our experiments, for each value of i between 0 and 31 we count the number of
times that �w = 2i given that (�x; �z) = (2i; 0). This is for both x1 and z1 rang-
ing over all possible 32-bit words (a total of 264 words). This initially appears
to be impractical, but the following useful observations make it possible:
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1. �w = 2i only if f(x2) � f(x1) contains exactly one block of consecutive
1-bits. This block will always begin at bit i and end at some bit k (k � i).
So the length of the block is (k � i+ 1) bits.

2. Given f(x1) and f(x2) satisfying the �rst condition, the number of words
z1 = z2 for which �w = 2i is

232�(k�i+1) if k < 31, and

232�(k�i) if k = 31:

Experiments show that pi is exactly 2i�31 for 15 � i � 31. For smaller
values of i, however, experimental results are given in the following table.

i 231�i 1=pi i 231�i 1=pi

0 231 230:10 1 230 229:15

2 229 228:57 3 228 228:17

4 227 227:71 5 226 227:21

6 225 226:89 7 224 226:42

8 223 225:92 9 222 225:44

10 221 224:98 11 220 223:09

12 219 219:58 13 218 218:10

14 217 217:01

2

We remark that the probability pi decreases monotonically as i decreases.
However, the rate of decrease is not constant and there is a big drop in the
probability from p12 to p11. Once again the reader might be surprised at the
\non-uniform" probabilities given in Lemma 8 and wonder why the results in
Lemma 6 and Lemma 7 do not imply or at least provide a basis for proving the
results in Lemma 8. One main reason appears to be that given f(x2)� f(x1) =
2i, it is not clear what the distribution of f(x2) � f(x1) is. Indeed, Lemma 7
suggests that the distribution is not uniform for all i. Moreover, the exclusive-or
of di�erent values of z might further alter the distribution.

Despite the irregularities highlighted by Lemma 8 it is still a very useful
lemma. In fact, from Lemma 8 it is reasonable to conclude that integer sub-
traction is a better notion of di�erence than exclusive-or during the di�erential
cryptanalysis of both RC6 and RC6-NFR.

5.5 Other characteristics for the quadratic function

In this section, we will study some non-static characteristics for the quadratic
function, and we will use integer subtraction as the measure of di�erence. These
characteristics will illustrate some interesting properties of the quadratic func-
tion with respect to di�erential cryptanalysis.
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The single-bit static characteristics that we studied in earlier sections have
the general form of �x = �y = 2i. Below, we consider characteristics in which
a two-bit di�erence in the input will only yield a single-bit di�erence in the
output. In some sense, the quadratic function is being used to simplify the
di�erences in certain situations.

We extend the notation previously established and let ei;j denote 2
i+2j for

some i 6= j.

Lemma 9 Let mi;j be the probability of the characteristic �x ! �y where �x =
ei;j and �y = 2i for some i 6= j. Then we have

mi;j =

8>>>><
>>>>:

2i�30 for 29 � i � 1 and j � i+ 2;
0 for i = 0 and j � i+ 2;
0 for 30 � i � 1 and j = i+ 1;

2i�30 for i = 0 and j = i+ 1;
0 for 31 � i � 1 and j < i:

Proof. From Lemma 2 we have

�y = x1(2
i+2 + 2j+2) + (2i + 2j) + 2(2i + 2j)2 mod 232: (6)

We will divide the proof into three cases according to the value of j.
Case 1. Suppose j � i+ 2. From Equation 6, �y = 2i if, and only if,

2i+2x1(1 + 2j�i) + [2j + 2(2i + 2j)2] = 0 mod 232:

Let a = 1+2j�i and b = 2j +2(2i+2j)2. Since a is odd, �y = 2i if, and only if,

2i+2x1 + a�1b = 0 mod 232: (7)

If i � 1, then b � 2i+2. So �y = 2i if, and only if, x1 = a�1b mod 230�i. The
(i + 2) most signi�cant bits of x1 can take any value and the least (30 � i)
bits of x1 are �xed. Averaging over all possible x1, we have that the probability
mi;j = 2i�30. If i = 0, then b = 2 mod 4, so Equation 7 never holds andmi;j = 0
in this case.

Case 2. Suppose j = i + 1. Then based on Equation 6, we have for some
integer c that

�y = x1(2
i+2 + 2i+3) + 2i+1 + 2(2i + 2i+1)2 mod 232

= 2i + 2i+1 + 22i+1 + 2i+2c:

If i � 1, then bit (i+ 1) of �y is always one, and so �y is never equal to 2i. In
this case, mi;j = 0. If i = 0, then the two terms 2i+1 and 22i+1 \cancel" each
other. A simple calculation shows that �y = 1 + 4(3x+ 5) mod 232. Similar to
Case 1, we obtain that mi;j = 2�30 = 2i�30.
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Di�erential Cryptanalysis of RC6-NFR

number of rounds

variant 8 12 16 20 24

RC6-NFR 230 250 265 290 2110

using basic characteristic

RC6-NFR 228 247 261 284 2103

+ di�erential considerations

Table 8: An estimate of the number of plaintexts needed to mount a di�erential
attack on RC6-NFR with a varying number of rounds.

Case 3. Suppose 31 � i � 1 and j < i. In this case, it is easy to see from
Equation 6 that bit j of �y is always one. So the probability mi;j = 0. 2

We will briey discuss in Section 7.5 how the characteristics derived in this
section can be used to attack RC6. Note that the number of bits in the di�erence
is reduced by the action of these characteristics and so they might potentially
be useful in controlling the avalanche of change as one moves from one round
to another. However we have not been able to use them in a way that yields
better attacks than those based on static characteristics.

6 Di�erential Cryptanalysis of RC6-NFR

In this section:

- We show that RC6-NFR displays reasonable resistance to di�erential

cryptanalysis but as many as 30 rounds may be necessary for the

purposes of the AES

- We demonstrate that introduction of the quadratic function greatly re-

duces the e�ect of di�erentials

As established in Section 5.4, we will now use integer subtraction as the
measure of di�erence in attacking RC6-NFR.

We begin with the two characteristics derived in Lemma 8 and adopt the
notation used there. That is, we set pi to denote the probability of the char-
acteristic (�x; �z) ! �w where w = z � f(x), �x = �w = 2i, and �z = 0. We
also use qi to denote the probability of the characteristic (�x; �z) ! �w where
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�x = �z = 2i, and �w = 0. It is clear that we can combine these two charac-
teristics in a manner reminiscent of Section 3 since the characteristics for the
quadratic function component are static.

Let us consider the general characteristic from Table 3. The probability of
this six-round characteristic for RC6-NFR is

�6 � (pt � ps � pv � pu � q2u):

Note that the addition unit can be crossed with probability one since we are
using integer subtraction as measure of di�erence. The only restriction on the
values of t, s, u, and v is that they lie between 5 and 31. We obtain a six-round
characteristic that holds with probability �6 = 2�30 by setting t = s = v = u =
31 since p31 = q31 = 1.

It is worth mentioning that the probability of this characteristic for RC6-
NFR is the same as the corresponding characteristic for RC6-I-NFR. It might
therefore be tempting to question the relevance of the quadratic function since
its inclusion appears to have no relevance for this particular six-round charac-
teristic. In response we will show that the e�ect of the quadratic function on
the performance of di�erentials is particularly signi�cant.

Consider the di�erential e�ect over these six rounds. Starting with a given
value t there are 32�5 = 27 values for s, u, and v. However the probabilities ps,
pv, pu, and qu are not the same for these di�erent permissible values. In fact,
Lemma 8 shows that the probabilities drop quickly as the indexing variable
gets smaller. In order to maximize the probability of the di�erential we set
t = u = 31 and we let s and v vary. Based on Lemma 8, the probability of this
six-round di�erential is given by

�6 �

 
31X
i=5

pi

!2

� 2�28:

We can see that the di�erential e�ect only boosts the probability by a factor
of about 22 = 4 due to the presence of the quadratic function. For RC6-I-NFR,
however, the factor of increase was 273 � 214. With RC6-I-NFR we have a
great many equally viable paths through the cipher but the introduction of the
quadratic function has ensured that the di�erential is dominated by the action
of a single characteristic.

As with the earlier variants, we give estimates for the plaintext requirements
in attacking RC6-NFR using the six-round iterative di�erential we previously
described. The results are summarized in Table 8.
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7 Di�erential Cryptanalysis of RC6

In this section:

- We show that RC6 o�ers good resistance to di�erential cryptanalysis and

that 20 rounds are su�cient for the purposes of the AES

- We demonstrate that the combination of the quadratic function and the

�xed rotation greatly hinders the construction of e�ective di�erentials

- We note that the use of customized di�erentials helps reduce the plaintext

requirements in an attack

We saw in Section 5 that the use of the quadratic function alone is not su�-
cient to hinder di�erential cryptanalysis since there remain good characteristics
across the quadratic function. In this section, we will demonstrate that it is the
combination of the quadratic function and the �xed rotation by �ve bit positions
that ensures that an attacker is hindered from �nding good characteristics with
which to e�ciently attack RC6.

In the following analysis we will again focus on one-bit characteristics and dif-
ferentials. As previously we will derive iterative characteristics and di�erentials
for RC6 though we will also derive some non-iterative, customized, di�erentials
with which to re�ne our analysis. Finally, we will consider the possibility of
multiple-bit characteristics and di�erentials.

7.1 Iterative characteristics and di�erentials for RC6

Based on Lemma 8 we can easily construct the following one-bit characteristics
for one round of RC6.

0 0 et+5 et and 0 0 0 et
# #

0 0 et 0 0 es et 0

The left-hand characteristic holds with probability qt while the right-hand
characteristic holds with probability ��pt where qt and pt are given by Lemma 8.
Note that the data-dependent rotation allows the choice of bit position s to be
made independently of the choice of t.

Using these two one-round characteristics for RC6 as components in the
six-round characteristic for RC6-I from Table 5, we readily obtain a six-round
iterative characteristic for RC6. This characteristic is given in Table 9. The
constraints on the variables due to the �xed rotation are the same as for the
analysis of RC6-I so we have that 0 � t; s; v � 26 and 15 � u � 26. Any
characteristic satisfying these constraints holds with probability

�6 � (qt � ps � pv � pu � qu�5 � qu�10):
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general a speci�c choice

et+5 et 0 0 e16 e11 0 0
# #

et 0 0 0 e11 0 0 0
# #

0 0 0 es 0 0 0 e26
# #

0 eu es 0 0 e26 e26 0
# #

eu eu�5 0 ev e26 e21 0 e26
# #

eu�5 eu�10 ev 0 e21 e16 e26 0
# #

eu�10 eu�15 0 0 e16 e11 0 0

Table 9: A generalized iterative six-round characteristic for RC6. The corre-
sponding di�erential is denoted I6 in the text. The �xed rotation restricts the
values of internal variables, the measure of di�erence is integer subtraction, and
the probability is much less than for the characteristic given in Table 5.

Now consider the six-round di�erentials based on this family of six-round
characteristics. Starting with a given value t, there are 27 possible values (0
through 26) for each of s and v. To maximize the probability of the di�erential,
we set t = 11 and u � 15 = 11 though s and v will still be free. Based on
the probabilities derived in Lemma 8, we can compute the probability of this
six-round di�erential as

�6 � q11 �

 
26X
i=0

pi

!2

� p26 � q21 � q16

� 2�30 � 2�23 � (2�4)2 � 2�5 � 2�10 � 2�15

= 2�91:

Note that the e�ect of di�erentials has only provided an increase by a factor
of 22 = 4 over the probability of the characteristic. That is, by considering
the 272 additional paths generated by the choices to s and v the probability of
the di�erential is only a factor of 4 better than consideration of the single best
characteristic. Nevertheless, we will �nd that this six-round iterative di�erential
is very useful and we denote it I6 for ease of reference in the rest of this section.
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general a speci�c choice (E0
6)

et+5 et 0 0 e31 e26 0 0
# #

et 0 0 0 e26 0 0 0
# #

0 0 0 es 0 0 0 e26
# #

0 eu es 0 0 e26 e26 0
# #

eu eu�5 0 ev e26 e21 0 e26
# #

eu�5 ew ev 0 e21 e26 e26 0
# #

ew ex 0 eu�5+y� e26 e31 0 e21 � e31
ew+5+y

Table 10: A generalized non-iterative six-round characteristic for RC6 and one
particular embodiment. Note that by an appropriate choice of the parameter t
(namely t = 11) we can join the associated di�erential to this characteristic to
the end of I6 in Table 9. The di�erential is denoted in the text by E0

6.

7.2 Non-iterative customized di�erentials for RC6

It is easy to construct r-round di�erentials for any value of r once we have an
iterative di�erential. For instance, I6 � I6 � I6 is an 18-round di�erential with
which we can attack 20-round RC6. However, we will try to re�ne our analysis
by constructing non-iterative di�erentials that have higher probabilities than
their iterative counterparts. These will then be used at the beginning and the
end of a di�erential instead of the less e�cient iterative di�erentials3. We will
refer to these as customized di�erentials.

We will now study two-round, four-round, and six-round non-iterative di�er-
entials that can be joined to the di�erential I6 along with a six-round di�erential
that can be used at the beginning of the di�erential I6. In other words, we will
relax the conditions on the di�erentials at the beginning and at the end. We
will focus here on the six-round non-iterative di�erential that appends to I6
since it is the one that is the most illustrative of our approach. The other useful
di�erentials are given in Table 11.

In Table 10 we present some non-iterative six-round characteristics for RC6.
Once again the �rst four rounds follow the same pattern as the iterative charac-
teristic shown in Table 5. However the last two rounds are slightly di�erent and

3We did not consider this line of analysis for the simpli�ed RC6 variants since our focus

there was on an analysis of the basic structure and the constituent operations.
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B2 (2
�40) E2 (2

�23)
e26 e21 0 e26 e16 e11 0 0

# #
e21 e16 e26 0 e26 0 0 0

# #
e16 e11 0 es 0 0 0 e26

B4 (2
�63) E4 (2

�41)
0 0 0 e26 e16 e11 0 0

# #
0 eu e26 0 e26 0 0 0

# #
eu e21 0 ev 0 0 0 es

# #
e21 e16 ev 0 0 e26 es 0

# #
e16 e11 0 0 e26 e21 0 e26

B6 (2
�76) E6 (2

�71)
e31 e26 0 0 e16 e11 0 0

# #
e26 0 0 0 e11 0 0 0

# #
0 0 0 es 0 0 0 es

# #
0 e26 es 0 0 e26 es 0

# #
e26 e21 0 ev e26 e21 0 ev

# #
e21 e16 ev 0 e21 e26 ev 0

# #
e16 e11 0 0 e26 e31 0 e21 � e31

Table 11: Some useful two-, four-, and six-round di�erentials for RC6. Those
denoted by Br can be used to attach to the beginning of the di�erential I6
(Table 9) and those denoted by Er can be attached to the end of I6. The
unspeci�ed arguments illustrate a limited di�erential e�ect. The probability of
the di�erential is given in parentheses.
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allow a more complicated pattern in the output di�erence (with an improved
probability). The constraints on the relevant variables are 0 � t; s; v; w � 26,
5 � u � 26, and 0 � x; y � 31. The probability of this characteristic is given by

�7 � (qt � ps � pu � pv � qu�5 � pw):

Let us consider some speci�c choices for the values of these variables.

1. By setting t = 11, s = u = v = w = 26 we obtain a six-round characteristic
with probability 2�35 � 2�20�(4�5)�10 = 2�85. The values of x and y are
free. Note that the input di�erence of the associated di�erential is the
same as the output di�erence of di�erential I6 and so we will be able to
append it to I6.

2. If we set t = s = u = v = w = 26 then we obtain a better six-round char-
acteristic with probability 2�35 � 2�(5�5)�10 = 2�70: Again, x and y can
take any value. This characteristic is shown in the right half of Table 10.
Since t 6= 11 this six-round characteristic and associated di�erential can-
not be appended to I6. However, as a di�erential it will be useful on its
own as a basis for an attack on an eight-round version of RC6.

In moving from the characteristics given above to di�erentials we allow the
variables s, u, v, and w to range between 0 and 26. As we saw in the derivation of
the di�erential I6, by allowing a single variable to cover the range between 0 and
26 this increases the probability of the di�erential over that of the characteristic
by a factor of 2. Since there are in fact four free variables, the factor increase
becomes 24.

In providing estimates for the security of RC6 we go further and try to
anticipate some of the tricks that might be played by a cryptanalyst in reducing
the plaintext requirements for attacking the cipher. One approach we have
considered is to relax the conditions on the output di�erence by looking for
a di�erence of Hamming weight one in strand B and weight two in strand C
instead of looking explicitly for a di�erence in certain bit positions as predicted
by the di�erential. By doing this, we are no longer concerned about predicting
the rotation amount used in the last round and this immediately increases the
probability by a factor of 210.

Combining both the di�erential and optimization considerations we therefore
suggest that the following two di�erentials will be useful when joined to the
di�erential I6 or standing alone in an attack on eight-round RC6.

1. Set t = 11 and allow other internal variables to range over all possible
values. The di�erential (with optimizing trick) holds with probability
2�85 � 24 � 210 = 2�71. We will denote this di�erential by E6. This
di�erential can be joined with I6 to give I6 �E6.
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Di�erential Cryptanalysis of RC6

number of rounds

variant 8 12 16 20 24

RC6 293 2151 2214 2279 2337

iterative characteristic

RC6 291 2147 2210 2273 2329

iterative di�erential

RC6 256 2117 2190 2238 2299

using customized

di�erentials E0
6 B6 �E4 B6 � I6 B6 � I6 B6 � I6

�E2 �E6 �I6 �E4

Table 12: An estimate of the number of plaintexts needed to mount a di�erential
attack on RC6 with a varying number of rounds. These attacks are based around
a six-round iterative di�erential I6 joined at the beginning and/or end to a choice
of customized di�erential.

2. Set t = 31 and allow other internal variables to range over all possible
values. The di�erential (with optimizing trick) holds with probability
2�70 � 24 � 210 = 2�56. We will denote this di�erential by E0

6. This
di�erential cannot be joined with I6 so it is only useful in an attack on
eight-round RC6.

In a similar fashion it is possible to construct two- and four-round non-
iterative di�erentials (see Table 11) that can be joined to the end of I6. Analysis
has shown that the two-round di�erential (denoted by E2) holds with probability
2�23 and the four-round di�erential (denoted by E4) holds with probability 2

�41.
Finally, we construct a six-round non-iterative di�erential that can be used

at the beginning of an r-round di�erential attack. This di�erential replaces
the �rst invocation of I6. By setting t = 26 instead of t = 11, we boost the
probability of I6 by a factor of 2

15. The resulting six-round di�erential (denoted
by B6) therefore holds with probability 2

�76. We have also considered the action
of the di�erentials B2 and B4 presented in the Table 11, though we �nd that
they are less useful.
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7.3 Attacking r-round RC6

Given the iterative and non-iterative di�erentials derived in the preceeding sec-
tions, we are now ready to construct r-round di�erentials for RC6. In particular,
to attack 20-round RC6 we will use the 18-round di�erential B6�I6�N6 which
holds with probability 2�76 � 2�91 � 2�71 = 2�238. Estimates for the plain-
text requirements in attacking a di�erent number of rounds of RC6 are given in
Table 12.

7.4 Other interesting di�erentials

We have found some other interesting di�erentials during the analysis of RC6.
The general three-round iterative characteristic shown in Table 13 holds with
probability r4 � qt � qu � ps � pv. By setting t = u = 21 and s = v = 26,
we obtain a speci�c characteristic that holds with probability 2�50. Unlike the
six-round iterative characteristic described in Section 7.1, there is essentially no
accompanying di�erential e�ect for this characteristic. This is because there
are no free variables after setting the values of t, u, s and v. Extending this
characteristic to more rounds, we easily obtain a six-round characteristic that
holds with probability 2�100. This is about a factor of 29 smaller than the
probability of six-round iterative characteristic that we used to attack RC6.
While interesting, we feel that using this di�erential isn't as useful in the analysis
of RC6 as the di�erentials we have already described.

7.5 Multiple-bit di�erential cryptanalysis

Here we extend the results from Section 5.5 and briey discuss how to use
some non-static characteristics in the analysis of RC6. Again, we use integer
subtraction as our measure of di�erence.

We follow the notation in Section 5.5 and let es;t = 2s + 2t. Based on
Lemma 9, we obtain the following two-bit characteristics for one round of RC6
which both hold with probability r �mt;t+5. Recall that we de�ned mi;j to be
the probability of the characteristic �x ! �y where �x = ei;j and �y = 2i for
some i 6= j.

0 0 et et+5;t and 0 0 et+5;t et+5;t
# #

0 es+5;s et+5;t 0 0 es et+5;t 0

Even though these characteristics are \heavier" than the one-bit charac-
teristics for one-round RC6, they appear to be useful in constructing iterative
characteristics for RC6. The four-round iterative characteristic given in Table 14
is such an example and holds with probability

�8 � q4t �m4
t;t+5:
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general a speci�c choice

et+5 et eu+5 eu e26 e21 e26 e21
# #

et 0 eu 0 e26 0 e26 0
# #

0 es 0 ev 0 e26 0 e26
# #

es es�5 ev ev�5 e26 e21 e26 e21

Table 13: A generalized iterative three-round characteristic and one particular
embodiment for RC6. While involving more rotation units this characteristic
and associated di�erential is nearly, but not quite, as e�ective as the others we
have been considering.

et et et et+5;t
#

et et+5;t et+5;t et+5;t
#

et+5;t et et+5;t et+5;t
#

et et et+5;t et
#

et et et et+5;t

Table 14: A useful four-round multiple-bit iterative characteristic for RC6.
While consideration of multiple-bit characteristics allows for shorter iterative
di�erentials, their reduced probability means that they are less useful.
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This probability is maximized at t = 26, giving a probability of about 2�80.
Extending the result to six rounds, we obtain a six-round iterative characteristic
that holds with probability of 2�120.

We remark that there is no signi�cant di�erential e�ect related to the char-
acteristics given in this section. This is due to constraints on how the multiple
bit positions in a di�erence line up. Hence, the single-bit di�erentials presented
in Section 7.1 have much higher probabilities than the characteristics derived in
this section.

While the existence of heavier characteristics and di�erentials is interesting
to note, they seem to be more di�cult to �nd and use than the lighter ones we
have already identi�ed. This, however, will remain the object of future work.
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Part II

Linear Cryptanalysis

In assessing the security of RC6 with regards to linear cryptanalysis [22, 23] we
have described our �ndings on the topic in two di�erent ways depending on the
style of the analysis.

The �rst style of analysis yields a set of linear cryptanalytic attacks that
are suitable for attacking all the simple variants of RC6 that we consider (see
Section 1.2) along with RC6 itself. The second style of analysis is less e�ective
than the �rst, and the di�erent variants of RC6 need to be considered separately.
However we have included this analysis for the sake of completeness.

We assume throughout that the reader is already familiar with much of linear
cryptanalysis, its application, and its extensions.

8 Overview

In this section we review linear cryptanalysis, some of the advanced techniques
that might be useful during our analysis, and an overview of our approach to
using linear cryptanalysis in the assessment of RC6.

8.1 Linear cryptanalysis

Linear cryptanalysis is an attack on iterated ciphers that bears more than a pass-
ing resemblance to the di�erential cryptanalytic attacks of Biham and Shamir.
Indeed many commentators make use of this duality in providing a parallel and
simultaneous analysis of the resistance of a cipher to both di�erential and linear
cryptanalysis. However the structure of RC6 does not lend itself to this kind of
analysis and we have considered the two issues separately in this report.

The aim of a linear cryptanalytic attack is to �nd an e�ective linear expres-
sion connecting some bits of the plaintext, some bits of the output at round r
and some key bits. This linear expression is valid over, say, r rounds. Suppose
that the probability p that the approximation holds is anything but 1=2, that
is, there is some non-zero bias where the bias � is given by � = p � 1=2. Then
by taking su�ciently many plaintext/ciphertext pairs the correct value of the
exclusive-or of the key bits can be identi�ed.

The greater the bias, the fewer the number of plaintext/ciphertext pairs that
need to be taken before the correct key bit value can be deduced. It is important
to note that the data requirements for a linear cryptanalytic attack are inversely
proportional to the square of the bias of the approximation [22]. This can
be contrasted with the situation for di�erential cryptanalysis where the data
requirements are inversely proportional to the probability of the di�erential.
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Some additional techniques can be used to help in a linear cryptanalytic
attack. Analyzing other expressions will yield information about other key
bits, and counters can be used to search over a small subset of key bits; this
potentially allows the cryptanalyst to predict the action of some round and
to use a shorter linear approximation with an improved, exploitable bias [23].
Other techniques [6, 16] have also proved to be useful in certain situations.

8.1.1 Notation and basic assumptions

Suppose that we have a linear approximation that involves four starting words
A, B, C, andD, four ending wordsA0, B0, C 0, andD0 and a bit of key material k.
Then we will use a second set of 32-bit words to indicate which bits of these eight
words are to be exclusive-ored together in evaluating the linear approximation.

By way of example, suppose that the linear approximation we are interested
in consists of the least signi�cant bits of A, C 0 and D0. As when considering
di�erential cryptanalysis, we will use et to denote 2t, the 32-bit word with a
single one in the tth least signi�cant bit position.

In a slight abuse of notation we will consider a 32-bit word x as a vector in
Z322 and we will use some 32-bit quantity, � say, to indicate the bits of x that
are to be used in a linear approximation. This is most conveniently described
by means of the scalar product of two vectors. Thus the f0; 1g-vector � will
be used to denote the speci�c bits of x to be used in an approximation and
x � � is the value of these bits combined using exclusive-or. An example linear
approximation might be written in the following way

(A � e0)� (C 0 � e0)� (D0 � e0) = k:

Clearly we can use other words than ei to pick out single, or multiple bits, from
a word of text.

Suppose the bias of an approximation A0 is given by �0. Then Matsui [22]
demonstrates that the amount of plaintext required to exploit this bias with a
high success rate is c� ��20 where c is some constant dependent on the style of
attack mounted. Typically, the more key material we try to recover using some
approximation, the greater the value of c. For the more sophisticated attacks on
DES, for instance, in which 13 bits of key material are recovered, experimental
evidence suggests that c should be equal to eight. As designers, however, we
have taken a pessimistic stance and set c = 1.

To compute the bias of a combination of approximations, say A0 and A1, we
will assume that the so-called piling-up lemma [22] can be used. This indicates
that the e�ective bias of the combination of A0 and A1 is given by �0 � �1 � 2.
This can be continued for any number of approximations. There are some
interesting technical questions in the cryptographic literature about how widely
one can call upon the use of the piling-up lemma, particularly when one needs
to take into account the issue of key-dependency. But in the absence of this
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lemma there appear to be no other tools available to assess the resistance of a
cipher to linear cryptanalysis for either the cryptographer or the cryptanalyst.

Finally, throughout our analysis we have taken the line that it is reasonable
to assume that in attacking an r-round cipher a linear approximation for (r �
2) rounds will typically be required. To give a basic starting point for our
analysis this seems to be a reasonable assumption [16, 23]. As analysis of the
algorithms in the AES e�ort continues, there will be tricks that apply to one
cipher but not to others which reduce the length of the required approximation.
Alternatively, some ciphers will resist attempts to use even an (r � 2)-round
linear approximation, requiring instead one that runs over (r � 1) rounds. At
this stage we feel that it is not useful in speculating as to the exact nature of
future linear cryptanalytic attacks on RC6. We quote the data requirements
for mounting a linear cryptanalytic attack on RC6 under the assumption that
an (r � 2)-round linear approximation will be required but we provide enough
information for the reader to adapt our estimates as required.

8.1.2 Multiple linear approximations

The use of multiple linear approximations [6, 7] can sometimes enhance a basic
linear cryptanalytic attack. The basic idea is to reuse the data one already pos-
sesses in a di�erent way. This is done by using a di�erent linear approximation
and it is possible to extract more information about the key by using a variety
of linear approximations together.

The most important feature of this technique is the bias of the di�erent
approximations we might use. The usefulness of multiple approximations can
sometimes be limited if the bias of the additional approximations are much less
than the bias of one dominating approximation.

Given n approximations Ai with biases �i for 0 � i � n� 1, we already have
that the amount of plaintext required to successfully use A0 alone is proportional
to ��20 . Assuming the most advantageous conditions for the cryptanalyst, the
amount of plaintext required to successfully use all n approximations Ai for
0 � i � n � 1 is proportional to (

Pn�1
i=0 �2i )

�1. For example by using n linear
approximations, which all hold with the same bias, one might obtain a reduction
in the plaintext requirements for a linear cryptanalytic attack by a factor of n.
More generally, the reduction in plaintext is by a factor of (

Pn�1
i=0 �2i )=�

2
0.

There is of course some penalty to pay in using multiple approximations,
and that is in an increased work load. However this is rarely an issue when
considering security at this broad level. It does however become an issue when
one is serious about implementing such an attack. There are also technical issues
in mounting such an attack which can greatly hinder the use of multiple linear
approximations. In this report, however, we have taken the most pessimistic
view (as designers!) and assumed that all our attacks and the more esoteric
enhancements we consider can be used without any practical di�culty.
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8.1.3 Linear hulls

It is sometimes said that just as the notion of di�erentials generalizes that of the
characteristic in di�erential cryptanalysis, the notion of linear hulls generalizes
the idea of a single linear approximation.

As with multiple linear approximations, we consider the idea of many di�er-
ent linear approximation coexisting within a cipher. With multiple linear ap-
proximations we assumed that these were di�erent approximations in as much
as they used di�erent bits at the start of the linear approximation and at the
end. In [27] it is observed that even when considering one linear approximation
in isolation, the practical exploitable bias of the approximation might be di�er-
ent to that obtained by analysis of a single path through the cipher. There are
also other approximations through the cipher involving the same starting and
ending bits, but which take a di�erent set of internal key bits. Consideration of
these paths might allow for a more accurate estimate of the number of plaintexts
required in an attack.

As with using multiple approximations, in some practical situations the bias
of one approximation dominates the bias of the associated linear hull. As a
result, consideration of the single most prominent approximation can often be
su�ciently accurate in practice. We have taken account of linear hulls in our
analysis of RC6 and its variants and we mention in the text when the e�ect is
likely to be signi�cant.

8.2 Linear cryptanalysis and RC6

In considering the range of linear cryptanalytic attacks that can be mounted on
RC6, we have drawn a distinction between two di�erent types of approximation.

The �rst type, which we will call Type I, uses one particular type of linear
approximation across the data-dependent rotation. These attacks lead to the
most e�cient linear cryptanalytic attacks on all simpli�ed variants of RC6 and
also on RC6 itself. It is consideration of this style of attack that led us to choose
20 rounds as o�ering adequate security for RC6.

The second type, Type II, involve a di�erent style of approximation across the
data-dependent rotation. Such approximations in turn lead to approximations
across the �xed rotation and the quadratic function. Our analysis presented in
this report suggests that the Type II approximations o�er less e�cient attacks
than those dependent solely on Type I approximations. We note that it is
possible to consider a hybrid style of attack consisting of both Type I and
Type II approximations. Once again, however, it is the Type I approximations
that appear to be the most useful. While we have found an intriguing role
for both multiple approximations and linear hulls in attacks involving Type I
approximations, they seem to be less useful where Type II approximations are
concerned.

The advanced technique of using non-linear approximations [16] is unlikely
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to be of substantial use in the linear cryptanalytic attacks we consider here.
This technique currently o�ers only slight improvements in attacks and can be
viewed as one that might �nesse the e�ectiveness of an existing attack across a
notional boundary that separates the barely impractical attacks from those that
are barely practical. Currently we have not observed any signi�cant opportunity
for the use of non-linear approximations in attacking RC6.

8.2.1 Type I and Type II approximations

Here we draw the distinction between Type I and Type II approximations. This
distinction revolves around the way we form linear approximations across the
data-dependent rotation.

For �a;�b;�c 2 f0; 1g
32 a Type I linear approximation to RC6 uses approx-

imations to the data-dependent rotation A = B<<<C of the form

A � �a = B � �b � C � �c:

For �a;�b 2 f0; 1g32 a Type II linear approximation to RC6 uses approxi-
mations to the data-dependent rotation A = B<<<C of the form

A � �a = B � �b:

Type I Approximations. For these approximations to be useful the forms
of �a, �b, and �c are severely restricted. In particular �c can only consist
of bits from the least signi�cant lgw bit positions. Otherwise the bias of the
approximation is zero. �a can consist of any subset of all w bits, but to be
useful as an approximation, �b must consist of the same set of w bits as �a

but rotated cyclically (possibly by zero positions). If we assume that �a can be
rotated onto �b in t di�erent ways, then the bias of the approximation is given
by � = t

32 +
32�t
32 � 1

2 .
When we come to use Type I approximations, the structure of RC6 forces

the bits of �a to consist of those in the least signi�cant lgw bit positions. This
ensures that �a can only be mapped onto �b in one way (t = 1) and so the bias
of the approximation A � �a = B � �b � C � �c has bias 2

�6. Since there is no
drop in the bias across the data-dependent rotation irrespective of the weight of
�i, and yet there is a drop in the bias across the integer addition as the weight
increases, our analysis will concentrate exclusively on the use of single-bit Type
I approximations.

Type II Approximations. For these approximations �a can consist of any
subset of all w bits. To be useful as an approximation, �b must consist of the
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same set of w bits as �a but rotated cyclically (possibly by zero positions). If
we assume that �a can be rotated onto �b in t di�erent ways, then the bias of
the approximation is given by � = t

32 +
32�t
32 � 1

2 .
It is possible to use heavier masks �a so that �a can be rotated on to �b

in several di�erent ways (t > 1) ensuring an increased bias. However, studies
on RC5 [24, 9] demonstrate that the more bits there are in �a, the harder it is
to use the approximation e�ectively across the integer addition. With RC6 we
have another problem since it is di�cult to use such multiple-bit approximations
across the quadratic function. The best option for the cryptanalyst appears to
be to use single-bit approximations in �a (and therefore in �b and �c as well).
This then ensures that �a can only be mapped onto �b in one way (t = 1) and
so the bias of the approximation A � ea = B � eb � C � ec has bias 2

�6.
To Summarize: For both Type I and Type II approximations we will only

consider single-bit approximations. Multiple-bit approximations appear unlikely
to provide any advantage over the single-bit case. While a hybrid attack using
both Type I and Type II approximations is certainly conceivable, we will see that
attacks using Type I approximations exclusively seem to be the most e�ective.

8.2.2 Some basic tools

As well as the data-dependent and �xed rotations, the other basic operations
used in RC6 are the addition of key material using integer addition, the trans-
formation produced by the quadratic function, and the bitwise exclusive-or.

Bitwise exclusive-or need not concern us with regards to linear cryptanalysis.
With regards to the use of integer addition, we have the following lemma that
describes the bias of a single-bit linear approximation across this operation.

Lemma 10 Given y = x+a for some �xed 32-bit word a and variable input x,
let �i denote the bias of the linear approximation y � ei = x � ei for 0 � i � 31
averaged over all possible values of a. Then

�i =

�
1=2 if i = 0,
1=4 otherwise.

We won't need the following result on single-bit approximations across the
quadratic function f(x) = x(2x + 1) until we look at Type II approximations,
but we give a description of the biases of these approximations here.

Lemma 11 Let y = x(2x+ 1). Then

Probability (x � ei = y � ej) =

�
1=2 if i 6= j,
1=2 + bi otherwise

where the values of bi for 0 � i � 31 are given below:
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bit i 0 1 2 3
bias bi 0:5 0 0:25 0:125
bit i 4 5 6 7
bias bi 0:0625 0:03125 0:046875 �0:07812
bit i 8 9 10 11
bias bi 0:011719 0:005859 0:012695 0:004395
bit i 12 13 14 15
bias bi 0:004639 �0:002563 0:003479 0:002106
bit 16 17 18 19

bias bi 0:000351 �0:000008 0:000637 0:000025
bit 20 21 22 23

bias bi 0:000365 0:000157 0:000242 0:000108
bit 24 25 26 27

bias bi 0:000081 �0:000032 0:000070 0:000021
bit 28 29 30 31

bias bi 0:000003 0:000001 0:000011 0:000001

Proof. Suppose y = x(2x + 1). Partition all possible inputs x into two sets
S0 and S1 according to the value of x �ej . Consider an input x 2 S0 and suppose
that y � ej = x � ei for i 6= j. Now consider x0 = x+2j which is clearly in S1. Let
y0 = x0�(2x0+1) so y0 = (x+2j)�(2x+2j+1+1) = 2x2+2j+2x+x+22j+1+2j .
We can rewrite this as y0 = y+2j+2x+2j+22j+1 and we see that y0 �ej 6= y �ej.
Thus, if y � ej = x � ei for some input x 2 S0 then there is some input x 2 S1
for which y � ej 6= x � ei and vice versa. That is, over all inputs y � ej = x � ei
with probability 1=2. The values for the bias bi when i = j were derived
experimentally. 2

Intuitively we might expect a cryptanalyst to attempt to use the approxima-
tion involving bit 0 across the function f(x) as much as possible in an attack.
After all, this has the biggest bias. However the �xed rotation has an impor-
tant role and instead of considering approximations to the function f(x) we will
need to consider approximations to the function y = g(x) = (f(x)<<< 5). Im-
mediately we see that the best linear approximation across the combined unit
is provided by y[5] = x[0] which holds with probability one. Lemma 11 is also
useful since it shows that it is not possible to try and use a linear approximation
across the quadratic function in such a way so as to \anticipate" the action of
the �xed rotation and thereby to cancel it out.

8.2.3 Linear cryptanalysis of RC5

RC5 appears to be remarkably resistant to linear cryptanalysis. The most com-
prehensive study of how an attack might be carried out is due to Kaliski and
Yin [8]. There it is demonstrated that after 12 half rounds of the 32-bit version
of RC5, the amount of data that might be required to mount an attack exceeds
the amount of data that is available.
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More recent work by Selcuk [31] has made a more accurate assessment of
the �ner points of the attacks outlined by Kaliski and Yin. While observing
that the more involved attacks do not work quite as claimed, Selcuk remarks
that the basis of any linear cryptanalytic attack will still likely be the linear ap-
proximation outlined in [8]. As a result, linear cryptanalysis of even a moderate
number of rounds of RC5 remains an extremely remote threat.

Much, if not all, of the resistance of RC5 to linear cryptanalysis stems from
the data-dependent rotation. We would expect many of the same problems that
are encountered in trying to launch an attack on RC5 to also feature in attempts
to attack RC6.

Much of the analysis on RC5 has concentrated on using linear approximation
with very few bits involved from each word of the text. Analysis there [9]
suggests that the use of heavier linear approximations in a linear cryptanalytic
attack is unlikely to be as fruitful as the single-bit case. While the bias of an
approximation across the rotation unit can be increased by using more bits in
the linear approximation, this is countered by a drop in the bias across the
integer addition. For su�ciently large word size (w > 8) this more than makes
up for any gain across the data-dependent rotation. A similar phenomenon can
be expected with RC6, except if anything, it will be more pronounced since the
heavier approximation also has to cross the quadratic function and the �xed
rotation.

Obviously, as more work is completed on the linear cryptanalysis of RC6 we
will have an increasingly accurate assessment of the security of the cipher. This
will, undoubtedly, include more analysis of the use of multi-bit linear approxi-
mations.

9 Using Type I Approximations

In this section:

- We show that a simple two-round iterative linear approximations can be

used with RC6 and the other variants considered in this report

- We consider the possible e�ects of multiple approximations and linear

hulls

- We present what are currently the most e�ective attacks on RC6

- We use these considerations to set the number of rounds for RC6

It is straightforward to mount an attack using Type I approximations that
applies to all of the simpli�ed variants of RC6 given in this report and to RC6
itself. The basis for this analysis is the following two-round linear approximation
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for RC6
(A � et)� (C � es) = (A00 � eu)� (C 00 � ev):

Here A and C are the �rst and third words of some intermediate data, A00

and C 00 are the �rst and third words of the intermediate data after a further
two rounds of encryption using RC6 (or its simpli�ed variants). This might be
represented graphically as follows, with a general approximation given on the
left, and a speci�c choice for the variables t, s, u and v given on the right.

general a speci�c choice

et � es � e0 � e0 �
# #

� eu � ev � e0 � e0
# #

eu � ev � e0 � e0 �

When averaged over all keys, the piling-up lemma suggests that this approx-
imation would hold with bias

�u � �� �v � �� 23

where �u and �v are the biases of the single-bit linear approximations across the
integer addition in positions u and v, and � is the contributing bias of the single-
bit linear approximation across the data-dependent rotation. From Lemma 10
this evaluates to 2�11 when u = v = 0, 2�12 if one of u or v is equal to zero and
the other is non-zero but less than �ve, and bias 2�13 when 1 � u; v � 4.

If we were to consider the case of t = s = u = v = 0 alone, this implies
that there is a six-round linear approximation4 to RC6 (and RC6-I, RC6-NFR,
RC6-I-NFR) which holds with bias 2�33 � 22 = 2�31. Generalizing this to run
over r rounds we can estimate the bias of this basic linear approximation as

(2�11)b
r

2
c � 2b

r

2
c�1

which evaluates to 2�101 for r = 20.
Next we consider some potential enhancements to this basic analysis and

we will assume that there are little, or no, practical di�culties in using these
enhancements. It is clear to those that have implemented such attacks, how-
ever, that there are often very involved practical and technical di�culties to
be overcome when using these techniques. It is therefore very unlikely that en-
hancements of the type we are going to describe now could be used so readily
and so e�ectively in practice. But as we have said before, as designers we are
taking a pessimistic stance on such things.

First we note that we can generate 52 � 322 di�erent approximations as we
look over the 52 possible starting values for t and s at the start of the cipher

4In fact this approximation can be extended another round backwards at no extra cost

hence the term b r
2
c in many of the expressions we derive.
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and the possible 322 di�erent sets of values to the output bits at the end of
the linear approximation. Each of these possibilities de�nes a di�erent linear
approximation and we observe that this freedom in the values of the external
variables might potentially allow the use of multiple approximations.

Taking account of the potential e�ect of multiple linear approximations is
straightforward. The two input bits s and t can take any of 52 values without
a�ecting the bias of the associated linear approximation. The two output bits
can take one set of values (i.e. that corresponding to the least signi�cant bit)
which gives the full e�ect of the bias, 31 � 2 sets of values that give a bias
dropping by a factor of two, and 312 sets of values that give a bias dropping by
a factor of four. An estimate for the factor change in the plaintext requirements
using multiple approximations will be given by

25 + (25� 62� 2�2) + (25� 961� 2�4) � 211:

Note that this is independent of the number of rounds.
We also note that at each stage the two-round approximation repeats (i.e. af-

ter every two rounds) the value of u and v can each take one of �ve values. These
values to u and v remain internal to the cipher. As a consequence, for the six-
round approximation there will be 54 � 29 di�erent approximations through
the cipher with the same starting and ending bits involved. The biases of these
di�erent approximations will vary somewhat. Following [27], one basic and pes-
simistic estimate for the amount of plaintext needed for a linear cryptanalytic
attack can be derived as c�218b

r

2
c+4 plaintexts instead of the c�220b

r

2
c+2 known

plaintexts predicted by considering the best linear approximation in isolation.
In Table 15 we summarize these di�erent considerations and make a conser-

vative estimate for the amount of plaintext needed to attack a version of RC6
with 8, 12, 16, 20, and 24 rounds. While we have restricted our attention to
single-bit Type I approximations (as motivated by Section 8.2.1), it is worth
observing that there could be some very limited opportunity to use heavier ap-
proximations. While on their own they will not be e�ective as the single-bit
approximations , it is possible that situations arise where multiple-bit Type I
approximations provide an additional contribution to the more advanced tech-
niques. However we believe that the biases of these alternative paths will be
somewhat less than the ones we have been considering, and that the number
of alternatives will not be that great. Therefore any e�ect they have on the
estimates given in Table 15 will be very slight.

While the use of the advanced linear techniques in this section is somewhat
speculative in terms of practicality, we believe that to build a su�cient margin
of safety in RC6 we need to take them into account. While RC6 with 16 rounds
o�ers very good security against di�erential cryptanalysis, the potential e�ects
of multiple approximations and linear hulls might bring the number of known
plaintexts for linear cryptanalysis under the threshold of 2128 known plaintexts.
With this in mind, we chose 20 rounds as being a suitable number of rounds
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Using Type I Approximations

number of rounds

variant 8 12 16 20 24

RC6 262 2102 2142 2182 2222

basic linear attack

RC6 251 291 2131 2171 2211

+ multiple approximations

RC6 247 283 2119 2155 2191

+ multiple approximations + linear hulls

Table 15: An estimate of the number of plaintext needed to mount a linear
cryptanalytic attack on RC6 with a varying number of rounds. Additional con-
sideration of multiple approximations and potential improvements using linear

hulls helped to set a suitable number of rounds for RC6. The attacks referred
to in this table apply equally to the simpli�ed variants we have considered in
this document, namely RC6-I-NFR, RC6-NFR, and RC6-I.

for RC6, thereby o�ering good security without unnecessarily compromising
performance.

10 Using Type II Approximations

In this section:

- We show that RC6 displays good resistance to linear cryptanalysis using

Type II approximations

- We demonstrate that the combination of the quadratic function and the

�xed rotation greatly hinders the construction of e�ective approxima-

tions

- We observe that RC6-I-NFR appears to be equally vulnerable to Type II

approximations as it was to Type I approximations

- We note that the other variants and RC6 itself are much less vulnerable

to Type II approximations than they are to Type I approximations
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Recall from Section 8.2.1 that we drew a distinction between the way we
make our linear approximations across the data-dependent rotation. In this
section we will be interested in linear approximations that use what we called
Type II approximations.

Despite the interesting results we obtain in this section our e�orts are some-
what unproductive. By the close we will be concluding that the additional
attacks we uncover are not as useful in mounting a linear cryptanalytic attack
on RC6 as were the attacks in Section 9.

10.1 Linear cryptanalysis of RC6-I-NFR and RC6-NFR

When using Type II approximations it can be illustrative to consider a break-
down of the cycles found when tracing a linear approximation through RC6-I-
NFR. We did something similar in Section 3 for the case of di�erential crypt-
analysis. These cycles are presented in Table 16. We will denote the unspeci�ed
bits involved in the approximation by � and we will use � to denote the bias of
a linear approximation across integer addition. We let � denote the bias in the
linear approximation across the data-dependent rotation.

This is clearly a very simpli�ed form of analysis. It assumes a great deal
about the approximations we might actually wish to use. However we have
found it useful in illustrating on a network-level how linear approximations
might evolve from round to round. It seems that some derivative of either
cycle (a) or (b) in Table 16 will be most useful to the cryptanalyst. The third
cycle introduces more non-trivial approximations when extended over the same
number of rounds than the other two.

If we assume that � = e0 so that the linear approximation involves the
least signi�cant bit of a 32-bit word, we can immediately estimate the security
of RC6-I-NFR with regards to a basic linear cryptanalytic attack. The linear
approximation across the operations of exclusive-or and integer addition in the
least signi�cant bit always holds with probability one (� = 2�1). So there
is a linear approximation to six rounds of RC6-I-NFR that holds with bias
(2�6)6 � 25 = 2�31. The approximation continues in the obvious way to other
numbers of rounds and the approximations are presented graphically in Table 17.

Next we turn our attention to the simpli�ed variant RC6-NFR. It is inter-
esting to note that for the function f(x) = x(2x + 1) there is a linear approx-
imation that holds with probability one. Given y = x(2x + 1) we always have
that y � e0 = x � e0. Consequently we can consider exactly the same cycle break-
down as for RC6-I-NFR and there immediately follows a six-round, iterative
linear approximation that can be used to attack RC6-NFR. The di�erent ap-
proximations are presented in a generalized form in Table 17. We combine the
biases of these approximations to give a linear approximation over six rounds
of RC6-NFR and RC6-I-NFR with a bias of around 2�6�6 � 25 = 2�31.

We present the results of our analysis in Table 18. There we give the data
requirements to attack these simple variants. We have not considered the issue
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(a) (b) (c)

� � � � � � � � � � � �
# # #

� � � � � � � � � � � �
# # #

� � � � � � � � � � � �
# # #

� � � � � � � � � � � �
# #

� � � � � � � �
# #

� � � � � � � �
# #

� � � � � � � �

�6 � �6 � 211 �6 � �6 � 211 �4 � �4 � 27

Table 16: Basic approximations for attacking RC6-I-NFR which illustrate the
contribution of the addition unit (contributing bias �) and the rotation unit
(contributing bias �). Here � denotes a \generic" set of bits for the approxima-
tion with speci�c choices being made to maximize the resultant bias.

general a speci�c choice

et et � � e0 e0 � �
# #

� � � es � � � e0
# #

� � es � � � e0 �
# #

� eu es � � e0 e0 �
# #

eu eu es � e0 e0 e0 �
# #

� ev es es � e0 e0 e0
# #

ev ew � � e0 e0 � �

Table 17: Generalized six-round, iterative linear approximation for RC6-I-NFR
and RC6-NFR. A speci�c example useful in attacking eight-round RC6-NFR is
presented on the right.
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Using Type II Approximations

number of rounds

variant 8 12 16 20 24

RC6-I-NFR 262 292 2132 2182 2212

basic linear attack

RC6-NFR 262 292 2132 2182 2212

basic linear attack

Table 18: An estimate of the number of plaintext needed to mount a linear
cryptanalytic attack on two simple variants of RC6 with a varying number of
rounds. The e�ect of advanced phenomena has not been presented, though their
e�ectiveness is readily quanti�ed. For RC6-I-NFR, plaintext requirements using
enhanced techniques such as those obtained in Table 15 are likely to result. For
RC6-NFR, their impact and e�ect is expected to be much reduced since the
quadratic function has a substantial (detrimental) impact on the resultant bias.

of more advanced techniques for these variants since we are only considering
them for illustrative purposes. We observe that for the variant RC6-I-NFR we
would expect to see plaintext savings similar to those we observed with the Type
I approximations, though perhaps not quite so pronounced. The reason for this
is that there is a great deal of freedom in both the internal and external variables
and there are likely to be a variety of alternative approximation possibilities. We
expect the e�ect to be a little less pronounced because for particular choices of
the internal variables, the approximations become somewhat heavier than was
the case when using Type I approximations. These heavier alternatives have a
reduced bias, and hence contribute less.

The situation with RC6-NFR is more interesting and gives us some valu-
able clues as to the behavior of Type II approximations. From Lemma 11 in
Section 8.2.2 we saw that the bias of the single-bit approximations fell when
considering any other bit but the least signi�cant in approximations of f(x) =
x(2x+1). This is likely to ensure that any alternative approximations are likely
to have a very slight e�ect. In addition, there appear to be very few opportu-
nities for substantial plaintext gains in using multiple approximations for very
much the same reasons. We expect the consideration of more enhanced linear
techniques for RC6-NFR to have very little bene�cial e�ect.

Clearly our analysis of these simpli�ed variants is merely an indication of
how we think they will perform in practice. More analysis, given more time, is
likely to o�er re�nements. However we have illustrated that even though the
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function f(x) = x(2x + 1) allows very e�ective single linear approximations,
it does seem to be very bene�cial in thwarting more advanced techniques of
analysis.

To Summarize: Type II approximations appear to o�er some improve-
ments over Type I approximations in mounting a basic attack on RC6-NFR
and RC6-I-NFR. When we consider more advanced techniques in an attack on
RC6-I-NFR, we expect the two types of approximations to o�er similar bene-
�t. However in attacking RC6-NFR we expect that the enhanced attacks using
Type I approximations will be much more e�ective than the enhanced attacks
using Type II approximations.

10.2 Linear cryptanalysis of RC6-I and RC6

As we move to consider RC6-I and RC6 we need to include consideration of the
�xed rotation. We have already seen (Section 10.1) that there are good linear
approximations across the function f(x) = x(2x + 1). This meant that good
basic linear approximations were not prevented by the use of the quadratic
function. However, the e�ect of advanced linear cryptanalytic techniques for
Type II approximations became severely restricted. In this section we will show
that the �xed rotation helps to ensure that the attacker is unable to use good
approximations at each round of a linear approximation. It is only in combining
the linear approximations from one round to the next that a proper picture of
the resistance of the cipher can be built up. In using Type II approximations
we will essentially need to consider approximations of the form y[5] = x[0]
where y = f(x)<<< 5. This means that even in the most advantageous cases,
we are unable to keep our attention focused on the approximations in the least
signi�cant bit of some word. This results in greatly reducing the e�ectiveness
of even the basic linear approximations.

In Table 19 we present a good six-round linear approximation suitable for
attacking eight rounds of RC6-I and RC6. We present both a general form, and
also a speci�c choice where we choose values to some of the variables to provide
what appears to be the optimum single choice for the attacker.

Recall from Lemma 11 the following notation. Let y = x(2x+ 1). Then the
probability that (x � ei = y � ei) is equal to 1=2 + bi where the values of bi are
given in Lemma 11. Then the bias for the general linear approximation given
in Table 19 can be estimated by

�6 � (�t � �u � �u+5 � �v+5 � �w � �x)

� (bs � b2t � bu � bv � bv�5)� 217:

Considering Lemma 10 and Lemma 11 this is maximized for RC6 when v = 5
and s = t = u = w = x = 0 giving a bias of 2�36 � 2�8 � 2�10 � 217 = 2�37.

It is straightforward to extend these results to RC6-I reduced to eight rounds.
Recalling that �0 = 1=2 and �5 = 1=4 and that for the identity function we
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general a speci�c choice

es+5 es et+5 et+5 � et e5 e0 e5 e5 � e0
# #

� eu+5 et+5 et � e5 e5 e0
# #

eu+5 eu � � e5 e0 � �
# #

� � � ev+5 � � � e10
# #

� � ev+5 � � � e10 �
# #

� ew ev � � e0 e5 �
# #

ew ex ev�5 � e0 e0 e0 �

Table 19: A useful non-iterative six-round linear approximation for attacking
eight-round RC6 and RC6-I. The approximation on the left is in a general form,
illustrating the exibility provided by the data-dependent rotation, while the
approximation on the right is one that maximizes the bias.

general a speci�c choice

es1+5 es1 � � e5 e0 � �
# #

� � � et+5 � � � e20
# #

� � et+5 � � � e20 �
# #

� eu+5 et � � e5 e15 �
# #

eu+5 eu et�5 � e5 e0 e10 �
# #

� es2+5 et�10 et�15 � e5 e5 e0
# #

es2+5 es2 � � e5 e0 � �

Table 20: A useful iterative six-round linear approximation for attacking eight-
round RC6. The approximation on the left is in a general form, illustrating
the possible e�ect of linear hulls and multiple linear approximations, while the
approximation on the right is one that maximizes the bias.
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general a speci�c choice

es1+5 es1 � � e5 e0 � �
# #

� � � et1+5 � � � e20
# #

� � et1+5 � � � e20 �
# #

� eu1+5 et1 � � e5 e15 �
# #

eu1+5 eu1 et1�5 � e5 e0 e10 �
# #

� es2+5 et1�10 et1�15 � e5 e5 e0
# #

es2+5 es2 � � e5 e0 � �
# #

� � � et2+5 � � � e20
# #

� � et2+5 � � � e20 �
# #

� eu2+5 et2 � � e5 e15 �
# #

eu2+5 eu2 et2�5 � e5 e0 e10 �
# #

� es3+5 et2�10 et2�15 � e5 e5 e0
# #

es3+5 es3 � � e5 e0 � �
# #

� � � et3+5 � � � e0
# #

� � et3+5 � � � e0 �

Table 21: A useful 14-round single-bit linear approximation for attacking 16-
round RC6 and RC6-I. The approximation on the left is in a general form while
the approximation on the right is one that maximizes the bias of the single
approximation.
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have bi = 1=2 for 0 � i � 31 we can make the appropriate substitutions into
Equation 8. This yields an e�ective bias for the basic linear approximation of
around 2�32.

In trying to attack a greater number of rounds the six-round characteristic
in Table 19 isn't that useful. We immediately see that it is non-iterative, i.e. it
cannot be concatenated with itself to cover more rounds. Furthermore, we see
that additional bits are being introduced, and the attack will begin to involve
multiple bits from the same word. This reduces the e�ective bias and makes it
di�cult to connect the one-round approximations together.

Instead, the cryptanalyst might prefer to use a single-bit six-round iterative
linear characteristic. A general form of this characteristic, along with a speci�c
choice that appears to optimize the bias for the attacker, is given in Table 20.
While there might be other examples of such iterative characteristics, the ap-
proximation given there appears to be among the most useful. An estimate for
the bias for the general approximation in Table 20 is

�6 � (�t+5 � �u � �u+5 � �t�15 � �s2+5 � �s2)

� (bs1 � bt � bt�5 � bt�10 � bt�15 � bu)� 217:

This is maximized for RC6 when s1 = u = 0 and t = 15 (s2 can take any value)
giving a bias of 2�36�2�9�2�23:2�217 � 2�51. The bias of the corresponding
six-round iterative linear approximation for RC6-I is 2�33.

We can iterate these six-round linear approximations to get ones covering
12 rounds of RC6 or RC6-I respectively, adding another two rounds to get a
14-round linear approximation. The bias of the 14-round linear approximation
for RC6 obtained in this way and presented in Table 21 can be estimated as

�12 � (�t1+5 � �u1 � �u1+5 � �t1�15 � �s2+5 � �s2)

� (�t2+5 � �u2 � �u2+5 � �t2�15 � �s3+5 � �s3)

� (bs1 � bt1 � bt1�5 � bt1�10 � bt1�15 � bu1)

� (bs2 � bt2 � bt2�5 � bt2�10 � bt2�15 � bu2)

� (r � bs3 � �t3+5)� 238:

Set s1 = s2 = u1 = u2 = 0. Following our earlier work on the eight round
version of this iterative linear approximation, set t1 = t2 = 15 and for the
extension of the additional two rounds set s3 = 0 and t3 = 27. This yields a
linear approximation over 14 rounds of RC6 with a bias given by

�13 � (bt1 � bt1�5 � bt1�10)� (bt2 � bt2�5 � bt2�10)� 212 � 2�106:

Just as we added another two rounds as needed to the iterative linear ap-
proximation, we can also add the �rst four rounds of the iterative six-round
approximation. This simple four-round extension has bias 2�21 and for RC6-I
the e�ective bias would be around 2�16. The results of our work on Type II
approximations are given in Table 22.
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Using Type II Approximations

number of rounds

variant 8 12 16 20 24

RC6 274 2142 2212 2302 2342

basic linear attack

RC6-I 266 296 2140 2192 2224

basic linear attack

Table 22: An estimate of the number of plaintext needed to mount a linear
cryptanalytic attack on RC6 and a simpli�ed variant RC6-I using Type II ap-
proximations. See the text for the additional consideration of customized linear
approximations. Due to the e�ect of the quadratic function, more advanced
linear cryptanalytic techniques are unlikely to o�er much reduction to these
�gures. Attacks based solely on Type I approximations (Table 15) are almost
certainly going to be of more bene�t to the cryptanalyst.

The careful reader will have observed that we haven't made the same kind of
allowances for customization at the beginning and end of a long approximation
as we did in the case of di�erential cryptanalysis (Section 7.2). This is primarily
because even with such customizations, our work on Type I approximations still
gives us the best attacks on RC6. However, to get some idea of the limits even of
customization, we might assume that when the six-round iterative characteristic
is used �rst, we can replace it with the six-round approximation for RC6-I which
holds with bias 2�33. Similarly, we might assume that we can replace the last
invocation of the six-round linear approximation with the same approximation.
Even with such assumptions on the level of customization, which ignore the
presence of the quadratic function, the estimated data requirements to attack
RC6 with 16, 20 and 24 rounds are 2176, 2230, and 2304 known plaintexts re-
spectively. These still exceed the data requirements in Table 15 by a substantial
margin.

A simple comparison with the results in Table 15 shows that for the basic
linear approximations, the use of Type II approximations is not as good as
the use of Type I approximations. When we include the potential advantages
of advanced techniques in our considerations, the substantial gains for Type I
approximations and the meagre gains expected for Type II approximations, the
distinction between the two forms of analysis becomes even more pronounced.
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Part III

The Key Schedule

11 Description of the Key Schedule

The key schedule of RC6-w/r/b is practically identical to the key schedule of
RC5-w/r/b the only di�erence being the number of words (2r + 4 instead of
2r + 2) derived from the user-supplied key for encryption and decryption. The
user supplies a key of b bytes. Extra zero bytes are appended to the key if
necessary to make the length of the key a non-zero multiple of four bytes. This
is then stored as a sequence of c w-bit words L[0]; : : : ; L[c�1], with �rst byte of
key stored as low-order byte of L[0], etc., and L[c� 1] padded with high-order
zero bytes if necessary. (Note that if b = 0 then c = 1 and L[0] = 0.) The
additive round keys are stored in the array S[0; :::; 2r + 3].

The constants P32 = B7E15163 and Q32 = 9E3779B9 (hexadecimal) are the
same \magic constants" as used in the RC5 key schedule. The value of P32 is
derived from the binary expansion of e � 2, where e is the base of the natural
logarithm function. The value of Q32 is derived from the binary expansion of
�� 1, where � is the Golden Ratio.

12 Security of the Key Schedule

Since the key schedule of RC6 is identical to that of RC5 we can make claims
for the security of the RC6 key schedule based on the results of over three years
of scrutiny of the key schedule for RC5 by the research community.

12.1 Weak keys

The term weak keys is used widely but it is not always applied in the same way.
The most famous examples of weak keys are perhaps those for DES [25] which
exploit a structural property of the cipher. In the case of DES their existence
has only a very limited security implication.

Other ciphers with classes of weak keys are IDEA [19, 3] and Blow�sh [30, 32]
where the weakness might allow cryptanalysis of the cipher in some very limited,
and typically unlikely, situations.

Since the publication of RC5 there have been no reported examples of weak
keys. This includes ones demonstrating a structural weakness or ones allowing
a limited form of cryptanalytic attack. Since the key schedule for RC6 is in all
signi�cant ways identical to that of RC5 it might be expected that the same
lack of weak keys will also apply here.
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12.2 Related-key attacks

A class of attacks that has gained some attention in the community is that
of related-key attacks [10]. The essential premise of the attack is that keys
related in some known way are used during encryption, and by observing the
relations between the plaintexts and ciphertexts, it might be possible to deduce
information about the two unknown keys.

Again we might argue that since the RC5 key schedule has been available for
scrutiny with regards to these attacks for several years, and that no such attacks
have been reported, then we would not expect such attacks to be applicable
to RC6. In addition however, we might argue than any development in this
direction is highly unlikely since the key schedule is quite complicated and more
importantly has a design that might be viewed as being somewhat incompatible
with the structure of the encryption process. It is hard to imagine a way in
which changes in the used-de�ned key can be readily translated into known
and useful changes in the subkeys that are used during encryption. Of course
continued research will establish whether or not this is indeed the case.

Key schedule for RC6-w/r/b

Input: User-supplied b byte key preloaded into the c-word
array L[0; : : : ; c� 1]
Number r of rounds

Output: w-bit round keys S[0; : : : ; 2r + 3]

Procedure: S[0] = Pw

for i = 1 to 2r + 3 do
S[i] = S[i� 1] +Qw

A = B = i = j = 0

v = 3�maxfc; 2r + 4g
for s = 1 to v do

f
A = S[i] = (S[i] +A+B)<<< 3
B = L[j] = (L[j] +A+B)<<< (A+B)
i = (i+ 1)mod (2r + 4)
j = (j + 1)mod c

g
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Part IV

Other Attacks

13 Di�erential-Linear Cryptanalysis

Di�erential-linear cryptanalysis was introduced by Langford and Hellman at
Crypto'94 [20]. This very elegant attack uses a di�erential to predict the dif-
ference between two texts part way through the encryption. From knowledge
of this di�erence, it is possible to use a linear approximation starting at this
later stage during the encryption. Sometimes, with a su�ciently good linear
approximation, more of the cipher can be covered than could be achieved by a
good di�erential alone. The hope is that this leads to an attack over a greater
number of rounds with a reduced data cost.

While providing the best existing attack on an eight-round version of DES
[20], this style of attack is not very widely applicable. It depends on the existence
of a good di�erential for the start of the attack, and the existence of a good
linear approximation for the later stages of the attack.

Our work on the di�erential and linear cryptanalysis of RC6 has demon-
strated that both of these requirements are exceptionally unlikely to be ful�lled,
particularly if the aim is to mount a di�erential-linear attack that threatens the
full 20 rounds of RC6.
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