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Persistent greenhouse gas (GHG) emissions threaten global climate
goals (1) and have prompted consideration of climate controls sup-
plementary to emissions mitigation (2, 3). We present an idealized
model of optimally-controlled climate change (based on 4), which is
complementary to simpler analytical models (5) and more compre-
hensive Integrated Assessment Models (6). We show that the four
methods of controlling climate damage– mitigation, carbon dioxide
removal, adaptation, and solar radiation modification– are not inter-
changeable, as they enter at different stages of the causal chain that
connects GHG emissions to climate damages. Early and aggressive
mitigation is always necessary to stabilize GHG concentrations at
a tolerable level (7). The most cost-effective way of keeping warm-
ing below 2°C is a combination of all four controls; omitting so-
lar radiation modification– a particularly contentious climate control
(8–10)– increases net control costs by 31%. At low discount rates,
near-term mitigation and carbon dioxide removal are used to perma-
nently reduce the warming effect of GHGs. At high discount rates,
however, GHGs concentrations increase rapidly and future genera-
tions are required to use solar radiation modification to offset a large
greenhouse effect. We propose a policy response process wherein
climate policy decision-makers re-adjust their policy prescriptions
over time based on evolving climate outcomes and revised model as-
sumptions. We demonstrate the utility of the process by applying it
to three hypothetical scenarios in which model biases in 1) baseline
emissions, 2) geoengineering (CDR and SRM) costs, and 3) climate
feedbacks are revealed over time and control policies are re-adjusted
accordingly.
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C limate change due to anthropogenic greenhouse gas2

(GHG) emissions poses an existential threat to society3

(11). Ever since the direct link between GHGs and global4

warming was established in climate models over fifty years5

ago (12), scientists have advocated for substantial emissions6

mitigation to stabilize global GHG concentrations and temper-7

atures (13). The discovery that humans were unintentionally8

modifying the climate was unsurprisingly followed by specula-9

tion about intentional climate control (14). With every year10

of increasing GHG emissions and climate goals slipping out11

of reach (1), calls for serious consideration of climate controls12

beyond just mitigation–and their implications– grow louder13

(3, 15–18).14

Four climate controls have emerged as plausible candidates15

for use in the near future: emissions Mitigation, carbon dioxide16

Removal (CDR), Geo-engineering by Solar Radiation Modi-17

fication (SRM), and Adaptation. The four controls are not18

directly interchangeable as they enter at di�erent stages of the19

causal chain of climate damages (Figure 1; 4, 5): 20

Emissions M≠æ GHGs R≠æ Forcing G≠æ Warming A≠æ Damages.
[1] 21

Controls further down the chain generally carry greater risks, 22

since they require carefully o�-setting the various downstream 23

e�ects of GHG emissions, but also have advantages: CDR is 24

the only control that decreases GHG concentrations; SRM is 25

quick to deploy and has low direct costs (19); and adaptation 26

allows for flexibility in the other controls as any residual climate 27

damages can be reduced by adapting to the new climate, to 28

some extent (20). 29

Numerous social or geopolitical factors may substantially 30

limit or block deployments of certain controls: problems related 31

to inequity (21), distrust (22, 23), or lack of governance (24, 25) 32

are just a handful of examples. Here, we ignore many of these 33

complexities– except in as much they are implicitly included 34

in costs and socio-technological constraints– and focus on the 35

"best-case" scenario where a globally-trusted decision-maker 36

prescribes global control policies and their policy prescriptions 37

are exactly realized. 38

Our hypothetical trusted decision-maker must follow some 39

set of principles on which to base their control policies. Two 40

commonly-studied approaches are 1) the cost-benefit approach 41

(e.g. 26), in which control costs are balanced against the bene- 42

fits of avoided damages, and 2) the cost-e�ectiveness approach 43

(e.g. 27), in which control costs are minimized subject to a 44

prescribed climate constraint. The cost-e�ectiveness approach 45

underlies the Paris Climate Agreement (28), which aims to 46

keep global warming well below 2 ¶C above pre-industrial levels 47

and currently organizes global climate policy�. 48

� Intended nationally determined contributions to this effort imply 2.6–3.1 ¶
C of warming and will

need to be strengthened at upcoming re-negotiations (and realized) to have a reasonable chance

Significance Statement

We present a simple framework and readily available open
source software for optimizing trade-offs between the four pri-
mary methods that control human-caused climate damages: 1)
reducing anthropogenic greenhouse-gas emissions, 2) remov-
ing carbon dioxide from the atmosphere, 3) reducing incoming
sunlight through solar radiation modification, and 4) adapting
to a changed climate. We describe a policy response process
that permits a decision maker to adjust policies and improve
model parameters over time based on climate outcomes and
research results.

HFD wrote the paper, ran the simulations, and performed the analysis. All authors contributed to
the conception of the project, interpretation of the results, and editing of the paper.

1To whom correspondence should be addressed. E-mail: rivest@mit.edu

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX PNAS | May 22, 2020 | vol. XXX | no. XX | 2–12

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

The conventional tool for optimizing global climate control49

are Integrated Assessment Models (IAMs), which are the50

result of coupling simple climate system models to simple51

energy-economy models (see 30, for a general overview of IAMs52

and their utility to date). In this paper, we 1) present an53

idealized model of optimally-controlled climate change which54

is complementary to both simpler analytical models and more55

comprehensive IAMs and 2) we propose a sequential policy56

process for periodic and critical re-evaluation of inevitably57

biased forecasts, which we illustrate with three hypothetical58

examples.59

MARGO: An idealized model of optimally-controlled cli-60

mate change61

The MARGO model consists of a physical energy bal-62

ance model of Earth’s climate coupled to an idealized socio-63

economic model of climate damages and controls (Figure 1):64

Mitigation of greenhouse gas emissions,
Adaptation to climate impacts,
Removal of carbon dioxide (CDR),
Geoengineering by solar radiation modification (SRM), and
Optimal deployment of available controls.

65

The model is modular, fast, and customizable and can be run66

with several options of objective functions and constraints.67

Each of the climate controls acts, in its own distinct way,68

to reduce the damages caused by a changing climate but carry69

their own deployment costs (including direct costs, research70

and development costs, infrastructure costs, regulatory costs).71

The model is designed to include key features of climate physics,72

economics, and policy as concisely as possible and in ways73

consistent with both theory and more comprehensive General74

Circulation Models and IAMs. The shortcoming of the model’s75

simplicity is that while its results provide qualitative insights,76

the quantitative results are unreliable.77

The model is developed in open source using the Julia pro-78

gramming language (31) at github.com/hdrake/OptimizeClimate79

(Drake et al., 2020). The model originated as an extension of80

a previous model (4) to time-dependent control variables, al-81

though many improvements have been made since then. Each82

model component is expressed in closed form to facilitate83

analytical analysis and computation. Unlike most idealized84

climate-economic models, the entire MARGO framework can85

be explicitly written down in one or two expressions (SI Text86

2). A derivation and interpretation of the two-box energy87

balance model– which has the same form as that of DICE88

(32)– is included in the Methods. The parameter values used89

throughout the paper are set to the defaults mentioned in90

this section (and comprehensively listed in SI Text 2), except91

where explicitly stated otherwise. Validation experiments are92

summarized in the Methods and described in detail in the93

Supplemental Information.94

No-policy baseline scenario. Climate-controlled scenarios are95

considered relative to an exogenous no-policy baseline where96

carbon-dioxide equivalent (CO2e) emissions q(t) increase lin-97

early four-fold by 2100 relative to 2020 and decrease linearly98

to zero by 2150, resulting in 7.3 W/m2 of radiative forcing99

by 2100 and 8.5 W/m2 by 2150, relative to preindustrial lev-100

els. As a result of this forcing, the global-mean temperature101

of keeping warming below 2
¶

C (29).

reaches 2 ¶C by 2050 and soars to T ¥ 4.75 ¶C by 2100, relative 102

to preindustrial. We interpret this emission scenario as an 103

idealized extension of the SSP3 baseline scenario, which is 104

characterized by fossil-fueled growth (33). 105

There are five steps in the causal chain (eq. 1) between 106

CO2e emissions and climate damages. 107

1. CO2e is emitted at a rate q(t), with only a fraction 108

r = 50% (34) remaining in the atmosphere after a few 109

years, net of uptake by the ocean and terrestrial biosphere 110

(Figure 2a). 111

2. CO2e concentrations increase as long as the emissions q(t) 112

are non-zero, and are given by c(t) = c0 +
s t

t0
rq(t) dt 113

(Figure 2b). 114

3. Increasing CO2e concentrations strengthen the greenhouse 115

e�ect, reducing outgoing longwave radiation and causing 116

an increased radiative forcing of F (t) = a ln(c(t)/c0), 117

which exerts a warming e�ect on the surface. 118

4. Near-surface air temperatures eventually increase by 119

T (t) = F (t)/B to balance the reduced cooling to space, 120

where B/(Ÿ + B) = 60% of the warming occurs within a 121

few years and the remaining Ÿ/(B +Ÿ) = 40% occurs over 122

the course of several centuries due to ocean heat uptake 123

(35). The feedback parameter B includes the e�ects of all 124

climate feedbacks, except those involving the carbon cycle 125

and the long-term ice sheet response (Figure 2c), and the 126

ocean heat uptake rate Ÿ parameterizes the combined 127

e�ects of advection and di�usion of heat into the deep 128

ocean. 129

5. Anthropogenic warming causes a myriad of climate im- 130

pacts, which result in damages that increase non-linearly 131

with temperature, D = —T 2. 132

Effects of climate controls. The four available climate controls 133

enter as fractional controls at each link of the climate change 134

causal chain (eq. 1). 135

Mitigation reduces emissions by a factor M(t) œ [0, 1] such 136

that the controlled emissions that remain in the atmosphere 137

are rq(t) (1 ≠ M(t)), where M = 1 corresponds to complete 138

decarbonization of the economy. 139

Removal of CO2e, R(t) œ [0, 1], in contrast to mitigation, 140

is de-coupled from instantaneous emissions and is expressed 141

as the fraction of 2020 baseline emissions that are removed 142

from the atmosphere in a given year, q0R(t). A maximal value 143

of R = 1 corresponds to removing 60 GtCO2e/year, which is 144

more than twice a recent upper-bound estimate of the global 145

potential for negative emission technologies (36). 146

A useful diagnostic quantity is the e�ective emissions 147

rq(t)(1 ≠ M(t)) ≠ q0R(t), [2] 148

which is the annual rate of CO2e accumulation in the atmo- 149

sphere (Figure 2a), with contributions from both emissions 150

mitigation and CDR. The change in CO2e concentrations is 151

simply the integral of the e�ective emissions over time (Figure 152

2b), 153

cM,R(t) = c0 +
⁄ t

t0

rq(tÕ)(1≠M(tÕ)) dtÕ ≠q0

⁄ t

t0

R(tÕ) dtÕ. [3] 154
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Climate damagesControl costs

Fig. 1. Schematic of the causal chain from greenhouse gas emissions to climate damages, including the unique effects of four climate controls: emissions Mitigation, carbon
dioxide Removal, Geoengineering by Solar Radiation Management (SRM), and Adaptation. Climate controls yield benefits in terms of avoided climate damages, which are
balanced against control deployment costs.

Geoengineering by SRM, G(t) œ [0, 1], acts to o�set a155

fraction of the CO2e forcing,156

FM,R,G(t) = FM,R(t) ≠ G(t)FŒ, [4]157

where FM,R = a ln(cM,R(t)/c0) is the controlled CO2e forcing158

and FŒ = 8.5 W/m2 is the maximum baseline CO2e forcing,159

which is attained starting in 2150, when baseline emissions are160

assumed to reach zero. A value of G = 1 thus corresponds to a161

complete cancellation between the equilibrium warming from162

baseline CO2e increases and the cooling from a full deployment163

of SRM.164

The controlled near-surface air temperature (Figure 2c)165

evolves according to the total controlled forcing,166

TM,R,G(t) ≠ T0 = FM,R,G(t)
B + Ÿ

+ Ÿ
B

⁄ t

t0

e
tÕ≠t
·D

·D

FM,R,G(tÕ)
B + Ÿ

dtÕ,

[5]167

where T0 = 1.1 ¶C is the present warming relative to preindus-168

trial and ·D = 240 years is the slow timescale of ocean heat169

uptake. The first term on the right-hand side of [5] represents170

a fast transient response while the second term represents a171

slow recalcitrant response due to the thermal inertia of the172

deep ocean (see Methods). Climate inertia decouples the tem-173

perature response from instantaneous forcing and implies that174

an additional fraction of short-term warming (or cooling) is175

locked in for the future, even if radiative forcing is stabilized176

(37), as in the case of bringing emissions to zero in our model†.177

† In earth system models with a dynamic carbon cycle, the slow recalcitrant warming due to a re-

Adaptation to climate impacts acts to reduce damages by a 178

fraction A(t) œ [0, 40%]. Since some climate impacts are likely 179

impossible to adapt to (20), we assume that adaptation can 180

at most reduce climate damages by one-third. The controlled 181

damages are thus given by 182

DM,R,G,A = —(TM,R,G)2(1 ≠ A(t)), [6] 183

where the damage parameter — is tuned such that a warm- 184

ing of 3 ¶C results in damages of the 2% of Gross World 185

Product (GWP), consistent with DICE in the limit of non- 186

catastrophic warming (32). Although adaptation does not 187

a�ect the planetary temperature directly, it is useful to con- 188

sider an "adapted temperature" TM,R,G,A which yields con- 189

trolled damages equivalent to the fully-controlled damages 190

—(TM,R,G,A)2 = —(TM,R,G)2(1 ≠ A) and is defined 191

TM,R,G,A © TM,R,G


(1 ≠ A). [7] 192

Costs and benefits of controlling the climate. The costs of 193

deploying climate controls are non-negligible and must be 194

balanced with the benefits of controlling the climate to avoid 195

climate impact damages. The costs of climate controls are 196

parameterized as: 197

C = CM M2 + CRR2 + CGG2 + CAA2, [8] 198

where the Cú are the hypothetical annual costs of fully de- 199

ploying that control (see Methods) and the cost functions 200

duction in ocean heat uptake happens to be roughly offset by the ocean carbon sink (34), such
that bringing emissions to zero roughly stabilizes temperatures (38). The model’s realism would be
improved by implementing a simple non-linear model of the ocean carbon cycle (39)
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Fig. 2. Baseline (blue) and optimally-controlled (orange) a) effective CO2e emissions, b) CO2e concentrations, and c) temperature anomaly relative to preindustrial from
cost-effectiveness analysis. Panel c) shows the optimal temperature change that would occur: in a baseline scenario (blue); with just emissions Mitigation and carbon dioxide
Removal (orange); with Mitigation, Removal, and solar-Geoengineering (red); and as an “adapted temperature" (eq. 7) with Adaptation measures also taken into account. The
dashed grey line marks the threshold adapted temperature of T ı

= 2
¶
C to be avoided. In (c), TM,R,G and TM,R,G,A decrease slightly in 2050 relative to TM,R as small

but non-zero SRM deployment becomes permissible. Equivalent curves for cost-benefit analysis are shown in Figure S1.

are assumed to be convex functions of fractional deployment201

with zero initial marginal cost, as is customary (5, 6, 26), and202

are here all taken to be quadratic for simplicity (4, 5). The203

benefits of deploying climate controls are the avoided climate204

damages relative to the no-policy baseline scenario,205

B = D ≠ DM,R,G,A = —(T 2 ≠ (TM,R,G,A)2). [9]206

Exogenous economic growth. In contrast to conventional207

IAMs, which follow classic economic theories of optimal eco-208

nomic growth and solve for the maximal welfare based on209

the discounted utility of consumption, we here treat economic210

growth as exogenous (as in 5). The economy, represented by211

the GWP E(t) = E0(1 + “)(t≠t0), grows from its present value212

of E0 = 100 trillion USD with a fixed growth rate “ = 2%,213

consistent with DICE, expert opinion, and an econometric214

forecast model (32, 40). We ignore feedbacks of climate abate-215

ment costs and climate damages on economic growth, since216

they are small variations relative to the exponential rate of217

economic growth in many IAM implementations (32, 41), but218

not all (42).219

Optimal deployments of climate controls220

A trusted climate policy decision-maker specifies the objective221

function to maximize subject to additional policy constraints.222

The MARGO model is readily optimized in terms of the time-223

dependent climate control variables M(t), R(t), G(t), A(t).224

The numerical implementation of the optimization, as well225

as additional socio-technological constraints on the permitted226

timing and rates of deployments, are described in the Meth-227

ods. Here, we describe the optimally-controlled results of two228

policy approaches, cost-benefit analysis and cost-e�ectiveness229

analysis, and explore their sensitivity to the discount rate fl230

and possible limits to the fractional penetration of mitigation231

µ, respectively.232

Cost-benefit analysis. A natural and widely-used approach is
cost-benefit analysis, in which the cost CM,R,G,A of deploying
climate controls is balanced against the benefits BM,R,G,A of
the avoided climate damages. Formally, we aim to maximize

the net present benefits:

max
;⁄ tf

t0

(BM,R,G,A ≠ CM,R,G,A) (1 + fl)≠(t≠t0) dt

<
, [10]

where fl is a social discount rate that determines the annual 233

depreciation of future costs and benefits of climate control 234

to society. There are di�erent views about the appropriate 235

non-zero discount rate to apply to multi-generational social 236

utility (43–46). Here, we choose a discount rate of fl = 1%, on 237

the low end of values used in the literature, motivated by our 238

preference towards inter-generational equity (47). 239

The results of maximizing net present benefits are shown in 240

Figure 3. Early and aggressive emissions mitigation– and to a 241

lesser extent CDR (Fig 3a)– drive net discounted costs of up 242

to 1.5 trillion USD/year before 2075 relative to the no-policy 243

baseline but deliver orders of magnitude more in net discounted 244

benefits from 2075 to 2200 (Fig 3b). E�ective CO2e emissions 245

reach net-zero by 2040 and concentrations stabilize at cM,R = 246

500 ppm, slightly above present day c0 = 460 ppm (Figure 247

S1a,b). In 2050, deployments of SRM become permissible and 248

quickly scale up to a moderate level of G = 15%, permanently 249

bringing carbon-controlled temperatures from about TM,R ¥ 250

1.5 ¶C to TM,R,G ¥ 0.75 ¶C above preindustrial (Figure S1c). 251

Deployments of adaptation are modest, reflecting its relatively 252

high costs and its position at the end of the the causal chain 253

of climate damage (eq. 1) 254

The preference for controls earlier in the causal chain, no- 255

tably mitigation, is largely a result of the choice fl = 1% for the 256

discount rate (Figure 3c). In particular, if the discount rate in- 257

creases above the economic growth rate (48), fl > “ = 2%, the 258

time decay leads to a di�erent regime of control preferences: 259

the short-term fix o�ered by SRM overwhelmingly becomes the 260

preferred control since the high future costs of its unintended 261

climate damages are damped by the aggressive discounting 262

of future costs. Adaptation emerges as the only control that 263

peaks for intermediate values of the discount rate, since its 264

benefits are experienced both in the short-term and long-term. 265

Cost-effectiveness of avoiding damage thresholds. The con- 266

ventional cost-benefit approach to understanding climate 267

Drake et al. PNAS | May 22, 2020 | vol. XXX | no. XX | 5
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Fig. 3. Results of cost-benefit analysis and sensitivity to the discount rate fl. (a) Optimal control deployments and (b) corresponding discounted costs and benefits relative to
the no climate-policy baseline scenario. The total positive area shaded in grey in (b) is the maximal net present benefits (eq. 10). (c) Time-mean control deployments as a
function of the discount rate.

change is limited by the poorly understood damage func-268

tion (49), which is likely to continue being revised as more is269

learned about its behavior at high levels of forcing (50, 51).270

An alternative approach, which presently guides global cli-271

mate policy negotiations, is to prescribe a threshold of climate272

damages– or temperatures, as in the Paris Climate Agreement273

(28)– which is not to be surpassed.274

In this implementation, we aim to find the lowest net present275

costs of control deployments276

min
;⁄ tf

t0

CM,R,G,A(1 + fl)≠(t≠t0) dt

<
[11]277

which keep controlled damages below the level corresponding278

to a chosen temperature threshold, —(TM,R,G)2(1 ≠ A(t)) <279

—(T ı)2, which we rewrite280

TM,R,G,A < T ı, [12]281

where TM,R,G,A is the "adapted temperature" (eq. 7).282

The results of optimizing the cost-e�ectiveness of controls283

that keep adapted temperatures below T ı = 2 ¶C are shown284

in Figures 2 and 4. Fractional emissions mitigation increases285

to a maximum of M = 50 % decarbonization by 2035 and286

is maintained until emissions peak in 2100 (Figures 2a and287

4a). Carbon dioxide is initially removed at rate of Rq0 ¥288

15% q0 = 1.1 ppm/year starting in 2030, which ramps up to289

Rq0 ¥ 30% q0 = 2.2 ppm/year by 2140. Since the optimally-290

controlled temperatures that result from the above cost-benefit291

analysis are already lower than T ı = 2 ¶C, the optimal controls292

from cost-e�ectiveness are less ambitious than for the cost-293

benefit analysis (Figures 3a, 4a), in contrast to some previous294

mitigation-only studies (26, 52) but inline with recent analysis295

(42) that uses an updated climate damage function (51). As a296

consequence of relatively relaxed mitigation and CDR early297

on, a sizable deployment of SRM is used to shave o� 1 ¶C298

degree of warming at its peak in the mid-22nd Century in299

order to meet the temperature goal (Figure 4a and Figure 2c).300

Adaptation o�sets A = 15 % of damages and plays a moderate301

role in reducing damages to below the threshold. Even with302

discounting, annual costs of control deployments increase until303

2100 and remain roughly constant in the 22nd Century (Figure304

4b).305

To explore the sensitivity of these results to our assumed306

mitigation costs CM M2, which allow for up to 50% mitigation307

by 2035 at the relatively low cost of 700 billion USD/year, we 308

compare the results against a re-optimization with steeper 309

costs at high levels of mitigation. The mitigation cost function 310

is modified to 311

CM M2

3
1 ≠ e

≠
!

1≠M
1≠µ

"4≠1

, [13] 312

where we set the penetration limit of cheap mitigation to 313

µ = 40% and the function’s structure is shown in Figure 4d. 314

Mitigation costs are unchanged for M π µ. Around M ¥ µ, 315

low-hanging mitigation options are increasingly exhausted and 316

costs begin to increase much more rapidly than the default 317

assumption M2. The high costs of deep decarbonization drive a 318

reduction in the peak mitigation from M = 50% to nearly M = 319

30% in 2060, with the decreased mitigation being compensated 320

by increases in the other three controls (Figure 4c). 321

Benefits of a complete portfolio of climate controls 322

To quantify the benefits of considering a complete portfolio of 323

climate controls, as opposed to considering control technologies 324

in isolation, we compute optimal control trajectories with all 15 325

combinations of the controls – œ {M, A, R, G}, setting – © 0 326

for omitted technologies. The most cost-e�ective strategy 327

includes all four controls and has a net present cost of 136 328

trillion USD (discount rate of fl = 1%). Since mitigation is the 329

dominant control in the {MARG} scenario (Figure 4a), the 330

six most cost-e�ective portfolios include mitigation, with the 331

no-SRM {MAR} and mitigation-plus-CDR {MR} scenarios 332

costing only 31% and 38% more than the {MARG} scenario, 333

respectively (Table 1). The costs in single-control scenarios are 334

much larger, with additional costs of 136% for the mitigation- 335

only scenario {M} to 201% for the SRM-only scenario {G}. 336

In the adaptation-only {A} and CDR-only {R} scenarios, 337

there is no solution that avoids an adapted temperature of 338

T ı = 2 ¶C, because we have imposed an adaptability limit 339

A < 40% (20) and limits to plausible levels of CDR q0R < 340

q0 = 60 GtCO2e/year (see Methods). 341

A policy process for responding to uncertain future out- 342

comes 343

Integrated Assessment Modelling (IAM) approaches assume 344

perfect foreknowledge of model dynamics, parameters (or pa- 345

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Drake et al.
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Fig. 4. Results of cost-effectiveness analysis and sensitiv-
ity to potential limits µ to mitigation. (a) Optimal control
deployments and (b) corresponding costs and damages.
In panel (b), the blue line shows the discounted baseline
uncontrolled damages; the dashed grey line shows the dis-
counted damages associated with 2

¶ of warming, which
are to be avoided at all costs; the orange line shows the dis-
counted damages in the optimally-controlled solution; and
the red line shows the optimal discounted costs of controls
such that the shaded area below is the minimal net present
costs of controls (eq. 11). (c) Control deployments, as in (a),
but re-optimized with high costs of deep decarbonization
(blue line in d, eq. 13) relative to the default mitigation costs
(black line in d). Mitigation in the default scenario (a) is
reproduced as a dashed line in (c) for ease of comparison.

Table 1. Additional net present cost of avoiding an adapted temper-
ature of T ı = 2 ¶C, relative to the 136 trillion USD net present cost
of controls in the {MARG} reference scenario with all four controls
available: mitigation (M), adaptation (A), CDR (R) and SRM (G).

MARG MRG MAR MAG MR MG ARG RG

0% 5% 31% 34% 38% 46% 63% 96%

MA AG M G AR R A
105% 109% 136% 201% 216% N/A N/A

Since we have imposed upper bounds A < 40% and q0R < q0 =

60 GtCO2e/year on adaptation and CDR, there is no scenario in which

they can, in isolation, keep damages below those associated with T ı
=

2
¶
C of warming.

rameter distributions), and inputs. Future outcomes will di�er346

from projections because the models are imperfect approxima-347

tions of the socio-economic and physical climate systems they348

represent. For example, socio-economic models may assume349

erroneous future costs of climate controls (53) and physical350

climate models may omit tipping elements (11), both of which351

would lead to biases in model projections with respect to352

actual outcomes. Furthermore, the assumption of perfect fore-353

knowledge degrades the active roles of policy decision-makers354

in determining baselines and control cost functions, and of355

climate researchers in refining estimates of physical model356

parameters.357

A hypothetical trusted climate policy decision-maker must358

be in a position to respond to the inevitable di�erences that359

arise between model projections and actual outcomes and360

to revise their system understanding based on the newest361

developments in research. We show how our model equips362

climate policy decision-makers with the ability to periodically363

re-evaluate policy prescriptions by revising the underlying364

model structure and parameter values to correct for revealed 365

biases. 366

The responsive control strategy process we propose is as 367

follows: 368

1. Initial future trajectories of optimal control deployments 369

are computed from the vantage point of t = t0; 370

2. Model projections and control deployments are integrated 371

forward one policy-making period to t1 = t0 + �t; 372

3. Model structure and parameter values are revised, owing 373

to new information obtained from observed outcomes and 374

research developments; 375

4. Future trajectories of control deployments are re- 376

optimized, now from the vantage point of t1 = t0 + �t 377

and with revised model parameters; 378

5. Return to step 2, replacing t1 = t0 + �t with tn = 379

tn≠1 + �t for period n, and repeat the process for the 380

desired number of periods. 381

To illustrate the utility of the policy response process, we apply 382

it to three hypothetical future scenarios, in which the most 383

cost-e�ective controls for keeping adapted temperatures below 384

T ı = 2 ¶C are sequentially re-optimized in response to changes 385

in model inputs and parameters. As a point of reference, we 386

note that the passage of time itself leads to minor adjustments 387

in the optimal combination of control deployments. As each 388

successive generation is exposed to increasingly damaging 389

temperatures, their most cost-e�ective solution is to increase 390

adaptation measures, which past generations did not yet need, 391

and save costs by slightly decreasing all other controls in the 392

near future (Figure 5a,b). The control adjustments in the 393

three scenarios below (Figure 5c-h) are shown relative to those 394

in the reference case (Figure 5a,b). 395
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Fig. 5. Illustration of the proposed policy process in which
the optimally cost-effective control policies are periodically
re-adjusted, relative to the original policies prescribed in
2020 (Figure 4a). In a reference case (a,b), time advances
sequentially to 2050 (a) and 2080 (b) and policies are re-
adjusted to reflect the new timelines. The blue shading
shows the passage of time. The changes in control deploy-
ments shown in (c-h) are due to sequential re-optimization
at 2050 (left) and 2080 (right), relative to the reference
case (a,b), but now with revised model parameters: (c,d)
where historical effective emissions rq(t) are sequentially
decreased and then increased (see insets); (e,f) where the
costs of CDR and SRM are sequentially increased and de-
creased, respectively; and (g,h) where the best guess of the
Equilibrium Climate Sensitivity (ECS) is revised upwards in
2050 and again in 2080. The inset in (d) shows the cooling
due to SRM �TG = TM,R,G ≠ TM,R in the default sce-
nario (dashed) and after the re-evaluation in 2080 shown in
panel (d) (solid).

Scenario 1: revealed bias in projected near-term baseline396

emissions. Suppose in t0 = 2020 that the policy decision-397

maker prescribes aggressive climate control policies based on398

their cost-e�ectiveness at keeping warming below T ı = 2 ¶C399

(step 1; Figure 4a) and that these optimal climate controls are400

perfectly implemented over the following �t = 30 years (step401

2).402

The policy decision-maker directs a re-evaluation of the403

optimal control strategy at t1 = 2050. The actual base-404

line emission trajectory between t0 = 2020 and t1 = 2050405

is found to be r�q = 1 ppm/year lower than projected on406

average (Figure 5c, inset), resulting in lower CO2e concentra-407

tions than anticipated and a projected maximum warming408

of max(TM,R,G,A) = 1.9 ¶C, well below the T ı = 2 ¶C goal.409

The model inputs are thus revised to account for these lower-410

than-expected historical baseline emissions (step 3) and the411

optimal future control trajectories are re-computed (step 4).412

Reduced historical emissions imply a larger remaining carbon413

budget (54) and allow the policy decision-maker to slightly re-414

lax control deployments while still remaining below T ı = 2 ¶C415

of warming (Figure 5c), resulting in 12 trillion USD of avoided416

net present control costs. At this point, the policy decision417

maker must decide whether to continue existing policies that418

lead to 1.9 ¶C of warming or to reduce future controls deploy-419

ments (and costs) at the risk of increased climate impacts due420

to an additional 0.1 ¶C of warming.421

Suppose that, after following the re-optimized control tra-422

jectories for another �t = 30 years (step 5), the historical423

e�ective baseline emissions must now be revised upwards by424

2 ppm/year on average (Figure 5d, inset). With existing poli-425

cies, the increased historical emissions would result in a 0.13 ¶C426

overshoot of the T ı = 2 ¶C degree goal. The most cost-e�ective427

adjustment to existing control policies that is consistent with 428

the temperature goal is to increase mitigation, CDR, and SRM 429

e�orts by an additional �M = 3%, �R = 2%, and �G = 2% 430

(Figure 5d), at a net-present cost of 10 trillion USD. 431

Scenario 2: revealed bias in projected geoengineering (CDR 432

and SRM) costs. Suppose that at a re-evaluation in 2050, CDR 433

is found to be 50 % more expensive than projected. The climate 434

policy-maker directs deployment of the most cost-e�ective 435

control trajectories which keep warming below T ı = 2 ¶C, 436

which are re-optimized with the revised cost of CDR. The 437

result is to decrease CDR by �R = ≠5 % and instead increase 438

adaptation by �A = 5% (Figure 5e). The shift away from 439

expensive CDR towards adaptation results in 11.5 trillion USD 440

of avoided net present costs of control deployments, with little 441

di�erence in climate damage outcomes. 442

Suppose that after an additional 30 years, during which 443

SRM is ramped up to a modest but non-zero level G = 5 % 444

(Figure 4a), it becomes clear that the costs of unintended 445

side-e�ect damages of SRM are less than half as large as 446

expected. In this scenario, the optimal future trajectory is to 447

expand SRM deployments in the 22nd Century to G ¥ 20 % 448

(resulting in �TG = TM,R,G ≠ TM,R ¥ ≠1.0 ¶C of cooling, up 449

from ≠0.6 ¶C; Figure 5f, inset) and reduce future mitigation 450

levels by �M = ≠10 % (Figure 5f), resulting in another 12.6 451

trillion USD of avoided net present control costs. 452

Scenario 3: revealed bias in estimates of climate sensitivity. 453

Suppose that by 2050, a dramatically improved suite of gen- 454

eral circulation climate models robustly exhibits Equilibrium 455

Climate Sensitivities of ECS = 3.5 ¶C, up from 3 ¶C in recent 456

years (55), and further improvements result in ECS = 4 ¶C 457

8 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Drake et al.
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by 2080. Each of these revisions e�ectively shrinks the remain-458

ing cumulative carbon budget and thus requires sequentially459

increased deployments of mitigation, CDR, and SRM in order460

to keep warming below T ı = 2 ¶C (Figures 5g, h).461

This responsive policy process only works if adjustments462

are made su�ciently frequently. If the policy decision-maker463

had waited from 2020 until 2100 before re-adjusting their464

course for a higher climate sensitivity of ECS = 4 ¶C, there465

would already be enough warming baked into the system that466

TM,R,G,A = 2.2 ¶C > T ı of warming would be inevitable–467

even if the optimal policy from 2020 (Figure 4a,b) had been468

perfectly implemented.469

Discussion470

Few studies have considered the combined use of mitigation,471

carbon dioxide removal (CDR), solar radiation modification472

(SRM), and adaptation for controlling climate damages. We473

have developed a multi-control, time-dependent model of opti-474

mally cost-beneficial or cost-e�ective climate policies, which475

extends and improves upon previous work (4). Another recent476

study (5) uses a similar conceptual model with time-dependent477

controls to analytically investigate the di�erences between dif-478

ferent climate controls; however, this model’s climate physics479

are reduced to a simple empirical relationship that is not as480

clearly applicable to the case of significant SRM, where the481

direct link between cumulative emissions and temperature482

falls apart. Despite these di�erences, our study reproduces483

two key conceptual results of both earlier studies: 1) the four484

di�erent climate controls are not interchangeable, as they enter485

at di�erent stages of the causal chain between emissions and486

damages, and 2) the most cost-e�ective solution to limiting487

climate damages is to use all four controls at our disposal.488

The first result emerges from the role of each control in modi-489

fying the basic stock-flow properties of the carbon and heat490

budgets in the climate system. The second result is a direct491

consequence of marginal control costs which 1) begin at zero492

and 2) are concave, and is not guaranteed to hold if either493

assumption fails. For example, if learning e�ects are strong494

enough to cause fractional deployments costs to become con-495

vex, then a single-control strategy could be more appealing.496

Alternatively, if substantial R&D investments are necessary497

before a control is deployed, the large up-front marginal cost498

may be disqualifying.499

We have proposed a policy response process which high-500

lights the iterative nature of climate policy decision-making.501

We show that this process can be used to periodically cor-502

rect for revealed biases in our understanding of the climate-503

economic system, in order to avoid unanticipated climate504

damages or "excessive" spending on climate controls. We view505

our proposed policy response process as an improvement over506

previously proposed "sequential" and "adaptive" strategies, in507

which policies are periodically re-evaluated by following in-508

structions from a subjectively-defined decision flow chart (e.g.509

56). In our process, policy re-evaluations are always optimally510

cost-beneficial or cost-e�ective, although the parameters that511

govern this optimization can be periodically re-adjusted. We512

argue that our policy process based on re-optimization is more513

defensible than previous approaches but retains the benefits514

of the process being "adaptive".515

For clarity of exposition, we have presented a fully de-516

terministic version of the MARGO model. In actuality, key517

inputs such as the climate feedback parameter B (and the 518

related climate sensitivity ECS) and the damage function 519

D(T ) are extremely uncertain. Propagation of these uncer- 520

tainties through a convex damage function typically increases 521

expected climate damages and strengthens the case for early 522

and aggressive climate control (57). Future work includes 1) 523

extending MARGO to a stochastic programming approach 524

that accounts for uncertainty in the various input parameters 525

(see Methods) and 2) implementing a Bayesian policy response 526

process where prior parameter distributions can be updated 527

based on observed outcomes (58) or improved parameter esti- 528

mates from research developments. Stochastic programming 529

of IAMs is significantly complicated by their endogenous eco- 530

nomic models (59); the model presented here is significantly 531

more endogenous and may prove to be a useful framework for 532

straight-forward multi-stage stochastic programming (60). 533

The greatest caveat of the present study may be the assump- 534

tion of a single trusted decision-maker. This device evidently 535

avoids the complexities of a realistic decision making process 536

that involve multiple stake holders with conflicting interests. 537

The costs and benefits defined here are globally-aggregated; 538

asymmetric costs and benefits between di�erent regions lead 539

to diverging incentives, which are further complicated as the 540

number of unique climate controls increases. Asymmetric 541

multi-control incentives can be counter-intuitive: for example, 542

one study suggests that high asymmetry in SRM damages 543

drives even higher levels of mitigation because of the risk of 544

SRM "free-drivers" (61). 545

Even in the case where climate control policies are pre- 546

scribed by a single hypothetical decision-maker, there are sure 547

to be ine�ciencies in their implementation which we argue 548

are more likely to result in under-deployment of controls than 549

over-deployment. Considerable caution must be taken when- 550

ever relying on substantial CDR or SRM since neither of these 551

controls exist as socio-technological systems capable of influ- 552

encing climate, resulting in a "moral hazard" that shifts the 553

burden to unconsenting future generations (25, 62). 554

The MARGO model is an idealized model which highlights 555

the qualitatively di�erent roles of mitigation, CDR, adapta- 556

tion, and SRM in climate control. Both economic and physical 557

components of the model have been abstracted as much as pos- 558

sible to highlight a small number (N ¥ 9) of key parameters 559

that govern the leading order behavior of the system (as com- 560

pared to widely-used IAMs: 26, 63, 64): the climate feedback 561

parameter B (related to the equilibrium climate sensitivtiy 562

ECS = F2◊CO2 ), the ocean heat uptake rate Ÿ, the exogenous 563

economic growth rate “, the discount rate fl, the climate dam- 564

age parameter —, and the controls costs CM , CR, CA, CG (SI 565

Text 2 and Table S1). We show how the model can be used to 566

investigate the sensitivity of "optimal" climate control policies 567

to poorly constrained parameters, such as future control costs, 568

and value-dependent parameters, such as the discount rate. 569

We believe that our model resides in a sweet spot of being more 570

realistic than semi-analytic models and easier to understand 571

than conventional IAMs. We demonstrate that our model can 572

be easily modified to reproduce the qualitative results of other 573

studies (e.g. 6, 65, SI Text 3) and hope that it will be a useful 574

community tool for extending simpler models, interpreting 575

more comprehensive models, and bridging the gaps between 576

climate economists, scientists, policy decision-makers, and the 577

public (66–68). 578

Drake et al. PNAS | May 22, 2020 | vol. XXX | no. XX | 9



DRAFT

Materials and Methods579

All data and figures used in the study can be found at github.com/580

hdrake/OptimizeClimate and are readily reproduced or modified by581

the Jupyter notebooks therein.582

Control costs. The scaling costs for the four controls used in the583

present study are subjectively tuned; we here describe our rationale584

for choosing the parameter values. We remind the reader that the585

purpose of the MARGO model is to reveal insights about trade586

o�s between the multiple controls and the dependence of model587

results on structural and parameteric choices. The interested reader588

can choose their own parameter values and see how the results589

change by visiting our web-browser application at github.com/hdrake/590

OptimizeClimate (placeholder until we have a better webapp).591

The costs of mitigation are set according to the Working Group592

III contribution to Intergovernmental Panel on Climate Change’s593

Fifth Assessment Report (69). In aggressive mitigation scenarios594

where CO2e emissions decrease 78% to 118% by 2100, they estimate595

abatement costs of about 2% of GWP (see their Figure 6.21, panel f).596

Thus, we set the scaling cost of mitigation controls to CM = C̃M E(t),597

where the cost of mitigating all emissions is C̃M = 2% of the GWP598

E(t).599

The costs of CDR are set according to bottom-up cost estimates600

from (36, their Table 2). We compute the mean cost of negative-601

emissions technologies, where we weight the median cost of each602

negative-emissions technology (in USD/tCO2) by its upper-bound603

potential for carbon-dioxide removal (in GtCO2/year). This leads604

to a total potential of roughly q0/2 ¥ 26 GtCO2/year at an average605

cost of CR = 110 USD/tCO2. The scaling cost is thus set based606

on an estimate for R = 50%, i.e. CR

!
1

2

"2 = CR q0/2 or CR =607

2CR q0 = 13 trillion USD/year.608

The costs of SRM largely reflect the costs of unintended climate609

damages that result due to their imperfect compensation for GHG610

forcing (70). Relative to both the costs of unintended damages611

and the costs of other climate controls, the direct costs of SRM612

measures are thought to be small (19), as in the most commonly613

studied proposal of releasing gaseous sulfate aerosol precursors into614

the stratosphere to reflect sunlight back to space. The reference cost615

of SRM is thus given by CG(t) = C̃GE(t), where C̃G is the damage616

due to deploying ≠FŒ © ≠F (t æ Œ) = ≠8.5 Wm≠2 worth of SRM,617

as a fraction of the exogenous GWP E(t). In the face of considerable618

uncertainties about the climate impacts of large-scale SRM (70), we619

make the conservative assumption that the unintended damages of620

SRM are as large as the uncontrolled damages due to an equivalent621

amount of CO2e forcing (as in 6, 71), i.e. C̃G © —̃(FŒ/B)2
¥ 4.6 %,622

where FŒ/B is the equilibrium temperature response to a fixed623

radiative forcing of FŒ = 8.5 Wm≠2.624

The costs of adaptation are estimated based on a recent joint625

report from the United Nations, the Bill and Melinda Gates Founda-626

tion, and the World Bank. They estimate that adaptation measures627

costing 1.8 trillion USD from 2020 to 2030 generate more than628

five times as much in total net benefits. Here, we make the crude629

assumption that this level of spending (180 billion USD / year)630

reduces climate damages by A = 20%, i.e. CA

!
1

5

"2 = 180 billion631

USD / year, or CA = 4.5 trillion USD / year. We additionally cap632

adaptation at A < 1/2, recognizing that adaptation to all climate633

impacts is impossible: there will always be residual damages that634

can not be adapted to (20).635

Optimization method. We use the Interior Point Optimizer (72)636

(https://github.com/coin-or/Ipopt), an open source software package for637

large-scale nonlinear optimization, to minimize objective functions638

representing benefits and costs to society subject to assumed policy639

constraints. In practice, the control variables – œ A = {M, R, G, A}640

are discretized into N = (tf ≠ t0)/”t timesteps (default ”t = 5 years,641

N = 36) resulting in a 4N -dimensional optimization problem. In the642

default (deterministic and convex) configuration, the model takes643

only O(10 ms) to solve after just-in-time compiling and e�ectively644

provides user feedback in real time. This makes the model amenable645

to our forthcoming interactive web application, which is inspired by646

the impactful En-ROADS model web application (73).647

The model was designed from the beginning with the goal of648

eventual use in stochastic simulations where 1) the determinstic649

scalar objective function can be generalized to an expected value of 650

a probabilistic ensemble of simulations that sample an uncertain 651

parameter space, and 2) determinstic constraints can be generalized 652

to probablistic constraints (e.g. having a two-thirds chance of 653

keeping temperatures below a goal T ı), although these features are 654

still under active development. 655

Social, technological, and economic inertia. For each control – œ 656

A = {M, R, G, A}, we assert a maximum deployment rate 657
---d–

dt

--- Æ –̇, [14] 658

as a crude parameterization of social, technological, and economic 659

inertia (74), which acts to forbid implausibly aggressive deployment 660

(75) and phase-out scenarios (see SI Text 2 for more discussion). 661

We set Ṁ © Ṙ © 1/40 years≠1 in line with the most ambitious 662

climate goals (2) and Ġ = 1/20 years≠1 to reflect the technological 663

simplicity of attaining a large SRM forcing relative to mitigation 664

and CDR. We interpret adaptation deployment costs as buying 665

insurance against future damages at a fixed annual rate CAA2, with 666

Ȧ = 0, which can be increased or decreased upon re-evaluation at a 667

later date. 668

We also set a control readiness condition which optionally limits 669

how soon each control is "ready" to be deployed. In particular, in 670

the default configuration we set tR = 2030 and tG = 2050 because 671

CDR has not yet been deployed at a climatically significant scale 672

(76) and SRM does not yet exist as a socio-technological system 673

(25). 674

Two-box energy balance model. The evolution of the global-mean
near-surface temperature anomaly (relative to the initial time t0 =
2020) is determined by the two-box linear energy balance model
(77):

CU
dT

dt
= ≠BT ≠ Ÿ(T ≠ TD) + F (t), [15]

CD
dTD

dt
= Ÿ(T ≠ TD), [16]

where eq. 15 represents the upper ocean with average temperature 675

anomaly T , and eq. 16 represents the deep ocean with an aver- 676

age temperature TD. The near-surface atmosphere exchanges heat 677

rapidly with the upper ocean and thus the global-mean near-surface 678

air temperature is also given by T . The physical model parameters 679

are: the upper ocean heat capacity CU = 7.3 W yr m≠2 K≠1 (in- 680

cluding a negligible contribution CA π CU from the atmosphere); 681

the deep ocean heat capacity CD = 106 W yr m≠2 K≠1; the climate 682

feedback parameter B = 1.13 W m≠2 K≠1; and the ocean mixing 683

rate Ÿ = 0.73 W m≠2 K≠1. The parameter values are taken from 684

the multi-model mean of values diagnosed from 16 CMIP5 models 685

(55). The radiative forcing and temperature anomalies at t0 = 2020 686

relative to preindustrial are F (t0) ≠ F (tpre) = 2.5 W m≠2 and 687

T0 © T (t0) ≠ T (tpre) = 1.1 K, where we set F0 © F (t0) = 0 W m≠2 688

and T (tpre) = 0 K for convenience. 689

Since, by construction, the anthropogenic forcing F (t) varies on 690

timescales longer than the fast relaxation timescale ·U = CU /(B + 691

Ÿ) = 4 years, we can ignore the time-dependence in the upper ocean 692

and approximate 693

T ¥
F + ŸTD

B + Ÿ
, [17] 694

where the evolution of the deep ocean 695

CD
dTD

dt
¥ ≠

BŸ

B + Ÿ
TD +

Ÿ

B + Ÿ
F [18] 696

occurs on a slower timescale ·D ©
CD

B

B + Ÿ

Ÿ
= 240 years (77). 697

This approximation is convenient because it permits a simple closed 698

form solution, but should be avoided if the model is applied to 699

scenarios with rapidly changing forcing, such as studies of the tran- 700

sient response to an instantaneous doubling of CO2 or the SRM 701

"termination e�ect" (see SI Text 1 for validation of the approxima- 702

tion). Plugging the exact solution to eq. 18 into eq. 17 gives the 703

closed-form solution 704

T (t) ≠ T0 =
F (t)

B + Ÿ
+

Ÿ

B

1
(B + Ÿ)

⁄ t

t0

e≠(t≠tÕ
)/·D

·D
F (tÕ) dtÕ. [19] 705
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The evolution of the controlled temperature anomaly (eq. 5; Figure706

2c) has the same form but is instead driven by the controlled net707

radiative forcing FM,R,G.708

We identify the first term on the right hand side of eq. 19 and709

eq. 5 as the transient climate response (78), which dominates for710

t≠t0 π ·D , while the second term is a slower “recalcitrant" response711

due to a weakening of ocean heat uptake as the deep ocean comes712

to equilibrium with the upper ocean (77). While the contribution713

of the recalcitrant component to historical warming is thought to714

be small, it contributes significantly to 21st century and future715

warming (77, 78).716

The behavior of the model on short and long timescales is illus-717

trated by applying it to the canonical climate change experiment in718

which CO2 concentrations increase at 1% per year until doubling.719

The temperature anomaly first rapidly increases until it reaches the720

Transient Climate Sensitivity T CS =
F2◊

B + Ÿ
= 1.9 ¶C around the721

time of doubling t = t2◊, with t2◊ ≠ t0 π ·D and F2◊ = – ln(2),722

and then gradually asymptotes to the Equilibrium Climate Sensi-723

tivity ECS =
F2◊
B

= 3.1 ¶C > T CS on a much longer timescale724

t ≠ t0 ∫ ·D.725

Model validation. In Section 1 of the SI, we show that subjecting the726

MARGO energy balance model to a stylized RCP8.5-like forcing727

accurately reproduces the multi-model mean response from an728

ensemble of 35 comprehensive general circulation climate models729

from the CMIP5 ensemble (Figure S2). In SI Text 3, we show that730

by tweaking just a few of these default parameter values (SI Tables 1731

and 2), the model replicates the qualitative results of studies ranging732

from analytical control theory analysis of SRM deployments (65) to733

numerical optimizations of mitigation, CDR, and SRM deployments734

in a recent application of DICE (6), a commonly used Integrated735

Assessment Model (26).736
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Supporting Information Text12

Figure S1 shows the same information as Figure 2 of the main text, but for the cost-benefit analysis rather than the13

cost-e�ectiveness analysis.14

1. Validation of MARGO’s approximate two-box Energy Balance Model15

A. Comparison with CMIP5 simulations under RCP8.5. The two-box Energy Balance Model (EBM) used in the MARGO16

model is described in the main text Methods. Here, we validate the MARGO-EBM by comparing it to an ensemble of 3517

CMIP5 models under the RCP8.5 forcing scenario. We further validate the MARGO-EBM’s approximation to the two-layer box18

model (in the equilibrated-thermocline limit CU π CD). We validate the approximation in three di�erent high-forcing regimes:19

1) the RCP8.5 scenario with large but gradual changes in forcing over the 21st Century; 2) the long-term (800 year) approach20

to equilibrium in an extended RCP8.5 scenario (ECP8.5); and 3) the short-term response to deployment and termination of21

large-amplitude solar radiation modification (SRM).22

First, we construct an idealized forcing scenario that is meant to appromximate RCP8.5 (1) and its extension beyond 2100,23

ECP8.5 (2). In our scenario, baseline CO2e emissions: 1) increase exponentially with a growth rate of 1/37 years≠1 to reach a24

maximum of 410 GtCO2e/year in 2100, approximately 7 times present-day emissions; 2) plateau between 2100 and 2120; and 3)25

decrease linearly to zero between 2120 and 2200 (Figure S2a). As a result, CO2e concentrations increase exponentially from26

the preindustrial value c0 = 280 ppm in 1850 to 1400 ppm in 2100. In the extended scenario ECP8.5, CO2e concentrations27

continue to grow until stabilizing at 3000 ppm in 2200� (Figure S2b). These increases in CO2e drive a radiative forcing which28

increases to F = 8.5 W/m2 by 2100 and stabilizes at F = 12 W/m2 by 2200 (Figure S2c). The forcing timeseries constructed29

here approximates the RCP8.5 and ECP8.5 scenarios reasonably well– compare our Figure S2c with Figure 4 of Meinshausen30

et al (2011; 2).31

When subjecting the MARGO-EBM to the RCP8.5-like scenario introduced above, we almost exactly recover the multi-32

model-mean warming from the CMIP5 ensemble under RCP8.5 (Figure S2d, solid black and blue lines). The excellent agreement33

is not surprising, given that we have tuned our MARGO-EBM with parameter values calibrated to the CMIP5 models (3).34

The climate physics-based calibration used here (3) is more realistic than the calibrations of commonly-used IAMs (4) and35

more robust to out-of-sample climate forcings.36

B. Evaluation of the equilibrated-thermocline approximation. The MARGO-EBM uses the equilibrated-thermocline approxi-37

mation,38

TM,R,G(t) ≠ T0 = FM,R,G(t)
B + Ÿ

+ Ÿ
B

⁄ t

t0

e
tÕ≠t
·D

·D

FM,R,G(tÕ)
B + Ÿ

dtÕ, [1]39

which is a valid solution of the two-layer equations

CU
dT
dt

= ≠BT ≠ Ÿ(T ≠ TD) + F (t), [2]

CD
dTD

dt
= Ÿ(T ≠ TD), [3]

in the limit CU π CD. In Figure S2e we show that this approximation (dashed black line) introduces only very small errors40

relative to the full solution under the ECP8.5 forcing scenario (solid black line). The full solution is computed numerically by41

solving the two-layer EBM equations 2 and 3 using forward finite di�erences. If we dramatically reduce either the deep ocean42

heat uptake rate Ÿ or the deep ocean heat capacity CD, as is customary in IAMs (4), then the model 1) equilibrates much too43

quickly with the instantaneous forcing and 2) underestimates recalcitrant changes that occurs long after the radiative forcing is44

stabilized (Figure S2e, dotted black line).45

Since we are interested in the response of the MARGO-EBM to climate controls which may cause the controlled radiative46

forcing FM,R,G to deviate substantially from a high-emissions baseline scenario, we here validate the MARGO-EBM’s response47

to a short-term impulse of radiative forcing. In Figure S3, we modify the above ECP8.5 scenario by adding a Gaussian negative48

radiative forcing anomaly due to short-term SRM. The negative forcing impulse is centered around 2075, has a magnitude of49

FG = ≠GF (t æ Œ) = ≠3.4 Wm≠2 (for G = 40%), and a timescale of ‡ = 20 years (Figure S3a). This negative forcing results50

in a pronounced short-term net cooling between 2050-2070, followed by an extremely rapid warming from 2070 to 2080 as the51

SRM program terminates (Figure S3b,c). A weak residual cooling of 0.1 ¶C propagates into the deep ocean and lingers for52

centuries (Figure S3c). Despite the neglect of upper-ocean thermal inertia in the equilibrated-thermocline approximation, the53

MARGO-EBM agrees well with the full solution of the two-box equations, the approximation lagging behind the full solution54

by roughly ·U = 5 years (Figure S3c).55

2. Comprehensive model equations and parameter values56

In the cost-e�ectiveness framing, the full formulation of the problem57

min { discounted costs } subject to TM,R,G,A < T ı
58

� In the original definition of the ECP8.5 scenario (2), much of these CO2e increases are the result of increases in other gases such as Methane, Nitrous Oxide, and Hydrofluorocarbons.
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is given, in closed form, by:

min
)#

E0(1 + “)(t≠t0) !
C̃M M2 + C̃GG2"

+ CRR2 + CAA2$
(1 + fl)≠(t≠t0)* [4]

Subject to

Ô
1 ≠ A

S

WWWWU
T0 +

a ln

A
c0+

s t

t0
rq(1≠M)dtÕ≠q0

s
RdtÕ

c0

B
≠ FŒG

B + Ÿ
+ Ÿ

B

⁄ t

t0

e
tÕ≠t
·D

·D

Y
____]

____[

a ln

A
c0+

s tÕ

t0
rq(1≠M)dtÕÕ≠q0

s tÕ

t0
RdtÕÕ

c0

B
≠ FŒG

B + Ÿ

Z
____̂

____\

dtÕ

T

XXXXV
< T ı,

[5]

where ·D = CD

B
B + Ÿ

Ÿ
is a timescale specified by the physical parameter CD. The cost-benefit equation can similarly be59

derived based on the equations in the main text.60

The problem is fully characterized by the 19 "free" parameters in equations 4 and 5, the default values of which are reported61

in Table S1 (18 in the case of cost-e�ectiveness, which avoids the use of a poorly-constrained damage coe�cient —). The 1962

parameters are: 3 grid parameters t0, tf , ”t; the 3 initial conditions T0, c0, E0; the 1 carbon cycle parameter r; the 4 physical63

parameters a, B, Ÿ, and CD; the 3 economic parameters —, fl, “; and the 5 control cost parameters CA, CR, C̃M , C̃G, FŒ.64

The baseline emissions timeseries q(t) is treated as exogenous and must be prescribed as an input. In the cost-e�ectiveness65

framework, the poorly-constrained damage parameter — is replaced by a prescribed temperature goal T ı. The grid, initial66

condition, and physical parameters are well constrained, while the economic and cost parameters are heuristic interpretations67

of the wider climate and economic literature.68

The control variables – œ A = {M, R, G, A} satisfy several additional constraints, which could be thought of as an additional69

20 parameters, at most, although many end up being unimportant or redundant across several parameters (1 and 2 are necessary70

physical constraints on the controls whereas 3, 4, and 5 simply make the model’s behavior more realistic):71

1. The controls must be positive, – Ø 0;72

2. They have an upper bound: – < –max. Mmax = 1 is by set by the definition of mitigation. Gmax = 1 is chosen because it73

results in a negative radiative forcing that exactly o�sets the maximum GHG forcing of 8.5 W/m2. We set Amax = 40%74

in acknowledgement of practical (5) and theoretical (6) limits to adaptability (this is meant as more of a symbolic75

gesture rather than an estimate of how much climate damage might be adaptable). Finally, R = 50% is set based on a76

recent bottom-up estimate of the potential for carbon dioxide removal of existing (but not necessarily scalable) negative77

emissions technologies.78

3. They have an initial condition –(t0) = –0, which are all set to zero except for M0 = 10%, since none of the other controls79

have yet been deployed at scale.80

4. We set maximum deployment and termination rates
-- d–

dt

-- < –̇, which represent economic, technological, and social81

inertia. We set Ṁ = Ṙ = 1/40 years≠1 as an upper limit on plausible timescales of global energy transition. On the other82

hand, we set Ġ = 1/20 years≠1 to reflect the fact that solar geo-engineering deployment capacity could in principle be83

ramped-up very quickly, possibly even in the absence of global governance or regulation. We interpret adaptation costs84

as buying insurance against future damages up-front, with both benefits and costs spread evenly in the future. Thus, we85

set Ȧ = 0. The caveat is that we allow control policy re-evaluations, at which point the value of adaptation can in that86

timestep be increased or decreased to a new level (see Figure 5 of main text), without a limit on the rate of increase.87

5. We implement "readiness" constraints, –(t) = 0 for all t < t–, to reflect the fact that some controls, such as geoengineering88

(both carbon and solar), do not yet exist as climate-relevant socio-technological systems (7). In particular, we set89

tR = 2030 and tG = 2050.90

3. Qualitative replications of other climate control model analysis91

To illustrative the potential utility of MARGO as a community tool, we show how run-time parameter values in MARGO can be92

tweaked to match the model configurations and results of other studies of climate control policies. One the one hand, MARGO93

can be tuned to the inputs and outputs of a comprehensive multi-control IAM configuration to reproduce its qualitative results94

(Section A; 8); on the other hand, MARGO can be simplified by setting many of the parameters to zero to emulate an analytical95

model of climate control by solar radiation modification (SRM) only (Section B; 9). The goal of this section is to show how96

with minimal modifications to the default MARGO model, we are able to replicate key figures from two very di�erent studies.97

For discussion of the figures we attempt to replicate, we refer readers to the original studies (8, 9).98
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Parameter Default Configuration

t0 2020
tf 2200
”t 5 yr
c0 460 ppm
T0 1.1 K
a 4.97 Wm≠2

r 50%
B 1.13 W m≠2 K≠1

Ÿ 0.72 W m≠2 K≠1

CD 106 W yr m≠2 K≠1

— 0.22 ◊ 1012 $ yr≠1 K≠2

fl 1%
E0 100 ◊ 1012 $ yr≠1

“ 2%
CA 4.5 ◊ 1012 $ yr≠1

CR 13 ◊ 1012 $ yr≠1

C̃M 2 % (of GWP)
C̃G 4.6 % (of GWP)
FŒ 8.5 Wm≠2

Table S1. Values of the 19 free parameters that characterize the MARGO model.

A. Belaia (2019): A multi-control extension of DICE with Mitigation, Carbon Dioxide Removal, and Solar Geo-engineering.99

Belaia (2019) extend DICE, a commonly-used globally-aggregated general equilibrium IAM, to include carbon dioxide removal100

(CDR) and solar radiative modification– which they refer to as solar geoengineering (SG)– to supplement DICE’s emissions101

mitigation in controlling climate damages (8).102

To implement CDR and SRM, Belaia (2019) make two fundamental changes to DICE. Their modelling of SRM forcing103

is identical to ours. In terms of costs, they similarly make the conservative assumption that SRM costs are dominanted by104

unintended side e�ects and scale with the damage of an equivalent amount of GHG forcing, but they include this damage cost105

as an additive term to the climate damages rather than the control costs. Their approach is thus similar to ours in the case of106

cost-benefit analysis, but in the cost-e�ectiveness case they e�ectively ignore indirect SRM damages while reaping the benefits107

of its low direct costs. The version of DICE they use already permits moderate negative emissions, as an extension of the108

emissions mitigation curve to 120%, i.e. 100% mitigation of baseline emissions mitigation plus removal of an addition 20%109

of baseline emissions). To extend this further, Belaia (2019) allow for substantial CDR by extending the mitigation curve110

indefinitely, although the cost curves are convex such that CDR becomes increasingly expensive. They also appear to have111

modified the functional form of emissions mitigation to keep CDR costs relatively low. The rationale for modelling CDR as an112

extension of mitigation is unclear, since 1) emissions mitigation and carbon dioxide removal are distinct physical, industrial,113

and economic processes and 2) marginal CDR costs today are already lower than the backstop mitigation costs assumed in114

their scenarios.115

To approximate the DICE configuration used by Belaia (2019), we make the changes to MARGO’s default parameter116

values reported in Table S2. Notably, we extended the time from 2200 to 2500, increased the reference costs for mitigation by117

about 75%, and increased the reference costs for SRM by about 175%. We found it necessary to modify the physical climate118

parameters in order to match their CO2e concentrations, radiative forcing, and temperatures based on their baseline emissions119

scenario q(t), which we approximated with piece-wise quadratic functions (Figure S4a, blue line). Additionally, we omit120

adaptation and carbon dioxide removal, Amax © Rmax © 0; we e�ectively remove the upper limit on mitigation Mmax = 10; we121

increase socio-technological intertia for all controls to –̇ = 1/90 years≠1; we set initial mitigation to M0 = 3%; and we remove122

all "readiness" constaints, t– = 2020. Additionally, in order to match the mitigation cost curves in their Figure 1 S4, we found123

it necessary to decrease the mitigation cost exponent from 2 to 1.8, as compared to 2.8 in DICE-2013 (10) or 2.6 in DICE-2016124

(11).125

Figure S4 shows the results of cost-benefit analysis for: a baseline scenario, a mitigation only scenario, a mitigation and CDR126

scenario, and a scenario with mitigation, CDR, and SRM. Figure S4 has been formatted exactly as Figure 4 of Belaia (2019; 8),127

which presents the results from equivalent simulations in their extension of DICE, for convenient side-by-side comparison.128

B. Soldatenko and Yusupov (2018): Analytical control theory applied to solar radiation modification. Soldatenko and Yusupov129

(2018; 9) develop an analytical model for the optimally cost-e�ective time-dependent deployment of solar radiation modification130

(SRM) which keeps temperatures in all years below T ı = T0 + 1 ¶C and keeps temperatures at their end date of 2100 below T0.131

Although their representation of SRM forcing is more involved then ours and depends on the mass of sulfate aerosol injected,132

the resulting optimization problem is remarkably similar to an SRM-only configuration of the default MARGO model.133

To approximate Soldatenko and Yusupov (2018)’s analytical model (9), we make the changes to MARGO’s default parameter134

values reported in Table S2. Additionally, we omit adaptation, carbon dioxide removal, and mitigation, Amax © Rmax ©135
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Parameter Belaia (2019) Soldatenko and Yusupov (2018)

t0
tf 2500 2100
”t 1 year 1 year
c0
T0
a
r 75%
B 0.8◊ 1.13 W m≠2 K≠1

Ÿ 0.75◊ 0.72 W m≠2 K≠1

CD 0.75◊ 106 W yr m≠2 K≠1

—

fl 1.5%
E0
“

CA

CR

C̃M 3.6 % (of GWP)
C̃G 12.5 % (of GWP)
FŒ 7.5 Wm≠2

Table S2. Values of the 19 free parameters that characterize the MARGO model, modified to replicate results from other models. Blank cells
denote parameters that are not changed from the default values in Table S1.

Mmax © 0; we remove all "readiness" constaints, t– = 2020, we set T ı = 2.1 ¶C (1 ¶C above T0) and add an additional constraint136

TM,R,G < T0 on the final timestep at tf = 2100 (the latter is the only modification that required modifying compiled model137

source code).138

Figure S5 shows the result of cost-e�ectiveness optimization for an SRM-only scenario, which is formatted to be directly139

comparable to Figure 3 of (9).140
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Fig. S1. Baseline (blue) and optimally-controlled (orange) a) effective CO2e emissions, b) CO2e concentrations, and c) temperature anomaly relative to preindustrial from
cost-benefit analysis. Panel c) shows the optimal temperature change that would occur: in a baseline scenario (blue); with just emissions Mitigation and carbon dioxide Removal
(orange); with Mitigation, Removal, and solar-Geoengineering (red); and as an “adapted temperature" with Adaptation measures also taken into account. The dashed grey line
marks 2 ¶C for context. In (c), TM,R,G and TM,R,G,A decrease dramatically in 2050 relative to TM,R as moderate levels of SRM become permissible.
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Fig. S2. Validation of the 21st Century and equilibrium responses of the MARGO Energy Balance Model (EBM). a) Baseline CO2e emissions, b) concentrations, and c)
radiative forcing in an RCP8.5-like scenario (dashed orange line) and its extension beyond 2100 (ECP8.5; solid black line). d) The temperature response of CMIP5 models to
the RCP8.5 forcing scenario (thin blue lines for individual models; thick blue line for multi-model mean) and of the MARGO-EBM to the RCP8.5-like scenario. The dashed black
line shows the full solution to the two-layer equations 2 and 3 with the same parameter values (Geoffroy 2013; 3) as the approximate solution 1 used in the MARGO-EBM. e)
The temperature response to the ECP8.5 scenario for: the MARGO-EBM (solid), the full two-box model (dashed black line) and the full two-box model with Ÿ = 0 (dotted line).
The vertical red lines delineate 2200, the year in which the ECP8.5 emissions reach net zero and concentrations are stabilized.
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Fig. S3. Response of the MARGO-EBM to the ECP8.5 scenario (grey) and to an additional short-term variation in forcing caused by a Gaussian deployment of SRM (red). a)
Radiative forcing; b) Temperature response; c) Anomalous cooling in SRM scenario relative to the ECP8.5 baseline in MARGO (solid line) and the full solution to the two-box
model (dashed line).
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Fig. S4. A qualitative replication of Figure 4 of Belaia (2019; 8); see their figure caption and accompanying discussion of the results.
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Fig. S5. A qualitative replication of Figure 3 of Soldatenko and Yusupov (2018; 9), who consider the optimally cost-effective deployments of SRM which satisfy the following
temperature constraints: �T ú(t) Æ 1 ¶C and �T ú(tf ) Æ 0 ¶C, where �T ú © TM,R,G ≠ T0 is the temperature anomaly relative to 2020 (ignoring mitigation and CDR,
M © R © 0) and tf = 2100 is the final date. The dashed curve shows the optimal SRM albedo –ú

A © G(t)FŒ
S0/4 and the solid black line shows the temperature anomaly

�T ú.
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