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Abstract
Persistent greenhouse gas (GHG) emissions threaten global climate goals and have prompted
consideration of climate controls supplementary to emissions mitigation. We present MARGO, an
idealized model of optimally-controlled climate change, which is complementary to both simpler
conceptual models and more complicated Integrated Assessment Models. The four methods of
controlling climate damage—mitigation, carbon dioxide removal (CDR), adaptation, and solar
radiation modification (SRM)—are not interchangeable, as they enter at different stages of the
causal chain that connects GHG emissions to climate damages. Early and aggressive mitigation is
necessary to stabilize GHG concentrations below a tolerable level. While the most cost-beneficial
and cost-effective pathways to reducing climate suffering include deployments of all four controls,
the quantitative trade-offs between the different controls are sensitive to value-driven parameters
and poorly-known future costs and damages.

Static policy optimization assumes perfect foresight and obscures the active role
decision-makers have in shaping a climate trajectory. We propose an explicit policy response
process wherein climate control policies are re-adjusted over time in response to unanticipated
outcomes. We illustrate this process in two ‘storyline’ scenarios: (a) near-term increases in
mitigation and CDR are deficient, such that climate goals are expected to slip out of reach; (b) SRM
is abruptly terminated after 40 years of successful deployment, causing an extremely rapid warming
which is amplified by an excess of GHGs due to deterred mitigation. In both cases, an optimized
policy response yields substantial benefits relative to continuing the original policy.

The MARGOmodel is intentionally designed to be as simple, transparent, customizable, and
accessible as possible, addressing concerns about previous climate-economic modelling approaches
and enabling a more diverse set of stakeholders to engage with these essential and timely topics.

1. Introduction

Climate change due to anthropogenic greenhouse gas
(GHG) emissions poses an existential threat to society
(Steffen et al 2018). Ever since the direct link between
GHGs and global warming was established in climate
models over 50 years ago (Manabe and Wetherald
1967), scientists have advocated substantial emissions
mitigation to stabilize global GHG concentrations

and temperatures (Revelle et al 1965). The discovery
that humans were unintentionally modifying the
climate was unsurprisingly followed by specula-
tion about intentional climate control (Kellogg and
Schneider 1974). With GHG emissions continuing
to increase and climate goals slipping out of reach
(Peters et al 2020), the calls for both rapid emissions
reductions (Forster et al 2020, Prakash and Girgenti
2020) and serious consideration of supplementary
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climate controls have grown louder (Council et al
1991, Crutzen 2006, Victor et al 2009, Buck 2012,
Parson 2017).

Four climate controls have emerged as candidates
for use in the future: emissions Mitigation, carbon
dioxide Removal (CDR), Geo-engineering by solar
radiation modification (SRM), and Adaptation. The
four controls are not directly interchangeable as they
enter at different stages of the causal chain of climate
damages (figure 1; Caldeira et al 2013, Moreno-Cruz
et al 2018, Deutch 2019):

Emission
M−→ GHGs

R−→ Forcing
G−→Warming

A−→ Damage.
(1)

Emissions mitigation is the only preventative solu-
tion which cuts off CO2e emissions at their source,
but will become increasingly difficult (expensive) at
high levels of penetration (Edenhofer et al 2014).
In combination with mitigation, CDR can in prin-
ciple be used to drive net-negative emissions which
decrease GHG concentrations to compensate for his-
torical emissions, but is unproven at scale (Fuss et al
2014). SRM is quick to deploy, immediately results
in significant global cooling, and has low direct costs
(McClellan et al 2012); however, SRM does not per-
fectly offset the impacts of CO2e-induced warming
(Irvine et al 2017) and more fundamentally does not
solve the underlying problem of long-term anthro-
pogenic CO2e accumulation (Pierrehumbert 2019).
Finally, adaptation allows for flexibility in the other
controls as remaining climate damages can be some-
what reduced by adapting to the new climate, but is
subject to physical (Sherwood and Huber 2010) and
social (Dow et al 2013) limits to adaptability.

Numerous social or geopolitical factors may sub-
stantially limit or block deployments of certain con-
trols, with SRM standing out as particularly conten-
tious (Caldeira and Ricke 2013, Parson and Keith
2013, Schäfer et al 2013, Talati and Higgins 2019).
Problems related to inequity (Flegal andGupta 2018),
distrust (Haerlin and Parr 1999, Lacey et al 2018),
or lack of governance (Ricke et al 2013, Flegal et al
2019) are just a handful of examples. While we
do not explicitly represent these all of these com-
plexities in our modeling, we explore them impli-
citly within parameter sensitivity experiments and in
two ‘storyline’ scenarios (section 4), as recommen-
ded by Shepherd et al (2018). In these scenarios, we
explore both: (a) the best (or ‘optimized’) case in
which a unitary decision-maker, as a surrogate for
the more complicated realistic international policy-
making process, prescribes control trajectories and
their prescriptions are exactly realized, and (b) more
realistic cases (hereafter referred to as ‘suboptimal’)
in which control deployments fall short of the pre-
scribed optimal trajectory and it is thus beneficial for
the decision-maker to readjust their policies.

Our hypothetical decision-maker must follow
some set of principles on which to base their

control policies. We explore two commonly-studied
approaches: (a) the cost-benefit approach, in which
control costs are balanced against the benefits of
avoided damages, and (b) the cost-effectiveness
approach, in which control costs are minimized sub-
ject to a prescribed climate constraint. The cost-
effectiveness approach implicitly underlies the Paris
Climate Agreement (United Nations Framework
Convention on Climate Change 2015), which cur-
rently organizes global climate policy and aims to
keep global warmingwell below 2 ◦C relative to prein-
dustrial levels.

The conventional tool for optimizing global cli-
mate control is the integrated assessment model
(IAM), the result of coupling a climate system model
to an economic model see Weyant (2017), for a
general overview of IAMs and their utility to date.
In this paper, we (a) present a novel idealized
climate-economic model of optimally-controlled cli-
mate change and (b) propose a sequential policy
process for periodic policy re-evaluation, which we
illustrate by two ‘storyline’ scenarios: (A) near-term
mitigation and CDR shortfalls (i.e. the present policy
landscape Rogelj et al 2016, Peters et al 2017, Olhoff
and Christensen 2020) and (B) abrupt termination
of SRM (e.g. Matthews and Caldeira 2007, Goes et al
2011).

2. MARGO: an idealized model of
optimally-controlled climate change

TheMARGOmodel consists of a physical energy bal-
ance model of Earth’s climate coupled to an idealized
socio-economic model of climate damages and con-
trols (figure 1):

• Mitigation of GHG emissions,
• Adaptation to climate impacts,
• Removal of carbon dioxide (CDR),
• Geoengineering by SRM, and
• Optimal deployment of available controls.

Each of the climate controls acts, in its own dis-
tinct way, to reduce the damages caused by a chan-
ging climate, but also carry their own deployment
costs. The model is designed to include key features
of climate physics, economics, and policy as concisely
as possible. The shortcoming of the model’s simpli-
city is that its quantitative results can not be relied on
to quantitatively inform policy decisions, but instead
provide intuition about system dynamics and link-
ages between variables and parameter values.

The model is developed openly using the Julia
programming language (Bezanson et al 2017) at
github.com/ClimateMARGO/ClimateMARGO.jl and
includes comprehensive documentation. The model
originated as an extension of a previous analytical
model (Deutch 2019) to include time-dependent con-
trol variables. Each model component is expressed

2
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Figure 1. Schematic of the causal chain from GHG emissions to climate damages, including the unique effects of four climate
controls: emissionsMitigation, carbon dioxide Removal (CDR), Geoengineering by solar radiation management (SRM), and
Adaptation. Climate controls yield benefits in terms of avoided climate damages, which are balanced against control deployment
costs. Images (a)–(f) are all stated to be in the public domain. Reproduced from https://freesvg.org/. (g) Reproduced from
Pixabay (2021).

in closed form to facilitate analytical analysis and
computation, such that an entire MARGO optim-
ization problem can be explicitly written down in
one or two expressions, for cost-benefit and cost-
effectiveness analyses, respectively (see section S3.1
(available online at stacks.iop.org/ERL/16/104012/
mmedia)). The parameter values used throughout the
paper are set to the defaults mentioned in this section
(and comprehensively listed in table S1), except when
exploring parameter sensitivities. Although we tune
many of the model parameters based on existing lit-
erature and validated the model’s behavior against
another model (see sections S1 and S5), we caution
that our ‘optimized’ results are not reliable as the basis
for real-world policy recommendations because of
themodel’s simplicity. In a few cases, where the choice
of a parameter value is value-dependent or arbitrary,
we perform sensitivity explorations to show how our
results depend on these choices.

2.1. No-policy baseline scenario
Climate-controlled scenarios are considered relative
to an exogenous no-policy baseline where carbon-
dioxide equivalent (CO2e) emissions q(t) increase lin-
early four-fold by 2100 and decrease linearly to zero
by 2150 (for reasons independent of climate policy),
resulting in 7.3 Wm−2 of radiative forcing by 2100
and 8.5 Wm−2 by 2150, relative to preindustrial
levels. As a result of this forcing, global-mean warm-
ing reaches 2 ◦C by 2050 and soars to T≈ 4.75 ◦C by
2100, relative to preindustrial. We interpret this emis-
sion scenario as an idealized extension of the SSP3-7.0

baseline scenario, which is characterized by fossil-
fueled growth (Riahi et al 2017).

There are five steps in the causal chain (equation
(1) and figure 1) between CO2e emissions and climate
damages:

(a) CO2e is emitted at a rate q(t), with only a fraction
r≃ 50% (Solomon et al 2009, Joos et al 2013)
remaining in the atmosphere after a few years,
net of uptake by the ocean and terrestrial bio-
sphere3.

(b) Atmospheric CO2e increases as long as emis-
sions q(t) are greater than zero (Matthews and
Caldeira 2008).

(c) Higher CO2e concentrations strengthen the
greenhouse effect, reducing outgoing longwave
radiation and causing an increased radiative for-
cing F(t), which exerts a warming effect on the
surface.

(d) Near-surface air temperatures increase by∆T=
T(t)−T(t0) to balance the reduced cooling to
space.

(e) Anthropogenic warming causes a myriad of cli-
mate impacts, resulting in gross economic dam-
ages D(t) = βT2.

3 The model’s realism would be improved by replacing this crude
carbon accounting model with multi-mode linear (Joos et al 2013)
or non-linear (e.g. Glotter et al 2014) models of the ocean carbon
cycle, but these would considerably complicate the exposition and
interpretability of MARGO’s equations.
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2.2. Effects of climate controls
The four available climate controls enter as fractional
controls at each link of the climate change causal
chain (equation (1)). Each control is parameterized
such that its full deployment would, in isolation,
roughly remove or offset the climate damages due
to the baseline emissions. This normalization allows
a meaningful quantitative comparison of the control
deployment variables.
Mitigation reduces emissions by a factor M(t) ∈

[0,100%] such that controlled emissions are given
by q(t)(1−M(t)), where M= 100% corresponds to
complete decarbonization of the economy.
Removal of CO2e, R(t) ∈ [0,100%], is de-coupled

from instantaneous emissions and is expressed as the
fraction of 2020 baseline emissions that are removed
from the atmosphere in a given year, q0R(t). A max-
imal value of R= 100% thus corresponds to remov-
ing 59GtCO2e/year, which ismore than twice a recent
upper-bound estimate of 24.5GtCO2e/year for ‘feas-
ible’ potential deployments of negative emission tech-
nologies (Fuss et al 2018).

A useful diagnostic quantity is the effective
emissions

r[q(t)(1−M(t))− q0R(t)], (2)

which is the annual rate of CO2e accumulation in the
atmosphere (figure 2(a)). The change in CO2e con-
centrations is the integral of the effective emissions
over time (figure 2(b)),

cM,R(t) = c0 +

ˆ t

t0

rq(t ′)(1−M(t ′))− rq0R(t
′)dt ′.

(3)
Geoengineering by SRM,G(t) ∈ [0,100%], acts to

offset a fraction of the CO2e forcing (figure 2(c)),

FM,R,G(t) = FM,R(t)−G(t)F∞, (4)

where FM,R = a ln(cM,R(t)/c0) is an empirically-
determined CO2e forcing function (with a= 5
Wm−2) and F∞ = 8.5Wm−2 is the maximum
baseline CO2e forcing, which is attained starting in
2150 when baseline emissions are assumed to reach
zero. A value ofG= 100% thus corresponds to a com-
plete cancellation between the equilibrium warming
from baseline CO2e increases and the cooling from
a full deployment of SRM. Since the model timestep
δt= 5 years is longer than the 1 year residence times-
cale of aerosols in the stratosphere (the most likely
and persistent SRM technology candidate; Robock
et al 2008), SRM forcing is treated as effectively
instantaneous. Inefficiencies (Visioni et al 2017) or
inefficacies (Modak et al 2016) in the SRM forcing
mechanism do not appear explicitly and instead are
factored into the SRMs deployment costs below.

The controlled warming (figure 2(d)), given by
the deep-layer energy balance model solution

TM,R,G(t)−T0=
FM,R,G(t)

B+κ
+
κ

B

ˆ t

t0

e
t ′−t
τD

τD

FM,R,G(t ′)

B+κ
dt ′,

(5)

evolves in response to the total controlled forcing
FM,R,G, where T0 = 1.1 ◦C is the present warming rel-
ative to preindustrial, B= 1.13 Wm−2 K−1 is the cli-
mate feedback parameter, κ= 0.73Wm−2 K−1 is the
ocean heat uptake rate, and τD = 240 years is a slow
deep ocean timescale (Geoffroy et al 2012). If forcing
is stabilized for sufficiently long (∆t≫ τD), warm-
ing asymptotes to an equilibrium response TM,R,G −
T0 = FM,R,G/B. Transiently, B/(κ+B) = 60% of the
warming occurs effectively instantaneously (first term
on right-hand side of equation (5)), while the remain-
ing κ/(B+κ) = 40% is spread out over centuries
due to the thermal inertia of the deep ocean (second
term). This climate inertia decouples the temperat-
ure response from instantaneous forcing and implies
that some warming (or cooling) is locked in for the
future, even if radiative forcing is stabilized (Lickley
et al 2019), as in the case of bringing emissions to
zero in our model4. We derive, interpret, and validate
this energy balancemodel solution in greater detail in
section S1.
Adaptation to climate impacts acts to reduce gross

controlled damages by a fraction A(t) ∈ [0,100%]
(following the AD-DICE model de Bruin et al 2009),
resulting in the residual damages:

DM,R,G,A = βT2
M,R,G (1−A(t)) , (6)

where we choose the damage parameter β(t) =
β̃E(t), where β̃ = 1%/(◦C)2 is a constant and E(t)
is the time varying gross world product (GWP),
based on the preferences presented in a recent meta-
analysis that accounts for various biases in previ-
ous estimates (Howard and Sterner 2017) and is,
for example, 3–4 times larger than in the DICE
model (de Bruin et al 2009). Although adapt-
ation does not affect the planetary temperature
directly, it is useful to consider an ‘adaptive’ pseudo-
temperature TM,R,G,A (figure 2(d)) which yields con-
trolled damages equivalent to the fully-controlled
residual damages β(TM,R,G,A)

2 = βT2
M,R,G(1−A(t))

and is defined

TM,R,G,A ≡ TM,R,G

√
1−A(t). (7)

4 In earth system models with a dynamic carbon cycle, the slow
recalcitrant warming due to a reduction in ocean heat uptake hap-
pens to be roughly offset by the ocean carbon sink (Solomon et al
2009), such that bringing emissions to zero roughly stabilizes tem-
peratures (Matthews and Caldeira 2008).
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Figure 2. Baseline (thick grey line) and optimally cost-beneficial (thick black line) (a) effective CO2e emissions, (b) CO2e

concentrations, (c) radiative forcing, and (d) temperature change (relative to preindustrial). Colored wedges show a natural
decomposition of the effects of the four different climate controls, computed by setting downstream controls to zero in (5):
Mitigation (blue); carbon dioxide Removal (CDR; orange); SRM or Geoengineering (red); and Adaptation (green). Adaptation
does not directly affect realized temperatures but is included in the plot using the adaptive pseudo-temperature construct
(equation (7)); in this scenario, however, the optimal adaptation is so minor that its wedge is covered by the thick black line.
Equivalent curves for the cost-effectiveness analysis are shown in figure S8.

2.3. Costs and benefits of controlling the climate
The costs of deploying climate controls are non-
negligible and must be balanced against the bene-
fits of controlling the climate to avoid climate impact
damages. The costs of climate controls are crudely
parameterized as:

C = CMM3 + CRR3 + CGG3 + CAA3. (8)

The tuning of the control cost parameters, which rep-
resent the hypothetical annual costs of full deploy-
ment, is described in detail in section S2. The costs
are summarized by: CM = 55 USD per tCO2e (mar-
ginal cost of 166 USD per tCO2e at M= 100%) or
2% of the GWP in 2100 (based on Clarke et al 2014),
CR = 440 USD per tCO2e for a sequestration rate of
q0 (based on Fuss et al 2018), CG = 55% of GWP per
8.5Wm−2 of SRM (in the absence of better estimates,
we conservatively assume the costs of side-effects are
equal to the climate damages that would result from
an equivalent magnitude of CO2e forcing), and CA =
11.5%GWP (de Bruin et al 2009). These cost func-
tions are all convex functions of fractional deploy-
ment with zero initial marginal cost (as in Nordhaus

1992, Moreno-Cruz et al 2018) and are here all taken
to be cubic for simplicity, such that marginal control
costs increase quadratically with the deployment frac-
tion. The benefits of deploying climate controls are
the avoided residual climate damages relative to the
no-policy baseline scenario,

B = D−DM,R,G,A = β(T2 − (TM,R,G,A)
2). (9)

2.4. Exogenous economic growth
We treat economic growth as exogenous: it is rep-
resented by the GWP, E(t) = E0(1+ γ)(t−t0), which
grows from its present value of E0 = 100trillionUSD
at a fixed growth rate γ = 2%, consistent with
expert opinion and an econometric forecast model
(Christensen et al 2018). Several recent studies argue
that the accumulated damages due to climate change
slowing economic growth dwarf the direct dam-
ages on production, thus warranting more stringent
mitigation (e.g. Moore and Diaz 2015, Glanemann
et al 2020) As in DICE (Nordhaus and Sztorc
2013), we ignore such major feedbacks on economic
growth; however, our substantially increased

5
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damage function (following Howard and Sterner
2017) results in similarly stringent climate control
policies.

3. Optimizing a balanced climate policy
portfolio

The surrogate climate policy decision-maker spe-
cifies an objective function to maximize, subject to
additional policy constraints, and MARGO is read-
ily optimized in terms of its time-dependent climate
controls. The optimization is implemented in Julia
using the Interior Point Optimizer (Wächter and
Biegler 2006) and runs in a fraction of a second
(figure S4); see details in section S4.1 (some addi-
tional policy constraints required for quasi-realism,
such as maximum deployment rates, are described
in section S3.2). Here, we describe the optimally-
controlled results of two policy approaches, cost-
benefit analysis and cost-effectiveness analysis, and
explore their sensitivity to key value-driven or
poorly-known parameters. See figures S6 and S7
for intuitive visualizations of the one- and two-
dimensional versions of the optimization problem,
respectively.

3.1. Cost-benefit analysis
A widely-used approach is cost-benefit analysis, in
which costs (e.g. of deploying climate controls,
CM,R,G,A) are balanced against benefits (e.g. of avoid-
ing climate damage, BM,R,G,A). Formally, we aim to
maximize the net present benefits5:

max

{ˆ tf

t0

(BM,R,G,A −CM,R,G,A)(1+ ρ)−(t−t0) dt

}
,

(10)

where ρ is a social discount rate that determines the
annual depreciation of future costs and benefits of
climate control to society. There are different views
about the appropriate discount rate to apply tomulti-
generational social utility (Ramsey 1928, Solow 1974,
Stern et al 2007, Arrow et al 2013). Here, we choose
a default discount rate of ρ= γ = 2% (correspond-
ing to a pure time discount rate of zero), which is on
the low end of values used in the literature due to our
preference toward inter-generational equity (e.g. fol-
lowing Schneider 1989).

5 This is equivalent to the conventional formulation of maxim-
izing welfare changes ∆W=

´
λ∆Cdt, where ∆C= B−C is a

change in consumption, λ(t) is a discount factor. We assume a
logarithmic utility function such that consumption changes are
effectively discounted at a rate−λ̇/λ= Ċ/C+ δ ≈ γ+ δ (with an
implicit assumption of an iso-elasticity of marginal utility of con-
sumption of unity, η ≃ 1), where δ is the pure time discount rate
and we assume similar growth rates for production and consump-
tion Ċ/C≈ γ (Stern et al 2007, Kelleher and Wagner 2019). We
define ρ≡ γ+ δ to be the discount rate that describes exponential
discounting λ(t)∝ e−ρt, which by expansion for ρ≪ 1 gives us
the more intuitive form e−ρt ≃ (1+ ρ)−t used here.

The results of maximizing net present bene-
fits are shown in figure 3. Early and aggressive
emissions mitigation—and to a lesser extent CDR
(figure 3(a))—drive discounted costs of up to 2
trillion USD/year (or 2% of GWP) relative to the
no-policy baseline, but immediately deliver even lar-
ger benefits; after 2100, control costs begin decreas-
ing toward zero while the benefits of avoided dam-
ages continue for as long as the time horizon allows
(figure 3(b)). Effective CO2e emissions reach net-
zero by 2080, such that concentrations stabilize
below cM,R < 550 ppm and are brought back down
below present-day values by 2200 (figures 2(a) and
(b)) as CDR is ramped up to R= 30% (or q0R≈
9 GtCO2e/year). Significant SRM deployments of
about G= 20% (cooling of 1.8 Wm−2; figure 2(c))
results in a net decrease in radiative forcing, causing
the maximum controlled temperature TM,R ≈ 1.6 ◦C
to plummet to just TM,R,G ≈ 0.5 ◦C above preindus-
trial (figure 2(d)). Modest deployments of adaptation
additionally offset about 12% of gross climate dam-
ages, but this effect is weak since the other controls
have already reduced damages by orders ofmagnitude
relative to the baseline.

The adaptive temperatures that result from cost-
benefit analysis are only modestly sensitive to the
choice of the discount rate ρ (figure 3(c)): as the
discount rate is increased well above the economic
growth rate (Tol 2003), ρ > γ = 2%, for example, the
optimized adaptive warming in 2100 only increases
from TM,R,G,A ≈ 0.5 ◦C to 1.3 ◦C. However, these rel-
atively modest changes in residual climate damages
obscure a fundamental shift in control preferences
away from preventative mitigation toward unproven
restorative (CDR) and reactive controls (SRM and
adaptation).

3.2. Cost-effectiveness of avoiding damage
thresholds
The conventional cost-benefit approach to under-
standing climate change is limited by the poorly-
understood damage function (Koomey 2013), espe-
cially at high levels of forcing (Alley et al 2003, Burke
et al 2015, Howard and Sterner 2017), and is sensit-
ive to value judgements about appropriate discount-
ing. An alternative approach, which presently guides
global climate policy negotiations, is to prescribe a
threshold of global warming (or related climate dam-
ages), which is not to be surpassed.

In MARGO’s cost-effectiveness formulation, we
aim to find the lowest net present costs of control
deployments

min

{ˆ tf

t0

CM,R,G(1+ ρ)−(t−t0)dt

}
(11)

which keep global warming below a chosen temper-
ature (or climate damage) threshold,

TM,R,G < T⋆ = 1.5 ◦C. (12)
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Figure 3. Results of cost-benefit analysis and their sensitivity to the discount rate ρ. (a) Optimized fractional control deployments
and (b) corresponding discounted costs and benefits relative to the no-climate-policy baseline scenario. The mitigation curve in
(a) ends in 2150 because baseline emissions go to zero and there is nothing to mitigate thereafter. The total positive area shaded in
grey in (b) is the maximum net present benefit (equation (10)), defined as the benefits (green) minus the costs (purple). Since the
discount rate is equal to the economic growth rate and E0 = 100× 1012 USDyr−1, the y-axis in (b) can also be read as a
percentage of GWP in a given year. (c) Time-mean control deployments (colors; left axis) and adaptive temperatures in 2100
(black; right axis), as a function of the discount rate.

As in the Paris Climate Agreement (United Nations
Framework Convention on Climate Change 2015),
we leave adaptation to be specified in a separate
decision stage that is not as easily aggregated to the
global level. While the Paris Agreement only expli-
citly considers mitigation and CDR as controls, we
include SRM for illustrative purposes (see also Mac-
Martin et al 2018).

The results of this cost-effectiveness optimization
(SI figures 1 and 2) are qualitatively similar to the
cost-benefit analysis above and are summarized as
follows: substantial emissions mitigation keep TM <
3 ◦C, sustained CDRbrings warming down toTM,R =
2.2 ◦C by 2200, and SRM shaves off the remaining
∆TG = TM,R −TM,R,G ≈ 0.7 ◦C of warming to keep
TM,R,G < T⋆ = 1.5 ◦C at all times.

The relative importance of SRM in this cost-
effectiveness optimization is sensitive to its poorly-
known cost (assumed to be dominated by the dam-
ages due to side-effects of offsetting CO2e forcing
with SRM) and the value-dependent discount rate
(figure 4). For the conservative reference SRM cost
used here, less than 20% of the optimized cooling is
achieved with SRM at low discount rates (ρ < 1%),
while more than 40% is achieved with SRM at high
discount rates (ρ > 5%). Similarly, if SRM costs are
reduced by an order of magnitude (e.g. if side-effects
are found to be insignificant), more than 50% of the
cooling (relative to the baseline warming) is achieved
with SRM even under the low default discount rate
ρ= 2%.

4. A policy process for responding to
policy shortfalls and climate surprises

The cost-benefit and cost-effectiveness calcula-
tions presented above assume the surrogate policy
decision-maker has perfect foresight and that their
prescribed optimal control policies are perfectly

Figure 4. Sensitivity of optimally cost-effective SRM
deployments to the discount rate ρ and SRM scaling cost
CG. Colored contours show SRM’s average share of the
cooling required to keep global warming TM,R,G below the
threshold T⋆, normalized by the baseline temperature
deficit T⋆ −T. A value of 100% corresponds to an
SRM-only control portfolio, whereas a value of 0%means
only other controls are used. The grey dot shows the
location of the relatively conservative (risk-averse) default
values used here, where SRM provides roughly 25% of the
required cooling.

implemented, such that the anticipated climate out-
comes are exactly realized. Here, we present a policy
process that allows the decision-maker to respond
to suboptimal outcomes, such as policy shortfalls or
climate surprises.

4.1. The policy response process
Step 1: The process begins with a single optimiza-
tion, which produces optimized climate control
trajectories and corresponding projections of cli-
mate outcomes, from an initial vantage point of t0
(e.g. present-day).

Step 2: Time advances, t→ t1 = t0 +∆t, such that
climate control deployments and outcomes take
on their realized values over this period. From
the vantage point of the decision-maker in t0,
these outcomes will be suboptimal by definition
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Figure 5. Storyline A: a surrogate policy decision-maker prescribes optimized mitigation and CDR trajectories which would limit
warming below 1.5 ◦C (thick black lines), but realized deployments repeatedly fall short of these control targets by a fraction s,
the shortfall. In the absence of a policy response, these control shortfalls lead to a substantial overshoot of the T⋆ = 1.5 ◦C goal
(thick dashed lines). Panels (a)–(c) illustrate a policy process for sequentially responding to these control shortfalls every∆t= 10
years, for an arbitrary example value s= 60%. After computing an optimized future projection,M→M+∆M (thin solid lines),
realized climate controls are incremented suboptimally,M→M+(1− s)∆M (thin dashed lines; see also annotated arrows).
After∆t= 10 years of realized shortfalls (gold line from one square to the next), the decision-maker re-optimizes their
prescription of future deployments, and the process repeats. For s= 60%, a temporary shortfall in mitigation (b) and CDR
(c) results in an overshoot of the temperature goal by 0.4 ◦C (a), although temperatures are eventually stabilized at this level by a
delayed decarbonization ofM≈ 100% (b) and intensified CDR deployments (c), which partially compensates for earlier control
shortfalls. Panel (d) shows how the maximum realized temperature asymptotes to the temperature goal of 1.5 ◦C for s< 30% in
the optimal limit and to the catastrophic baseline warming of 4.75 ◦C in the sub-optimal limit of no climate control (s→ 100%).

if they differ at all from the original optimized
projections.

Step 3: To account for policy changes in response to
realized climate outcomes, climate control deploy-
ments are re-optimized, now from the vantage
point of t1 and with modified policy constraints or
parameter values.

Step 4: Repeat, as desired, starting from Step 2,
advancing in time to tn+1 = tn +∆t.

This policy response process is illustrated below
via two ‘storyline’ scenarios (Shepherd et al 2018).

4.2. Storyline A: mitigation and CDR shortfalls
A surrogate decision-maker prescribes the most cost-
effective control trajectories for keepingTM,R < T∗ =
1.5 ◦C (figures 5(a)–(c), solid black lines), omit-
ting SRM and adaptation, and thus calls for a rapid
ramp-up of emissionsmitigation (M= 90% by 2055)
and CDR (R= 40% by 2050). Suppose that, by t1 =
2030, ∆t= 10 years later, it becomes apparent that
these anticipated increases in mitigation and CDR
have not been met, and realized control deployments
instead fall short by s= 60% (the shortfall parameter)

between t0 = 2020 and t1 = 2030. If this trend were
to continue, and only 1− s= 40% of mitigation and
CDR were to be deployed between 2020 and 2150,
then temperatures would skyrocket, eventually reach-
ing 3.8 ◦C by 2200 (black dashed lines).

Instead, the decision-maker responds by re-
optimizing the model, now from the vantage point
of t1 = 2030, prescribing a larger ramp-up of CDR
to compensate for the previous control shortfalls
(figure 5(c)). However, short-term mitigation and
CDR increases are constrained by the maximum
deployment rate (100% over 40 years, see section
S3.2), such that even themost ambitious deployments
allowed by the model result in warming that over-
shoots the target T⋆ = 1.5 ◦C by 0.1 ◦C (figure 5(a),
lowest transparent line). The decision-maker is thus
forced to relax their temperature goal, i.e. increase
T⋆, if the optimal solution is to satisfy the temper-
ature constraint (details in section S4.2). Suppose
this sequential process repeats every ∆t= 10 years,
such that incremental deployments of mitigation and
CDR always fall short of the decision-maker’s con-
trol prescriptions by 60% (thin dashed lines) and the
decision-maker responds by prescribing ever more
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Figure 6. Storyline B: after∆t= 40 years of stabilizing global temperatures near present-day levels due in part to cooling by SRM
(Yes-SRM; dotted lines), a surrogate policy decision-maker decides to abruptly terminate all SRM deployments (Term-SRM;
dash-dotted lines). As SRM is terminated, temperatures rapidly rebound 1 ◦C (a ‘termination shock’), which is 0.05 ◦C warmer
than in the counterfactual optimal trajectory in which SRM was never allowed (No-SRM, dashed lines) due to a 25 ppm increase
in CO2e attributed to deterred mitigation (a ‘moral hazard’). If the decision-maker responds to the termination by re-optimizing
future control deployments (Term-Response; solid lines), however, they are able to eventually reduce CO2e concentrations and
temperatures back below pre-termination levels.

ambitious future control deployments in an attempt
to compensate for their earlier shortfalls (thin solid
lines). As time passes, realized control deployments
converge toward their optimal response trajectories,
and temperatures eventually stabilize, although they
overshoot the original temperature goal T⋆ by 0.4 ◦C
(gold lines).

A shortfall of s= 60% was chosen arbitrarily
because it yields moderate but visually distinguish-
able results (figures 5(a)–(c)). Figure 5(b) shows the
sensitivity of the maximum realized warming as a
function of the control deployment shortfall s, which
is varied from 0% (optimal) to 100% (zero controls).
In the absence of a policy response, the realizedwarm-
ing increases roughly linearly with the shortfall, such
that even a small shortfall of 10% results in a 0.5 ◦C
overshoot of theT⋆ = 1.5 ◦Cgoal (figure 5(d), dashed
line). The policy response process (gold line), how-
ever, yields dramatically better outcomes and allows
some room for error. Moderate shortfalls (s≲ 30%)
yield higher control costs (and are thus sub-optimal),
but the decision-maker still has enough room to com-
pensate for earlier shortfalls and keep warming below
the goal of T⋆ = 1.5 ◦C. It is only for large short-
falls (s> 50%) that the maximum realized warming
increases rapidly with s, reaching 2 ◦C at s= 65% and
asymptopting to the baseline warming of 4.75 ◦C in
the limit of s→ 100% (zero control deployments).

Alternatively, the decision-maker may first
attempt to only relax the temperature constraint for
the short term (t < 2100), allowing a temporary over-
shoot of the temperature goal to buy time for CDR

to compensate for excess emissions, before resort-
ing to relaxing the long-term (t⩾ 2100) temperature
constraint if required (figure S10). While allowing
a temporary temperature overshoot allows temper-
ature goals to be met for twice as large a shortfall
as the more rigid process above, it requires bet-
ting on large CDR deployments (R= 90% by 2090)
which push the limits of feasibility (Fuss et al 2014,
2018).

4.3. Storyline B: abrupt termination of SRM
In t0 = 2020, a surrogate decision-maker prescribes
the most cost-beneficial combination of emissions
mitigations, CDR, and SRM (hereafter Yes-SRM;
figure 6). Suppose that after a perfect deployment
of these control trajectories for ∆t= 40 years, yield-
ing optimal climate outcomes, the policy decision-
maker decides to abruptly cancel SRM deployments
(within one model timestep δt= 5 years) and forbid
their future use (figure 6(e); see Parker and Irvine
2018 for a discussion of this storyline’s plausibil-
ity). The abrupt termination of SRM forcing res-
ults in an abrupt warming of 1 ◦C over a dec-
ade (Term-SRM; figure 6), known as a ‘termination
shock’. To counteract additional future damages due
to this unanticipated warming, the policy decision-
maker responds by re-optimizing their portfolio of
future climate deployments from the vantage point
of t1 = 2060 (Term-Response), prescribing enhance-
ments to mitigation and CDR which accelerate the
approach to net-zero emissions by 10 years and result
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in 0.75 ◦C less warming by 2200 than in Term-
SRM (figure 6). Despite the increases in controls
after t1 = 2060 due to this policy response, CO2e con-
centrations (figure 6(b)) and warming (figure 6(a))
remain higher than in a counterfactualworld inwhich
SRM was never allowed (No-SRM; figure 6). This
‘moral hazard’ (Lin 2013, McLaren 2016), whereby
investment in SRM deters emissions mitigation and
CDR, amplifies the termination shock by an addi-
tional 0.05 ◦C and results in a persistent increase in
CO2e levels of 25 ppm relative to No-SRM. A rapid
warming of 1 ◦C would likely result in substantial
damages and pose challenges to adaptation. However,
the termination shock considered here, which occurs
within a balanced control portfolio including sub-
stantial mitigation and CDR, is small compared to
the >1.5 ◦C/decade termination shock that would
arise in a world controlled by SRM alone (figure S11),
which is the worst-case scenario most often discussed
in the literature (Parker and Irvine 2018).

From the vantage point of t0 = 2020, we can order
the four scenarios described above based on their
net present benefits (from most to least): Yes-SRM
> Term-Response > Term-SRM > No-SRM. Since
SRM decouples temperatures from CO2e and can res-
ult in rapid temperature changes, our damage func-
tion based on temperature alone may underestim-
ate damages. For example, adding damages due to
CO2e concentrations (e.g. due to ocean acidification)
disadvantages Yes-SRM and Term-SRM relative to
No-SRM and Term-Response (figure S12(b)). On the
other hand, adding damages due to the rate of warm-
ing disadvantages the termination scenarios Term-
SRM and Term-Response (figure S12(a)). If these
costs are both sufficiently high, the ordering instead
becomes: No-SRM > Yes-SRM > Term-Response
> Term-SRM (see figure S12 for the full sensitivity
curves).

5. Discussion

Optimization of climate control in cost-benefit IAMs
typically focuses on trade-offs between emissions
mitigation and climate suffering (e.g. Nordhaus 1992,
Tol 1997), although numerous studies have also con-
sidered trade-offs between mitigation and alternat-
ive climate control strategies: adaptation (de Bruin
et al 2009), CDR (CDR; Kriegler et al 2013), and
SRM (SRM; Goes et al 2011). Here, we explore trade-
offs between all four of these approaches to cli-
mate control simultaneously. The optimized deploy-
ment levels of the climate controls depend upon
their respective marginal costs per marginal bene-
fit, which themselves are a complicated function of:
their deployment cost curves, the causal chain of pro-
cesses by which they affect downstream climate dam-
ages, and the choice of value-dependent parameters.
We developed MARGO, a multi-control and time-
dependent numerical model of optimized climate

policies, to quantitatively explore these trade-offs.
In our optimized simulations, emissions mitigation
emerges as the preferred climate control, although
a time-dependent combination of non-negligible
deployments of all four controls yields the most cost-
beneficial and cost-effective climate outcomes.

For clarity of exposition, we present a fully
deterministic version of the MARGOmodel. In actu-
ality, key inputs such as the climate feedback para-
meter B and the damage functionD(T) are extremely
uncertain. Propagation of these uncertainties through
a convex damage function typically increases expec-
ted climate damages and strengthens the case for
early and aggressive climate control (Wagner and
Zeckhauser 2016). Similarly, economic models with
formulations of preferences that naturally incorpor-
ate uncertainty and risk yield more stringent optimal
controls (Cai and Lontzek 2018, Daniel et al 2019).
Future work includes (a) extending MARGO to a
stochastic programming approach that accounts for
uncertainty in input parameters or stochastic cli-
mate dynamics (see section S4.3) and (b) imple-
menting a Bayesian policy response process where
prior parameter distributions can be updated based
on observed stochastic outcomes (e.g. Shayegh and
Thomas 2015) or improved parameter estimates from
research developments (e.g. Hope 2015).

Climate outcomes will inevitably differ from the
anticipated outcomes of prescribed control policies,
whether because of imperfect control deployments,
inherent variability, or structural uncertainty and
bias in projected climate outcomes. We propose a
policy process by which a surrogate decision-maker
responds to undesirable real world outcomes by
sequentially re-optimizing prescriptions of future cli-
mate control deployments, as an improvement over
previously-proposed strategies based on arbitrary
decision trees (e.g. Hammitt et al 1992, Lempert et al
1996, Goes et al 2011). We demonstrate the utility of
this policy response process by quantifying its benefi-
cial outcomes compared to alternative ‘static’ policies
in which the decision-maker adheres to their original
strategy despite control shortfalls or changing policy
constraints.

Presently, intended nationally determined contri-
butions (INDCs) imply warming of 2.6◦C–3.1 ◦C
and thus will need to be strengthened at upcom-
ing re-negotiations—and then actualized—to have a
reasonable chance of meeting the Paris Agreement’s
goal of well below 2 ◦C of warming (United Nations
Framework Convention on Climate Change 2015,
Rogelj et al 2016, Olhoff and Christensen 2020). Holz
et al (2018) explore plausible ‘ratcheting’ scenarios
in which mitigation efforts are iteratively increased
relative to the INDCs, and optionally supplemen-
ted by varying levels of CDR, until expected warm-
ing remains below 1.5 ◦C in 2100. In Storyline A
(section 4.2), we introduce an alternative ratchet-
ing process through which a policy decision-maker
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sequentially updates their climate control prescrip-
tions to compensate for realized climate control
shortfalls, in order to salvage climate targets in an
optimally cost-effective way.

Rapid warming due to an abrupt termination of
SRMdeployments is commonly considered one of the
greatest risks of SRM (Parker and Irvine 2018). Goes
et al (2011) show that substituting SRM formitigation
fails a cost-benefit test, especially when accounting for
the risk of a termination shock. However, Bickel and
Agrawal (2013) extend their analysis and argue that if
decision-makers respond to termination by mitigat-
ing emissions (using a fixed decision-tree response),
then SRM passes the cost-benefit over a much lar-
ger range of termination probabilities than in Goes
et al (2011). Helwegen et al (2019) perform a sim-
ilar analysis, but allow the decision-maker to respond
with optimal changes in mitigation, and show that
SRM deployments robustly enhance welfare, even
when taking into account the risk of SRM termina-
tion triggering climate ‘tipping points’. In Storyline
B (section 4.3), we extend this analysis by allow-
ing decision-makers to optimally respond to SRM
termination by also increasing CDR deployments,
which yields substantial benefits relative to the scen-
ario without a policy response. This storyline also
provides quantitative evidence for a novel interaction
between two processes that are independently con-
sidered major risks of SRM: the ‘termination shock’
due to abrupt SRM termination is amplified by about
5% due to the ‘moral hazard’ of SRM costs deterring
mitigation deployments.

Our assumption of a unitary surrogate decision-
maker evidently avoids the complexities of a real-
istic decision-making process that involves multiple
stake holders with conflicting interests. While some
of these interactions are implicitly embedded in the
two storylines described above, they could instead be
explicitly included in a multi-agent extension of the
MARGOmodel, in which the global climate response
is the aggregated result of multiple agents exerting
controls on the climate, according to their own diver-
ging incentives (Ricke et al 2013, Heyen et al 2019,
Emmerling et al 2020).

The MARGO model fills the complexity gap
between semi-analytic theoretical models (e.g.
Moreno-Cruz et al 2018, Deutch 2019) and simple—
but relatively opaque—IAMs (e.g. Nordhaus 1992,
Tol 1997, Hope 2006): its dynamics are governed by
only N = 12 intuitive free parameters but it still pro-
duces quasi-realistic climate trajectories (see section
S3.2 and table S1). We show how MARGO can be
used to investigate the sensitivity of optimized cli-
mate control policies to poorly-known parameters,
such as future control costs, and value-dependent
parameters, such as the discount rate.We also demon-
strate that MARGO can be modified to reproduce the
qualitative results of other multi-control studies (e.g.
Belaia et al 2020; see section S5) and hope that it

will be a useful community tool for climate policy
research, interactive teaching, and public outreach,
and will help bridge the gaps between climate eco-
nomists, scientists, policy decision-makers, and the
public (Schneider 1997, Buck 2010, Pindyck 2017,
Stainforth and Calel 2020). We encourage readers to
interactively run the MARGO model themselves by
visiting any of our web-apps at https://github.com/
ClimateMARGO/ClimateMARGO.jl/blob/master/
Gallery.md.
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DOI: https://github.com/ClimateMARGO/MARGO-
paper; https://doi.org/10.5281/zenodo.5503978.

Acknowledgment

We thank Lyssa Freese and four anonymous review-
ers for comments on earlier versions of the manu-
script. We thank Fons van der Plas for leading the
development of our online web-apps. This material
is based upon work supported by the National Sci-
ence Foundation Graduate Research Fellowship Pro-
gram under Grant No. 174530. Any opinions, find-
ings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not
necessarily reflect the views of the National Science
Foundation.

ORCID iD

Henri F Drake https://orcid.org/0000-0003-0135-
0814

References

Alley R B et al 2003 Abrupt climate change Science 299 2005–10
Arrow K et al 2013 Determining benefits and costs for future

generations Science 341 349–50
Belaia M, Moreno-Cruz J B and Keith D W 2020 Optimal climate

policy in three dimensions Preprint
Bezanson J, Edelman A, Karpinski S and Shah V 2017 Julia: a fresh

approach to numerical computing SIAM Rev. 59 65–98
Bickel J E and Agrawal S 2013 Reexamining the economics of

aerosol geoengineering Clim. Change 119 993–1006
Buck H J 2010 What can geoengineering do for us? Public

participation and the new media landscape Paper for
Workshop: The Ethics of Solar Radiation Management (18
October 2010) (University of Montana)

Buck H J 2012 Geoengineering: re-making climate for profit or
humanitarian intervention? Dev. Change 43 253–70

Burke M, Hsiang S M and Miguel E 2015 Global non-linear effect
of temperature on economic production Nature 527 235–9

Cai Y and Lontzek T S 2018 The social cost of carbon with
economic and climate risks J. Polit. Econ. 127 2684–734

Caldeira K, Bala G and Cao L 2013 The science of geoengineering
Annu. Rev. Earth Planet. Sci. 41 231–56

Caldeira K and Ricke K L 2013 Prudence on solar climate
engineering Nat. Clim. Change 3 941

11

https://github.com/ClimateMARGO/ClimateMARGO.jl/blob/master/Gallery.md
https://github.com/ClimateMARGO/ClimateMARGO.jl/blob/master/Gallery.md
https://github.com/ClimateMARGO/ClimateMARGO.jl/blob/master/Gallery.md
https://github.com/ClimateMARGO/MARGO-paper
https://github.com/ClimateMARGO/MARGO-paper
https://doi.org/10.5281/zenodo.5503978
https://orcid.org/0000-0003-0135-0814
https://orcid.org/0000-0003-0135-0814
https://orcid.org/0000-0003-0135-0814
https://doi.org/10.1126/science.1081056
https://doi.org/10.1126/science.1081056
https://doi.org/10.1126/science.1235665
https://doi.org/10.1126/science.1235665
https://doi.org/10.1137/141000671
https://doi.org/10.1137/141000671
https://doi.org/10.1007/s10584-012-0619-x
https://doi.org/10.1007/s10584-012-0619-x
https://doi.org/10.1111/j.1467-7660.2011.01744.x
https://doi.org/10.1111/j.1467-7660.2011.01744.x
https://doi.org/10.1038/nature15725
https://doi.org/10.1038/nature15725
https://doi.org/10.1086/701890
https://doi.org/10.1086/701890
https://doi.org/10.1146/annurev-earth-042711-105548
https://doi.org/10.1146/annurev-earth-042711-105548
https://doi.org/10.1038/nclimate2036
https://doi.org/10.1038/nclimate2036


Environ. Res. Lett. 16 (2021) 104012 H F Drake et al

Christensen P, Gillingham K and Nordhaus W 2018 Uncertainty
in forecasts of long-run economic growth Proc. Natl Acad.
Sci. 115 5409–14

Clarke L E et al 2014 Assessing transformation pathways Climate
Change 2014: Mitigation of Climate Change. Contribution of
Working Group III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (Cambridge:
Cambridge University Press)

Council N R et al 1991 Policy implications of greenhouse warming
Report of the Committee on Science, Engineering and Public
Policy (Washington, DC: National Academy Press) p 127

Crutzen P J 2006 Albedo enhancement by stratospheric sulfur
injections: a contribution to resolve a policy dilemma? Clim.
Change 77 211

Daniel K D, Litterman R B and Wagner G 2019 Declining CO2

price paths Proc. Natl Acad. Sci. 116 20886–91
de Bruin K C, Dellink R B and Tol R S J 2009 AD-DICE: an

implementation of adaptation in the DICE model Clim.
Change 95 63–81

Deutch J M 2019 Joint allocation of climate control mechanisms is
the cheapest way to reduce global climate damageMIT
Center for Energy and Environmental Policy Research Working
Paper Series

Dow K, Berkhout F, Preston B L, Klein R J T, Midgley G and
Shaw M R 2013 Limits to adaptation Nat. Clim. Change
3 305–7

Drake H F 2021 ClimateMARGO/MARGO-paper: Publication of
Drake et al. (2021) ClimateMARGO.jl paper (https://doi.
org/10.5281/zenodo.5503978)

Edenhofer O et al 2014 Technical summary Climate Change 2014:
Mitigation of Climate Change. Contribution of Working
Group III to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change (Cambridge:
Cambridge University Press) pp 33–107

Emmerling J, Kornek U, Bosetti V and Lessmann K 2020 Climate
thresholds and heterogeneous regions: implications for
coalition formation Rev. Int. Organ. 16 293–316

Flegal J A and Gupta A 2018 Evoking equity as a rationale for solar
geoengineering research? Scrutinizing emerging expert
visions of equity Int. Environ. Agreem.: Polit. Law Econ.
18 45–61

Flegal J A, Hubert A-M, Morrow D R and Moreno-Cruz J B 2019
Solar geoengineering: social science, legal, ethical and
economic frameworks Annu. Rev. Environ. Resour.
44 399–423

Forster P M, Maycock A C, McKenna C M and Smith C J 2020
Latest climate models confirm need for urgent mitigation
Nat. Clim. Change 10 7–10

Fuss S et al 2014 Betting on negative emissions Nat. Clim. Change
4 850–3

Fuss S et al 2018 Negative emissions—part 2: costs, potentials and
side effects Environ. Res. Lett. 13 063002

Geoffroy O, Saint-Martin D, Olivié D J L, Voldoire A, Bellon G
and Tytéca S 2012 Transient climate response in a two-layer
energy-balance model. Part I: analytical solution and
parameter calibration using CMIP5 AOGCM experiments
J. Clim. 26 1841–57

Glanemann N, Willner S N and Levermann A 2020 Paris climate
agreement passes the cost-benefit test Nat. Commun.
11 1–11

Glotter M J, Pierrehumbert R T, Elliott J W, Matteson N J and
Moyer E J 2014 A simple carbon cycle representation for
economic and policy analyses Clim. Change 126 319–35

Goes M, Tuana N and Keller K 2011 The economics (or lack
thereof) of aerosol geoengineering Clim. Change
109 719–44

Haerlin B and Parr D 1999 How to restore public trust in science
Nature 400 499

Hammitt J K, Lempert R J and Schlesinger M E 1992 A
sequential-decision strategy for abating climate change
Nature 357 315–18

Helwegen K G, Wieners C E, Frank J E and Dijkstra H A 2019
Complementing CO2 emission reduction by solar radiation

management might strongly enhance future welfare Earth
Syst. Dyn. 10 453–72

Heyen D, Horton J and Moreno-Cruz J 2019 Strategic
implications of counter-geoengineering: clash or
cooperation? J. Environ. Econ. Manage. 95 153–77

Holz C, Siegel L S, Johnston E, Jones A P and Sterman J 2018
Ratcheting ambition to limit warming to 1.5 ◦C—trade-offs
between emission reductions and carbon dioxide removal
Environ. Res. Lett. 13 064028

Hope C 2006 The marginal impact of CO2 from PAGE2002: an
integrated assessment model incorporating the IPCC’s five
reasons for concern Integr. Assess. 6 19–56 (available at:
http://116.203.146.222:8080/index.php/iaj/article/
viewArticle/227)

Hope C 2015 The $10 trillion value of better information about
the transient climate response Phil. Trans. R. Soc. A
373 1–21

Howard P H and Sterner T 2017 Few and not so far between: a
meta-analysis of climate damage estimates Environ. Resour.
Econ. 68 197–225

Irvine P J et al 2017 Towards a comprehensive climate impacts
assessment of solar geoengineering Earth’s Future 5 93–106

Joos F et al 2013 Carbon dioxide and climate impulse response
functions for the computation of greenhouse gas metrics: a
multi-model analysis Atmos. Chem. Phys. 13 2793–825

Kelleher J P and Wagner G 2019 Ramsey discounting calls for
subtracting climate damages from economic growth rates
Appl. Econ. Lett. 26 79–82

Kellogg WW and Schneider S H 1974 Climate stabilization: for
better or for worse? Science 186 1163–72

Koomey J 2013 Moving beyond benefit–cost analysis of climate
change Environ. Res. Lett. 8 041005

Kriegler E, Edenhofer O, Reuster L, Luderer G and Klein D 2013 Is
atmospheric carbon dioxide removal a game changer for
climate change mitigation? Clim. Change 118 45–57

Lacey J, Howden M, Cvitanovic C and Colvin R M 2018
Understanding and managing trust at the climate
science–policy interface Nat. Clim. Change 8 22–28

Lempert R J, Schlesinger M E and Bankes S C 1996 When we don’t
know the costs or the benefits: adaptive strategies for abating
climate change Clim. Change 33 235–74

Lickley M, Cael B B and Solomon S 2019 Time of steady climate
change Geophys. Res. Lett. 46 5445–51

Lin A C 2013 Does geoengineering present a moral hazard Ecol.
Law Q. 40 673–712

MacMartin D G, Ricke K L and Keith D W 2018 Solar
geoengineering as part of an overall strategy for meeting the
1.5 ◦C Paris target Phil. Trans. R. Soc. A 376 20160454

Manabe S and Wetherald R T 1967 Thermal equilibrium of the
atmosphere with a given distribution of relative humidity
J. Atmos. Sci. 24 241–59

Matthews H D and Caldeira K 2007 Transient climate–carbon
simulations of planetary geoengineering Proc. Natl Acad. Sci.
104 9949–54

Matthews H D and Caldeira K 2008 Stabilizing climate requires
near-zero emissions Geophys. Res. Lett. 35 L04705

McClellan J, Keith D W and Apt J 2012 Cost analysis of
stratospheric albedo modification delivery systems Environ.
Res. Lett. 7 034019

McLaren D 2016 Mitigation deterrence and the “moral hazard” of
solar radiation management Earth’s Future 4 596–602

Modak A, Bala G, Cao L and Caldeira K 2016 Why must a solar
forcing be larger than a CO2 forcing to cause the same global
mean surface temperature change? Environ. Res. Lett.
11 044013

Moore F C and Diaz D B 2015 Temperature impacts on economic
growth warrant stringent mitigation policy Nat. Clim.
Change 5 127–31

Moreno-Cruz J, Wagner G and Keith D 2018 An economic
anatomy of optimal climate policy SSRN Scholarly Paper ID
3001221 (Rochester, NY: Social Science Research Network)

Nordhaus W D 1992 An optimal transition path for controlling
greenhouse gases Science 258 1315–19

12

https://doi.org/10.1073/pnas.1713628115
https://doi.org/10.1073/pnas.1713628115
https://doi.org/10.1007/s10584-006-9101-y
https://doi.org/10.1007/s10584-006-9101-y
https://doi.org/10.1073/pnas.1817444116
https://doi.org/10.1073/pnas.1817444116
https://doi.org/10.1007/s10584-008-9535-5
https://doi.org/10.1007/s10584-008-9535-5
https://doi.org/10.1038/nclimate1847
https://doi.org/10.1038/nclimate1847
https://doi.org/10.5281/zenodo.5503978
https://doi.org/10.5281/zenodo.5503978
https://doi.org/10.1007/s11558-019-09370-0
https://doi.org/10.1007/s11558-019-09370-0
https://doi.org/10.1007/s10784-017-9377-6
https://doi.org/10.1007/s10784-017-9377-6
https://doi.org/10.1146/annurev-environ-102017-030032
https://doi.org/10.1146/annurev-environ-102017-030032
https://doi.org/10.1038/s41558-019-0660-0
https://doi.org/10.1038/s41558-019-0660-0
https://doi.org/10.1038/nclimate2392
https://doi.org/10.1038/nclimate2392
https://doi.org/10.1088/1748-9326/aabf9f
https://doi.org/10.1088/1748-9326/aabf9f
https://doi.org/10.1175/JCLI-D-12-00195.1
https://doi.org/10.1175/JCLI-D-12-00195.1
https://doi.org/10.1038/s41467-019-13961-1
https://doi.org/10.1038/s41467-019-13961-1
https://doi.org/10.1007/s10584-014-1224-y
https://doi.org/10.1007/s10584-014-1224-y
https://doi.org/10.1007/s10584-010-9961-z
https://doi.org/10.1007/s10584-010-9961-z
https://doi.org/10.1038/22867
https://doi.org/10.1038/22867
https://doi.org/10.1038/357315a0
https://doi.org/10.1038/357315a0
https://doi.org/10.5194/esd-10-453-2019
https://doi.org/10.5194/esd-10-453-2019
https://doi.org/10.1016/j.jeem.2019.03.005
https://doi.org/10.1016/j.jeem.2019.03.005
https://doi.org/10.1088/1748-9326/aac0c1
https://doi.org/10.1088/1748-9326/aac0c1
http://116.203.146.222:8080/index.php/iaj/article/viewArticle/227
http://116.203.146.222:8080/index.php/iaj/article/viewArticle/227
https://doi.org/10.1098/rsta.2014.0429
https://doi.org/10.1098/rsta.2014.0429
https://doi.org/10.1007/s10640-017-0166-z
https://doi.org/10.1007/s10640-017-0166-z
https://doi.org/10.1002/2016EF000389
https://doi.org/10.1002/2016EF000389
https://doi.org/10.5194/acp-13-2793-2013
https://doi.org/10.5194/acp-13-2793-2013
https://doi.org/10.1080/13504851.2018.1438581
https://doi.org/10.1080/13504851.2018.1438581
https://doi.org/10.1126/science.186.4170.1163
https://doi.org/10.1126/science.186.4170.1163
https://doi.org/10.1088/1748-9326/8/4/041005
https://doi.org/10.1088/1748-9326/8/4/041005
https://doi.org/10.1007/s10584-012-0681-4
https://doi.org/10.1007/s10584-012-0681-4
https://doi.org/10.1038/s41558-017-0010-z
https://doi.org/10.1038/s41558-017-0010-z
https://doi.org/10.1007/BF00140248
https://doi.org/10.1007/BF00140248
https://doi.org/10.1029/2018GL081704
https://doi.org/10.1029/2018GL081704
https://doi.org/10.1098/rsta.2016.0454
https://doi.org/10.1098/rsta.2016.0454
https://doi.org/10.1175/1520-0469(1967)0240241:TEOTAW2.0.CO;2
https://doi.org/10.1175/1520-0469(1967)0240241:TEOTAW2.0.CO;2
https://doi.org/10.1073/pnas.0700419104
https://doi.org/10.1073/pnas.0700419104
https://doi.org/10.1029/2007GL032388
https://doi.org/10.1029/2007GL032388
https://doi.org/10.1088/1748-9326/7/3/034019
https://doi.org/10.1088/1748-9326/7/3/034019
https://doi.org/10.1002/2016EF000445
https://doi.org/10.1002/2016EF000445
https://doi.org/10.1088/1748-9326/11/4/044013
https://doi.org/10.1088/1748-9326/11/4/044013
https://doi.org/10.1038/nclimate2481
https://doi.org/10.1038/nclimate2481
https://doi.org/10.1126/science.258.5086.1315
https://doi.org/10.1126/science.258.5086.1315


Environ. Res. Lett. 16 (2021) 104012 H F Drake et al

Nordhaus W and Sztorc P 2013 DICE 2013R: introduction and
user’s manual (Yale University and the National Bureau of
Economic Research, USA)

Olhoff A and Christensen J M 2020 Emissions Gap Report 2020
(UNEP DTU Partnership)

Parker A and Irvine P J 2018 The risk of termination shock from
solar geoengineering Earth’s Future 6 456–67

Parson E A 2017 Opinion: climate policymakers and assessments
must get serious about climate engineering Proc. Natl Acad.
Sci. 114 9227–30

Parson E A and Keith D W 2013 End the deadlock on governance
of geoengineering research Science 339 1278–9

Peters G P, Andrew R M, Canadell J G, Friedlingstein P,
Jackson R B, Korsbakken J I, Quéré C L and Peregon A 2020
Carbon dioxide emissions continue to grow amidst slowly
emerging climate policies Nat. Clim. Change 10 3–6

Peters G P, Andrew R M, Canadell J G, Fuss S, Jackson R B,
Korsbakken J I, Le Quéré C and Nakicenovic N 2017 Key
indicators to track current progress and future ambition of
the Paris agreement Nat. Clim. Change 7 118–22

Pierrehumbert R 2019 There is no plan B for dealing with the
climate crisis Bull. At. Sci. 75 215–21

Pindyck R S 2017 The use and misuse of models for climate policy
Rev. Environ. Econ. Policy 11 100–14

Prakash V and Girgenti G 2020Winning the Green New Deal: Why
We Must, How We Can (New York: Simon and Schuster)

Ramsey F P 1928 A mathematical theory of saving Econ.
J. 38 543–59

Revelle R, Broecker W, Craig H, Kneeling C and Smagorinsky J
1965 Restoring the quality of our environment Report of the
Environmental Pollution Panel (Atmospheric Carbon Dioxide)
(Washington, DC: President’s Science Advisory Committee,
United States, US Government Printing Office)

Riahi K et al 2017 The shared socioeconomic pathways and their
energy, land use and greenhouse gas emissions implications:
an overview Glob. Environ. Change 42 153–68

Ricke K L, Moreno-Cruz J B and Caldeira K 2013 Strategic
incentives for climate geoengineering coalitions to exclude
broad participation Environ. Res. Lett. 8 014021

Robock A, Oman L and Stenchikov G L 2008 Regional climate
responses to geoengineering with tropical and Arctic SO2

injections J. Geophys. Res.: Atmos. 113 D16
Rogelj J et al 2016 Paris agreement climate proposals need a boost

to keep warming well below 2 ◦C Nature 534 631–9
Schäfer S, Irvine P J, Hubert A-M, Reichwein D, Low S, Stelzer H,

Maas A and Lawrence M G 2013 Field tests of solar climate
engineering Nat. Clim. Change 3 766

Schneider S H 1989 The greenhouse effect: science and policy
Science 243 771–81

Schneider S H 1997 Integrated assessment modeling of global
climate change: transparent rational tool for policy making
or opaque screen hiding value-laden assumptions? Environ.
Model. Assess. 2 229–49

Shayegh S and Thomas V M 2015 Adaptive stochastic integrated
assessment modeling of optimal greenhouse gas emission
reductions Clim. Change 128 1–15

Shepherd T G et al 2018 Storylines: an alternative approach to
representing uncertainty in physical aspects of climate
change Clim. Change 151 555–71

Sherwood S C and Huber M 2010 An adaptability limit to climate
change due to heat stress Proc. Natl Acad. Sci. 107 9552–5

Solomon S, Plattner G-K, Knutti R and Friedlingstein P 2009
Irreversible climate change due to carbon dioxide emissions
Proc. Natl Acad. Sci. 106 1704–9

Solow R M 1974 The economics of resources or the resources of
economics Am. Econ. Rev. 64 1–14

Stainforth D A and Calel R 2020 New priorities for climate
science and climate economics in the 2020s Nat. Commun.
11 3864

Steffen W et al 2018 Trajectories of the earth system in the
anthropocene Proc. Natl Acad. Sci. USA 115 8252–9

Stern N, Stern N H and Treasury G B 2007 The Economics of
Climate Change: The Stern Review (Cambridge: Cambridge
University Press)

Talati S and Higgins P 2019 Policy sector perspectives on
geoengineering risk and governance J. Sci. Policy Gov.
14 (available at: https://www.sciencepolicyjournal.org/
uploads/5/4/3/4/5434385/jpsg_talati_and_higgins_
final.pdf)

Tol R S J 2003 Is the uncertainty about climate change too
large for expected cost-benefit analysis? Clim. Change
56 265–89

Tol R S 1997 On the optimal control of carbon dioxide
emissions: an application of FUND Environ. Model. Assess.
2 151–63

United Nations Framework Convention on Climate Change 2015
Paris agreement Article 2(a) (available at: https://unfccc.int/
process-and-meetings/the-paris-agreement/theparis-
agreement)

Victor D G, Morgan M G, Apt F and Steinbruner J 2009 The
geoengineering option—a last resort against global warming
essay Foreign Aff. 88 64–76

Visioni D, Pitari G and Aquila V 2017 Sulfate geoengineering: a
review of the factors controlling the needed injection of
sulfur dioxide Atmos. Chem. Phys. 17 3879–89

Wächter A and Biegler L T 2006 On the implementation of an
interior-point filter line-search algorithm for
large-scale nonlinear programmingMath. Program.
106 25–57

Wagner G and Zeckhauser R J 2016 Confronting deep and
persistent climate uncertainty SSRN Scholarly Paper
ID 2818035 (Rochester, NY: Social Science Research
Network)

Weyant J 2017 Some contributions of integrated assessment
models of global climate change Rev. Environ. Econ. Policy
11 115–37

13

https://doi.org/10.1002/2017EF000735
https://doi.org/10.1002/2017EF000735
https://doi.org/10.1073/pnas.1713456114
https://doi.org/10.1073/pnas.1713456114
https://doi.org/10.1126/science.1232527
https://doi.org/10.1126/science.1232527
https://doi.org/10.1038/s41558-019-0659-6
https://doi.org/10.1038/s41558-019-0659-6
https://doi.org/10.1038/nclimate3202
https://doi.org/10.1038/nclimate3202
https://doi.org/10.1080/00963402.2019.1654255
https://doi.org/10.1080/00963402.2019.1654255
https://doi.org/10.1093/reep/rew012
https://doi.org/10.1093/reep/rew012
https://doi.org/10.2307/2224098
https://doi.org/10.2307/2224098
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1016/j.gloenvcha.2016.05.009
https://doi.org/10.1088/1748-9326/8/1/014021
https://doi.org/10.1088/1748-9326/8/1/014021
https://doi.org/10.1029/2008JD010050
https://doi.org/10.1029/2008JD010050
https://doi.org/10.1038/nature18307
https://doi.org/10.1038/nature18307
https://doi.org/10.1038/nclimate1987
https://doi.org/10.1038/nclimate1987
https://doi.org/10.1126/science.243.4892.771
https://doi.org/10.1126/science.243.4892.771
https://doi.org/10.1023/A:1019090117643
https://doi.org/10.1023/A:1019090117643
https://doi.org/10.1007/s10584-014-1300-3
https://doi.org/10.1007/s10584-014-1300-3
https://doi.org/10.1007/s10584-018-2317-9
https://doi.org/10.1007/s10584-018-2317-9
https://doi.org/10.1073/pnas.0913352107
https://doi.org/10.1073/pnas.0913352107
https://doi.org/10.1073/pnas.0812721106
https://doi.org/10.1073/pnas.0812721106
https://doi.org/10.1038/s41467-020-16624-8
https://doi.org/10.1038/s41467-020-16624-8
https://doi.org/10.1073/pnas.1810141115
https://doi.org/10.1073/pnas.1810141115
https://www.sciencepolicyjournal.org/uploads/5/4/3/4/5434385/jpsg_talati_and_higgins_final.pdf
https://www.sciencepolicyjournal.org/uploads/5/4/3/4/5434385/jpsg_talati_and_higgins_final.pdf
https://www.sciencepolicyjournal.org/uploads/5/4/3/4/5434385/jpsg_talati_and_higgins_final.pdf
https://doi.org/10.1023/A:1021753906949
https://doi.org/10.1023/A:1021753906949
https://doi.org/10.1023/A:1019017529030
https://doi.org/10.1023/A:1019017529030
https://unfccc.int/process-and-meetings/the-paris-agreement/theparis-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/theparis-agreement
https://unfccc.int/process-and-meetings/the-paris-agreement/theparis-agreement
https://doi.org/10.5194/acp-17-3879-2017
https://doi.org/10.5194/acp-17-3879-2017
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1007/s10107-004-0559-y
https://doi.org/10.1093/reep/rew018
https://doi.org/10.1093/reep/rew018

	A simple model for assessing climate control trade-offs and responding to unanticipated climate outcomes
	1. Introduction
	2. MARGO: an idealized model of optimally-controlled climate change
	2.1. No-policy baseline scenario
	2.2. Effects of climate controls
	2.3. Costs and benefits of controlling the climate
	2.4. Exogenous economic growth

	3. Optimizing a balanced climate policy portfolio
	3.1. Cost-benefit analysis
	3.2. Cost-effectiveness of avoiding damage thresholds

	4. A policy process for responding to policy shortfalls and climate surprises
	4.1. The policy response process
	4.2. Storyline A: mitigation and CDR shortfalls
	4.3. Storyline B: abrupt termination of SRM

	5. Discussion
	Acknowledgment
	References


