
972 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 3 , MAY 1996

correspondence

On Breaking a Huffman Code

David W. Gillman, Mojdeh Mohtashemi, and Ronald L. Rivest

Abstract-We examine the problem of deciphering a file that has been
Huffman coded, but not otherwise encrypted. We find that a Huffman
code can be surprisingly difficult to cryptanalyze. We present a detailed
analysis of the situation for a three-symbol source alphabet and present
some results for general finite alphabets.

Index Terms-Huffman codes, cryptography, encoding rules, ambigu-
ity, independent sources, Markov sources.

I. INTRODUCTION
One of the earliest data-compression algorithms is due to D.

Huffman [4]. Given the probabilities of each symbol of a source
alphabet, this algorithm produces a variable-length binary code which
achieves an optimal expected codeword length among codes whose
codewords all have an integer number of bits.

In this correspondence we investigate the problem of cryptanalyz-
ing a message that has been compressed using the Huffman algorithm.
but not otherwise encrypted. The Huffman algorithm assigns to each
source symbol a binary codeword. This assignment, or encoding rule,
determines the codeword set, which is prefix-free and so corresponds
to a full binary tree called the Huffman tree. Edges in the Huffman
tree connecting an internal node with its left child are labeled 0, and
edges connecting an internal node with its right child are labeled 1.
The codeword associated with a source symbol is the binary string
obtained by reading the bits on the unique path from the root of the
tree to the leaf labeled with that source symbol. For our purposes, the
encoding rule, the codeword set, and the Huffman tree are different
names for the same thing. We assume familiarity with the way the
Huffman algorithm constructs the tree from a set of source symbol
probabilities (see [l] or [4] for an exposition).

The source produces a message called the source stream, and the
encoded version of the source stream is called the (binaryjjle. We
show that depending on what the cryptanalyst knows a priori about
the source and the Huffman encoding, the file can be impossible
to decode unambiguously. This means that for all the cryptanalyst
knows the file could have been produced by a different source than
the actual one. In the absence of more knowledge about the source,
the best that can be hoped for is a choice between two or more
decodings of the file. We characterize the probability distributions
on three-symbol source alphabets for which this situation occurs.

Manuscript received November 23, 1995. The work of D. W. Gillman was
supported by the NSF under Grant CCR-8912586, the AFOSR under Grant
89-0271, and the Connaught Fund under Grant 3-370-120-20. The work of
M. Mohtashemi was supported by the NSF under Grant CCR-8912568, and
the AFOSR under Grant 89-0271. The work of R. L. Rivest was supported
by the NSF under Grants CCR-8914428 and CCR-9310888, and the Siemens
Corporation.

D. W. Gillman is with the Computer Science Department, University of
Toronto, Toronto, ON, Canada M5S 1A4.

M. Mohtashemi is at 4371 Winters Chapel Rd., #1426, Atlanta, GA 30360
USA.

R. L. Rivest is with the Laboratory for Computer Science, Massachusetts
Institute of Technology, Cambridge, MA 02139 USA.

Publisher Item Identifier S 0018-9448(96)02997-5.

For n-symbol source alphabets we give a criterion for a family
of geometric distributions on the source alphabet under which the
file can be decoded unambiguously. We also present an efficient
procedure that will choose which of two given sources actually
produced a given file, if the file is unambiguous, or will give a proof
that the file is essentially ambiguous, in the setting of an independent
source. This and other results concerning independent sources depend
upon conversions from Huffman trees to Markov chains and Markov
sources.

To see a case of ambiguity, consider the three-symbol source
alphabet {A. B . C}. In the source stream BABABAACACAA
the most common symbol is A, so the Huffman algorithm will assign
A the shortest codeword; for example, it may use the encoding rule

-4 + 1, B --$ 01, c + 00.

The encoded file would then be 01101101110010011. But this file
is also an encoding of the source stream ABABABCACAD, using
the equally valid encoding rule

A -+ 0, B i 11, C-+ I O .

So the file is ambiguous.
The idea of using data compression schemes for encryption is very

old, dating back at least to Roger Bacon in the 13th century [6, p. 901.
The field of data compression has grown vigorously since Huffman’s
paper. Rubin [9] and Jones [5] discuss the ways in which data
compression algorithms may be used as encryption techniques. Klein
et al. [7] have considered the cryptographic properties of Huffman
codes in the context of a large, compressed natural language database
on CD-ROM. Motivated by the same problem, Fraenkel and Klein [2]
have shown that the problem of finding the encoding rule given both
a sample of the source stream and the corresponding sample of the
encoded file is I\;P-complete. By contrast with [2], where the issue
is computational difficulty, we are concerned in this correspondence
with the issue of information-theoretic impossibility.

There is some flexibility in how the Huffman algorithm is imple-
mented. We distinguish two cases of interest. In the first, whenever
two subtrees are combined, an arbitrary decision may be made as
to which subtree should become the left subtree and which subtree
should be the right subtree. We call the resulting Huffman code an
arbitrary Huffman code. In another variant, the subtree of greater
total weight (probability) is always made the right subtree. We call
the resulting Huffman code a right-heavy Huffman code. We assume
that the cryptanalyst knows whether the coder is using an arbitrary
Huffman code or a right-heavy Huffman code.

An implementor of the Huffman algorithm must also decide how
to handle “ties” when there are more than two symbols of minimum
or next-to-minimum weight. In this correspondence we assume for
simplicity that such ties do not occur.

We assume the cryptanalyst knows the size n of the source alphabet
but not the source symbol probabilities PI , p ~ , . . . , p,. It may be
the case that each source symbol is produced independently of the
previously produced source symbols, in accordance with the source
symbol probabilities. We say the source is independent in this case. If
the source is not independent, we call it adversarial. When the source
is independent, we distinguish the case in which the cryptanalyst
knows a priori that the source is independent from the case in which
she does not.

0018-9448/96$05.00 0 1996 IEEE

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 3, MAY 1996 973

In this correspondence we focus on the problem of determining
the Huffman tree used to create a Huffman-coded file, without
determining how the source symbols are attached to the leaves of the
tree. We do not address this question of matching up the codewords
with the source symbols. This could perhaps be done efficiently once
the codewords are known by making use of known source symbol
probabilities, for example.

We say that an encoding rule (equivalently, a Huffman tree, or
a codeword set) is Huffman consistent if, according to what the
cryptanalyst knows a priori, the file could have been encoded by
that rule. An encoding rule is ambiguous if, loosely, the file it
produces could have been encoded from another source using a
different encoding rule. To make this precise, we assume that the
frequency in the source stream of the ith source symbol is exactly
p , . In addition, when the cryptanalyst knows that the source is
independent, we assume that the asymptotic frequency in the source
stream of any finite string w of source symbols is Pr[w]. Here
Pr[w] := P , ~ . . . p,,, when w = i l . . . i,. Equivalently, the
cryptanalyst has access to an infinitely long file produced by the
source. We justify this definition by observing that for any fixed U J ,

the frequency of iii in the tile approaches Pr [I I :] with probability 1 as
the length of the file goes to infinity. When we refer to an ambiguous
$le, we mean the file produced by an ambiguous encoding rule.

It may sometimes happen that the cryptanalyst obtains “truncation
information:” a given codeword set may be impossible because
the file does not parse into an integral number of codewords.
(For example, the file 00000 can be produced from the three-
symbol codeword set (0, 10, 11) but not from (00, 01, l}.) In this
correspondence we assume that such truncation information does not
arise.

According to our definition the encoding is done with respect to
the actual frequencies of the symbols in the source file, rather than
according to some estimated frequencies that the encoder may know
(say of the letters in English). Huffman coding is normally done with
the actual frequencies. We note that using estimated probabilities
is certainly possible, and would cause additional problems for the
cryptanalyst.

Initially, we had expected the problem of “breaking a Huffman
code” to be quite tractable. We were a little surprised to find that
there is considerable ambiguity in this process. The techniques we
present are capable of resolving the ambiguity in some cases, but
in many others we show that it is “intrinsic.” This correspondence
not only presents techniques for reverse-engineering Huffman codes
in many cases, but also presents numerous results indicating when
our techniques fail-that is, when the problem presents “intrinsic” or
“true” ambiguity. Such ambiguity is a blessing to the cryptographer,
but a problem for the cryptanalyst, who must find other means of
“breaking” such codes. (We leave this as an open problem.)

TI. THREE-SYMBOL SOURCE ALPHABETS

We assume that the source alphabet is { A , D, C}, and that these
symbols have respective probabilities a , h , and c in the source
file. When n = 3, there are only two legal codeword sets: CO =
(0, 10, 11} and CI = (1, 01, O O } . We assume here that C1 was
chosen by the Huffman algorithm to code the file, so that a , b, and
c are the respective probabilities of 1, 01, and 00 when the file is
parsed according to C1. When the file is parsed according to CO, the
frequencies of 0, 10, and 11 are, respectively, denoted 2, y, and z .

A. Adversurial Source
In this subsection we assume that the cryptanalyst knows only that

the file was encoded using the right-heavy Huffman algorithm and

1

0.9
0.8
0.7
0.6

0.5
0.4

0.3
0.2
0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a

Fig. 1.
versarial source.

Region of ambiguity for 3-symbol right-heavy Huffman trees, ad-

that the source has three symbols. The source is adversarial; that is, it
generates any stream of symbols in which A, B , and C appear with
frequencies a, b, and e, respectively, but the order is arbitrary.

We give a necessary and sufficient condition on rational numbers
U , b , and c, under which the source may produce an ambiguous file.
Since we are assuming that the right-heavy Huffman algorithm uses
codeword set CI, we immediately have a >

Theorem I : Let (a , b , e) be a probability distribution of rational
numbers such that a > $ and c 5 (1 - .)/a. Then there exists an
adversarial three-letter source with probability distribution (a , b , e)
on the source alphabet which produces an ambiguous file, if and
only if 2a - 3c 5 1.

and c 5 (1 - a) / 2 .

The region of ambiguity is shown in Fig. 1.
Proof: Assume the file is ambiguous. Recall the definition of

x, y, and z at the beginning of the section. The frequency of 1’s
in the file is

a + b - y + 22 -
a + 2b + 2c x + 2 y + 22

which can be written
1 - c 1 + z - x
2 - 0 , 2 - x

The right-hand side achieves a maximum value of $ when z = x =
k, and it follows that 2a - 3c 5 1.

For the other direction we outline the construction of a source
stream with the correct symbol frequencies which produces an
ambiguous file. First, pick an integer k large enough so that ba,
kb, and k c are all even integers. The source stream will consist
of blocks of k symbols each, of two types. The first type, when
encoded according to CI and parsed according to CO, will give an
equal number of 0’s and Il’s and some positive number of 10’s.
The second type will give no 10’s and more 0’s than 11’s. It is
fairly straightforward to construct such blocks given the condition of
the theorem. Out of such blocks it is easy to build a source stream
which, when encoded according to CI and parsed according to CO,

To illustrate the construction, suppose that n = 0.6, b = 0.3, and

-
~~ -

gives frequencies x, y, and z that satisfy y 5 z 5 x 5 i.
c = 0.1, and let us choose k = 20. The two blocks are

B1= BABABACAAAABABABACAA
and

Bz AABCBABAAAAABCBABAAA.

Parsed according to CO, B1 gives ratios x : y : z = 10 : 0 : 9 and
BZ gives 8 : 2 : 8. Therefore, the concatenation B1B2 gives ratios
18 : 2 : 17 and it is ambiguous.

974 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 3, MAY 1996

1

0.9
0.8

0.7
0.6
0.5
0.4

0.3
0.2
0.1

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a

1

0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

a

Fig. 2. Regions of ambiguity for right-heavy (left) and arbitrary (right) Huffman codes

It seems fortunate that the necessary condition we arrived at by
considering only the frequency of 1’s in the file turned out to be
sufficient, too. For a fixed n > 3 and a given n-symbol encoding
rule, the frequency of 1’s will give rise to a necessary condition for
ambiguity. It would be interesting to determine whether this condition
is sufficient in general.

B. Independent Source, Independence Unknown to Cryptanalyst

In this subsection we assume that the three-symbol source is
independent, but that the cryptanalyst does not know this a priori.

For any fixed encoding rule an independent source generates a
Markov chain on the internal nodes of the Huffman tree in a natural
way. Here we are assuming the file is encoded according to C1. In
this case the Markov chain has two states, 1 (= root) and 2. and
transition probabilities p11 = a, plz = 1 - a, and pz1 = 1. We can
think of the transition from 2 to 1 as a 0-transition of probability
c / (l - U) plus a 1-transition of probability b / (l - a).

Parsing according to CO is deterministic, so the independent
source induces a process on the internal nodes, 3 (= root) and
4, of the Huffman tree used to parse the file. This process is not
Markov, but there i s also a process induced on the set of pairs
of internal nodes, one from the encoding Huffman tree and one
from the parsing Huffman tree. This process is a Markov chain,
which we call the cross-product machine (CPM). The states of the
CPM are (1, 3), (1, 4), (2, 3), (2, 4), and the relevant transition
probabilities arep(,,3)(1,4) = a , ~ (1 , 3) (2 , 3) = 1 - a , ~ (~ , 4) (1 , 3) = a,
p(1 ,4) (2 ,3) = 1 - a , ~ (~ , 3) (1 , 3) = c / (l - a), and p(2.3)(1 4) =
b/ (l - U) . The state (2, 4) is transient. Using elementary linear
algebra we can find the stationary probabilities of the recurrent states
(1, 3), (I, 4), and (2, 3). Each transition in the CPM corresponds to
a parsing of a 0 or a 1 in the file. Using this fact and the stationary
probabilities we compute

(U - 1)(2c + ac + ab)

(U - l) (ac + b)

-a(ac + b)

D
.z =

(1) D Y =

z =
D

where

D = a2b t a2c - ab - b - 2c.

Using (I) , we can derive necessary and sufficient conditions for
ambiguity in terms of a, b, and e. In the following two theorems we
give two separate sets of conditions, one for right-heavy Huffman
codes and one for arbitrary Huffman codes.

Theorem 2 (The Right-Heavy Case): Suppose a source produces
the symbols A, B , and C, independently with probabilities a, b,
and e , respectively. Suppose that a 2 $ and c 5 (I - a)/2, and
the file is encoded using codeword set CI. Then the encoding rule
is ambiguous if and only if

.’/(a + 2) 5 c 5 (a2 + 1 - a) / 3 .

Prooj! Assume that the encoding rule is ambiguous. Then the
encoding rule using codeword set CO = (0, 10, ll} with respective
probabilities IC, y, and z is also right-heavy Huffman-consistent; that
is, s 5 y + ,I, x 2 z , and z 2 y. Plugging in the expressions
for t, y, and z , from (1) and eliminating b, we get, respectively,
c 5 (a’ + 1 - a)/3, c 2 a z / (u + 2), and a 2 $, as desired.

The above derivation process is reversible. Thus if

a”(. + 2) 5 c 5 (2 + 1 - a) / 3

and a 2 i, then z 5 x 5 y + z and z 2 y ; and hence the encoding
rule is ambiguous.

symbols -4, B, and C, independently with probabilities a, b , and c,
respectively. Suppose that 1 - 2a 5 c 5 a , and the file is encoded
using codeword set CI. Then the encoding rule is ambiguous if and
only if c 2 a’//(. + 2) and c 2 (a z + 1 - 2 a) / (3 - a) .

Proof: Assume that the encoding rule i s ambiguous. Then the
encoding rule using codeword set CO = (0, 10, 11) with respective
probabilities IC, y. and z is also right-heavy Huffman-consistent; that
is, x 2 y and 2 2 z . Plugging in the expressions for 2, y. and z , from
(1) and eliminating b , we get, respectively, c >_ (~’$1-22a)/(3-a)
and c 2 a’/(. + 2), as desired.

The above derivation process is reversible. Thus if c 2 a2 / (a+ 2)
and c 2 (a’ + 1 - 2 a) / (3 - a), then z 2 y and z 2 z ; and hence
the encoding rule is ambiguous.

Fig. 2 depicts the regions of ambiguity defined by the constraints
on a and c in the theorems above.

Theorem 3 (The Arbitrary Case): Suppose a source produces t

C. Independent Source, Independence Known to Cryptanalyst
In this subsection we assume that the three-symbol source is

independent, and that the cryptanalyst knows this a priori. We find
that, as one expects, there is less room for ambiguity than in the
setting where the cryptanalyst does not know that the source is
independent.

Recall from the Introduction that the encoding rule is ambiguous
if there is another source that, for any string w of source symbols,
produces w with probability Pr [w] . Here Pr [w] := pZl . . . p2,, when

m . = z1 . . . i

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 3, MAY 1996 915

Theorem 4: Suppose a source produces the symbols A, 4, and C ,
independently with probabilities a, b , and c, respectively. Suppose
that a 2 $ and c 5 (1 - .)/a, and the file is encoded with
codeword set CI. Then the encoding rule is ambiguous if and only
if c = (I - u) ~ and a 5 (6 - 1)/2.

Proof Let us assume that the encoding rule is ambiguous.
Then the file could have been produced by another source using the
encoding rule for codeword set CO with associated probabilities y 5
z 5 x 5 i. The string 011 is a synchronizer for both three-symbol
encoding rules. That is, when the file is parsed by either rule, there is
a word break after each instance of 011. Therefore, by independence,
(1 - 0) = Pr[01011] = x and c = Pr[001011] = x' = (1 - a)'.
(Pr [u J ' I w] refers to the probability of seeing w' after seeing w.) The
last inequality follows from a' = z 5 T = 1 - a.

Conversely, if c = (1 -a)', then the file could have been produced
by a two-symbol source with probabilities a and 1 - 0. Equivalently,
it could have been produced by a source using the encoding rule
for codeword set CO with associated probabilities LI- = 1 - a ,
y = n (1 - a), and z = a'. A source with these probabilities really
would use codeword set CO because a 5 (fi - 1) /2 and therefore

Remark: The theorem implies that any ambiguous file is indis-
tinguishable from a file produced by a two-symbol source with
probabilities a and 1 - 0. Surprisingly, for every case we have
examined, the same thing happens for alphabets of more than
three symbols: whenever two Huffman trees are ambiguous with an
independent source they both "collapse" to a two-symbol tree.

y < . < L I - . I ; .

111. ARBITRARY FINITE SOURCE ALPHABETS

A. Independent Source, Independence Unknown to Cryptanalyst

In this subsection we consider an rc-symbol source alphabet and
an independent source. We assume that the cryptanalyst knows n a
priori, but does not know that the source is independent. Our analysis
of three-symbol source alphabets showed that the region of ambiguity
depends on the probability distribution on the source alphabet. We
now consider the family of geometric probability distributions on an
12-symbol source alphabet. For the geometric distribution p , = m - ' ,
i = 1, . . . , n, where e is a normalizing constant, we establish a bound
on N below which the encoding rule is never ambiguous.

Let us assume that the encoding rule uses a right-heavy Huffman
tree. When p L = c a L p l for a < i, each internal node of the Huffman
tree has a leaf as its right child. We call a tree satisfying this condition
a left-leaning chain. By the independence of the source, each internal
node x has a fixed probability T~ of branching right. This is the
probability that the next bit in the file is a 1, given that the bits seen
so far, parsed by the tree, end at LI-.

Lemma I : Let T be the generating (right-heavy) Huffman tree for
an independent source. Suppose T is a left-leaning chain with n
leaves, and according to the geometric distribution the leaf probabili-
ties are e, c(1, ea', . . . , can-' , where c = (1 - a) / (l - on). Then
for each internal node z in T

T?. := Pr [branching right] 2 1 - a.

Proof Let d, be the depth of 2. By the left-leaning property,
the right child of z represents a source symbol with probability ea"",
and the probability of branching right is

ad"
7', =

nclz + + . . . + a r ~ - - I

1-ik
1 - a n - d z

- -

21-0.

Therefore, on any Huffman tree for parsing the source stream, each
internal node also has probability at least 1 - a of branching right,
and at most (7: of branching left.

The following theorem and its corollary establish a condition under
which there is no ambiguity. The cryptanalyst knows the number n of
symbols in the source alphabet but not that the source is independent,
and "Huffman-consistent" is with respect to this U priori knowledge.

Theorem 5: Assume that (1 - a) z 2 $. Let T be an wsymbol
right-heavy Huffman tree for an independent source such that the
probability of branching right at any internal node of T is 2 1 - a.
Then the rightmost leaf (RML) of T is a child of the root.

Proof: Suppose the right child of the root is not a leaf. Then it
has a right child LI-. At some point in the Huffman algorithm, x is
considered to be a leaf with probability 2 (1 - a)' 2 f (see [l]).
According to the algorithm, its depth should be I, a contradiction.

Corollary I : Consider an n-symbol independent source in which
the probability distribution on the source alphabet is geometric; i.e.,
p z = cai-1 , where c = (1 - a) / (1 - an) . If a 5 1 - I/& =
0.292 . . . , then the encoding rule for this source is not ambiguous.

the generating Huffman tree for this source
is left-leaning. Let T be any Huffman-consistent tree. We will show
that T must be left-leaning, and the corollary will follow. By Lemma
1 and Huffman consistency, the probability of branching right at any
internal node of T is 2 1 - a. But every subtree of T is a Huffman
tree for some independent source. The assumption on (7: implies that
(1 - 2 f . So by Theorem 5, the RML of every subtree of T is
a child of the root. Therefore, the right child of every internal node

Proof: Since a <

of T is a leaf, so by definition T is left-leaning.

B. Independent Source, Independence Known to Cryptanalyst

In this subsection we again consider an n-symbol source alphabet
and an independent source, but here we assume that the cryptanalyst
knows a priori that the source is independent in addition to knowing
n.

We consider the following hypothesis testing problem: given the
Huffman tree for the encoding rule and another Huffman tree, decide
which tree is the encoding rule or prove that the file is ambiguous.
This problem can be reduced to checking the Huffman consistency
of a single tree, and the naive algorithm for either problem involves
evaluating Pr [w] for all w of length n . Although nothing better
is known for checking Huffman consistency, we show that the
cryptanalyst can solve the hypothesis testing problem by evaluating
Pr [tu] for O (n 2) different U I each of length at most 2n. This suggests
that the problems of checking consistency of a tree or determining
whether a file is ambiguous may admit efficient solutions, where the
measure of cost is the number of binary strings tu for which the
frequency in the file is evaluated. We solve the hypothesis testing
problem by reduction to the equivalence problem for finite Markov
sources.

A Markov source, or hidden Markov chain, (M , x), is a Markov
chain M in which each state s is labeled x (s) = 0 or 1. Starting from
some distribution 7i on the set of states, the Markov chain proceeds
randomly through a sequence of states whose labels form a binary
string. Pr.w [w] = P r n . x , ?r [U)] is the probability that A4 will produce
the binary string w.

An independent source is equivalent to a Markov source, by a
conversion shown in Fig. 3. Under this conversion, there is a state of
the Markov chain corresponding to each internal node in the tree, and
the label of that state is the label of the tree branch leading down to
the node. The root corresponds to two states (T O and T I in the figure),
since branches to leaves implicitly lead back to the root. The starting
distribution r7 is the point mass at either of the two root states.

976 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 42, NO. 3, MAY 1996

b C

a

,111,

\

Fig. 3. Converting a Huffman tree to a Markov source with 0-states T O and y and I-states T I and I.

Two Markov sources M and N are equivalent if for every
w E (0, I}*, PrM [w] = Pr.hr [w]. For every m-state hidden
Markov source L (with a given starting distribution) there are m 2
“witnesses” 701, . . . , w,~, wz E (0, i}*, such that the values
PrL [u I ~] , . . . , PrL [tu,] characterize the source up to equivalence.
Recent papers on Markov sources [3] , [lo] give algorithms for finding
these witnesses with cost O(m2) , where the cost is the number of
strings w for which PrL [w] must be evaluated. Each such evaluation
involves at most the multiplication of 2m m x n2 matrices, since
the witnesses are all of length at most 2m. Two sources M and .\-
are equivalent if and only PrM [w] = PrN [w] for each U: which is
a witness for M or AJ.

Theorem 6: Suppose an n-symbol source is independent. Suppose
the Huffman tree T for the encoding rule is given along with another
n-symbol Huffman tree S . Then there is an algorithm with running
time polynomial in n that determines whether that file could have
been produced by T only, could have been produced by S only, or
that the file is ambiguous as to whether it could have been produced
by T or S.

Prooj? (Algorithm). Parse the file according to both 2- and S.
Then the frequencies of the left and right branches of each internal
node of each tree will yield the transition probab
Markov sources Mi- and MS corresponding to T and S, respectively,
according to the conversion shown in Fig. 3. (For each internal node,
the probability of branching left is simply (Pr [W O] / (P r [w])for a
string w determined by the node.)

Test whether MT and M,y are equivalent using an existing algo-
rithm (the cost of this is O (n 3) n x n matrix multiplications). If
they are, then the file is ambiguous. If not, then for some witness
w s for M,s it is the case that Pr[ws] # Prl\n, [w . ~] . To find WS,

compare Pr [w] to PrMT [w] for each witness w for W r and compare
Pr[iu] to PrMs [w] for each witness w for M s , at a cost of O (n 2)
evaluations.

Remark: The problem of efficiently determining whether a given
Huffman tree S is consistent with the file remains open. The naive
algorithm is to to evaluate Pr [w] for each w of length n in the file,
at a cost of 2n evaluations. The algorithm given by Theorem 6 does
not immediately solve this problem, except in the case where Ms is
minimal, i.e., not equivalent to any Markov source with fewer states
[3] . The problem is that the witness strings for the tree T which
was used to produce the file remain unknown, and even if T is not
equivalent to S , the file may mimic S on all of the witnesses of S (we
speak loosely of trees being equivalent instead of the corresponding
Markov sources).

It remains an open question to determine efficiently whether a given
n-symbol Huffman tree is ambiguous, when the source is independent
and this is known to the cryptographer. As we remarked in Section
11-C, it could be the case that any ambiguous n-symbol Huffman
tree is equivalent to a two-symbol tree. By extending the method of
Section 11-C, we have shown that this is the case for n 5 5

ACKNOWLEDGMENT

The first author wishes to thank M. Sipser for many discussions
about Markov sources.

REFERENCES

T. H. Cormen, C. E. Leiserson, and R. L. Rivesl, Introduction to
Algorithms.
A. S. Fraenkel and S. T. Klein, “Complexity aspects of guessing prefix
codes,” Algorithmica, vol. 12, pp. 409419, 1994.
D. Cillman and M. Sipser, “Inference and minimization for hidden
Markov chains,” in Proc. 1994 ACM Symp. on Computational Learning
Theor)., July 1994.
D. A. Huffman, “A method for the construction of minimum-redundancy
codes,” in Proc. IRE, vol. 40, no. 9, pp. 1098-1101, 1952.
D. W. Jones, “Applications of splay trees to data compression,” Com-
mun. ACM, vol. 31, no. 8, pp. 996-1007, 1988.
D. Kahn, The Codebreakers.
S. T. Klein, A. Bookstein, and S. Deerwester, “Storing text-retrieval
systems on CD-ROM: Compression and encryption considerations,”
ACM Trans. Inform. Syst., vol. 7, pp. 230-245, 1989.
M. Mohtashemi, “On the cryptanalysis of Huffman codes,” MIT Lab.
for Computer Sci. Tech. Rep., p. 617, May 1992.
F. Rubin, “Cryptographic aspects of data compression codes,” Cryp-
talogia, vol. 3, pp. 202-205, 1979.
W.-G. Tzeng, “A polynomial-time algorithm for the equivalence of
probabilistic automata,” SIAM J. Comput., vol. 21, no. 2, pp. 216-227,
1992.

Boston, MA: MIT PressMcGraw-Hill, 1990.

New York: Macmillian, 1967.

