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Abstract

This paper presents a new way to compute the probability distribution

with maximum entropy satisfying a set of constraints� Unlike previous ap�

proaches� our method is integrated with the planning of data collection and

tabulation� We show how adding constraints and performing the associated

additional tabulations can substantially speed up computation by replacing

the usual iterative techniques with a straight�forward computation� These

extra constraints are shown to correspond to the intermediate tables used in

Cheeseman�s method� We also show that the class of constraint graphs that

our method handles is a proper generalization of Pearl�s singly�connected

networks� An open problem is to determine a minimal set of constraints

necessary to make a hypergraph acyclic� We conjecture that this problem is

NP�complete� and discuss heuristics to approximate the optimal solution�

� Introduction

Many applications require reasoning with incomplete information� For example�
in arti�cial intelligence one may wish to develop expert systems that can answer

�This research was supported in part by NSF Grant DCR��������� Sally Goldman received
support from an O�ce of Naval Research Fellowship�
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questions when given an incomplete model of the world� Having an incomplete
model means that a question can have more than one answer consistent with
the model� How can a system choose an answer to such a question� This paper
discusses a technique based on the method of maximum entropy� After formally
de�ning this problem� we discuss previously known methods for calculating the
maximum entropy distribution� Then we present a new technique which makes
maximum entropy computations easier by adding extra constraints� Finally� we
compare our technique to previous methods�

� Formal Problem De�nition

In this section we formally de�ne our problem� We begin by de�ning some
notation� Let V � fA�B�C� � � �g be a �nite set of binary�valued variables� or
attributes� �The generalization to �nite�valued variables is straightforward�	
Consider the event space 
V de�ned to be the set of all mappings from V to
f�� �g� �We call such mappings assignments since they assign a value to each
variable in V �	 It is easy to see that j
V j � �jV j� If E � V � we have 
V is
isomorphic to 
E �
V�E  we identify assignments in 
E with subsets of 
V in
the natural manner�

We are interested in probability distributions de�ned on 
V � We use the
following convention throughout this paper� If E � V � we write P �E	 to denote
the probability of an element of 
E � 
V � In other words� we specify only the
variables involved in the assignments and not their values� For example

P �V 	 � P �A	P �B	P �C	 � � � ��	

represents �jV j equations� stating that the variables are independent� �We do
not assume equation ��	 in this paper�	 By convention� all assignments in an
equation must be consistent� We also write P �A	 instead of P �fAg	� P �AB	
instead of P �fABg	� and so on�

We use a similar convention for summations�
P

E stands for a summation
over all assignments in 
E � when E � V � Using our conventions� we see that
Y � E � V implies that

P �Y 	 �
X
E�Y

P �E	 ��	

We are interested in probability distributions on 
V satisfying a given set
of constraints� Let E�� � � �Em be distinct subsets of V � Let us suppose that for
each i we are given the �jEij constraint values fP �Ei	g� and that these values
are consistent �i�e� there exists at least one probability distribution on 
V which

�



satis�es the given constraints	� A common way of ensuring that the constraints
are consistent is to derive the constraints by computing the observed marginal
probabilities from a common set of data� �Using �experts� to provide subjec�
tive probability estimates is a well�known way of deriving a set of inconsistent
constraints�	 Note that equation ��	 states that constraints on the P �Y 	�s are
implied by the constraints on the P �Ei	�s when Y � Ei� In general� there may
be many probability distributions P satisfying the given constraints in this case
we are interested in that unique distribution P � which maximizes the entropy

H�P 	 � �
X
V

P �V 	 log�P �V 		 ��	

Motivation for this choice can be found in �Ja��� Ja��� JS��� Le��� SJ��� TTL����
The maximum entropy distribution P � is known to have a simple represen�

tation� For each � in 
Ei
� there are �jEij non�negative real variables �Ei

��	 �i�e��
one variable per constraint	� that determine P � as follows� Let us write �i��	
instead of �Ei

��	 for brevity� and omit the argument � when it can be deduced
from context� Now we may write simply

P ��V 	 � ���� � � ��m� ��	

Each element of 
V is assigned a probability which is the product of the ap�
propriate ��s where each � determines its argument from the assignment to V �
This is known as a log�linear representation it is an interesting fact that the
maximum entropy distribution is the unique log�linear distribution of form ��	
which satis�es the given constraints� �That is� to �nd the maximum entropy dis�
tribution satisfying the constraints� it su�ces to �nd the log�linear distribution
satisfying the constraints�	

Of course� in order for equation ��	 to hold� the ��s must be correctly com�
puted� The problem of computing the maximum entropy distribution becomes
the problem of computing the �i�s from the P �Ei	�s�

� Previous ME Methods

Most existing methods for calculating the maximum entropy distribution are
iterative� They typically begin with a representation of the uniform distribution
and converge towards a representation of the maximum entropy distribution�
Each step adjusts the representation so that a given constraint is satis�ed� To
enforce a given constraint P �Ei	� all of the elementary probabilities P �V 	 rele�
vant to that constraint are multiplied by a common factor� Because constraints
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are dependent� adjusting the representation to satisfy one constraint may cause
a previously satis�ed constraint to no longer hold� Thus one must iterate re�
peatedly through the constraints until the desired accuracy is reached� �We note
that the implicit constraint � that the probabilities sum to one � must usually
be explicitly considered here�	 Examples of this type of algorithm are given in
�Br��� Ch��� Cs��� Fi��� IK��� KK���� Representing the probability distribu�
tion explicitly as a table of �jV j values is usually impractical� For this problem�
it is most convenient to store only ��� ��� � � ��m this is a representation as com�
pact as the input data� which represents the current probability distribution
implicitly via equation ��	� To represent the uniform distribution� every � is
set to �� except for the � corresponding to the requirement that entries of the
probability distribution must sum to � � which is set to ��jV j� To determine if a
constraint is satis�ed� one must sum the appropriate elements of the probability
distribution Any particular element can be computed using equation ��	� If the
constraint is not satis�ed� the relevant � is multiplied by the ratio of the desired
sum to the computed sum� Thus in originally calculating the ��s and later in
evaluating queries it is necessary to evaluate a sum of terms� where each term
is a product of ��s� This sum is di�cult to compute since it may involve an
exponential number of terms�

Cheeseman �Ch��� proposes a clever technique for rewriting such sums in
order to evaluate them more e�ciently� For example

�
X
A���F

�AB �ACD �DE �AEF

is rewritten as follows� First�
P

A���F is broken into six sums� each over one
variable� Arbitrarily choosing the variable ordering CDFEAB we obtain

�
X
B

X
A

X
E

X
F

X
D

X
C

�AB�ACD�DE�AEF �

Now each � is moved left as far as possible �it stops when reaching a sum over
a variable on which it depends	� The above sum then becomes

�
X
B

X
A

�AB
X
E

X
F

�AEF
X
D

�DE
X
C

�ACD�

The sums are evaluated from right to left� The result of each sum is an in�
termediate table containing the value of the sum evaluated so far as a function
of variables further to the left which have been referenced� For example after
evaluating

P
C a table is kept containing �ACD for 
AD� �As we shall see� in

some cases the intermediate table is most e�ciently represented as two or more
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smaller tables�	 The variable ordering must be chosen carefully in order to take
full advantage of this technique� A poor choice of variable ordering can yield
a sum which is not much better than explicitly considering all �jV j terms a
good choice can dramatically reduce the work required� The choice of variable
ordering which minimizes the cost of evaluating a sum can be viewed as a vertex
ordering problem in a graph� This problem is very similar to the minimum �ll�in
problem encountered when performing Gaussian elimination on sparse symmet�
ric matrices �RT��� RTL���� Since the minimum �ll�in problem has been proven
to be NP�Complete �Ya���� we conjecture that this problem is as well�

Some alternative approaches to the iterative scheme have been proposed�
One of the more interesting proposals is due to Geman �Ge��� Li���� This
method uses stochastic relaxation to simultaneously adjust the ��s to meet all
of the constraints� instead of satisfying one constraint at a time�

Some authors restrict their attention to probability distributions that can
be easily worked on without resorting to the iterative methods needed to com�
pute the maximum entropy distribution� These approaches usually restrict the
kinds of constraints that might be supplied� and assume conditional indepen�
dence explicitly as needed to force a unique result� This approach is taken by
Chow and Liu �CL��� and Pearl �Pe���� These methods construct a dependency
tree where nodes represent variables and links represent direct dependencies all
direct in�uences on a node come from its parent� Here the set of all conditional
probabilities of the form� P �childjparent	� together with the probability distribu�
tion of the variable at the root� su�ce to de�ne a unique probability distribution�
Pearl �Pe��� generalizes the tree condition to a network which has at most one
undirected path between any pair of nodes �a singly�connected network	�

One can view the contribution of the current paper as providing a synthesis
of these two approaches� by showing how the di�culties of computing a max�
imum entropy distribution can be substantially alleviated by enlarging the set
of constraints to be considered before the data is gathered and tabulated� With
the enlarged set of constraints� the computation of the maximum entropy dis�
tribution has a simple form which generalizes the equation suggested by Pearl�

� Using Acyclic Hypergraphs

Our approach is based on the work of Malvestuto �Ma���� who derived suf�
�cient conditions for writing marginals of the maximum entropy formula as
a product of easily calculated probabilities� We begin by describing how to
model a set of attributes and associated constraints as a hypergraph� �A sim�
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ilar model was given by �EK����	 It is interesting to note that the work on
the desirability of acyclic schemas �rst appeared in the database literature
�BFMMUY��� BFMY��� TY���� The attributes of the database replace the
attributes in our problem� and the relations replace the constraint sets� Given
that the database scheme is acyclic many problems are simpli�ed

A hypergraph is like an ordinary undirected graph� except that each edge
may be an arbitrary subset of the vertices� instead of just a subset of size two�
We de�ne the hypergraph G � �V � E	 to contain a vertex for each variable� and a
hyperedge for each constraint� For example the hyperedge fABCg corresponds
to the constraint set fA�B�Cg� We say that hyperedge X subsumes hyperedge
Y if Y � X � It is important to observe that the constraints on a sub�hypergraph
induced by restricting attention to a subset of the vertices can be inferred from
the original hypergraph constraints�

A hypergraph is acyclic if repeatedly applying the following reduction steps
gives the empty hypergraph �containing no edges and no vertices	�

�� Delete any vertices which belong to only one hyperedge�

�� Delete any hyperedges which are subsumed by another hyperedge�

Graham�s algorithm is the procedure of applying reduction steps � and � until
either the empty set is reached� or neither can be applied �Gr����

Before proceeding� we de�ne some necessary notation regarding the above
reduction procedure� Let E ��� � fE���

� � � � � � E���
m g� where E���

i is the ith hyperedge
of G� Let E

�k�
i � Z

�k�
i �Y

�k�
i � where Z

�k�
i is the set of variables which appear only

in E
�k�
i and Y

�k�
i is the set of variables which appear in at least one hyperedge

other than E�k�
i � Finally let E �i��� be the result of applying reduction step ��	

and then ��	 to E �i�� If G is acyclic then there exists an l such that E �l��� � ��
When the hypergraph is acyclic� the maximum entropy distribution� P ��V 	�

is given by� �Ma���

P ��V 	 �

�
l��Y
k��

Q
i P �E

�k�
i 	Q

i P �Y
�k�
i 	

��Y
i

P �E�l�
i 	

�
��	

Note that no ��s are needed the formula depends only on probabilities in the
original input data �constraints	� This formula is an immediate extension of the
following theorem�

Theorem � �Ma��� Given a decomposition� E � fE�� � � � � Emg� the maximum

entropy distribution is given by the following�

P ��V 	 �
P �E�	 � � �P �Em	

P �Y�	 � � �P �Ym	
P ��Y 	
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where P ��Y 	 is the maximum entropy distribution for the constraints P �Y�	� � � � �
�Ym	�

Proof� From the marginal constraints we have the following

P �Ei	 �
X
V�Ei

�� � � ��m

� �i
X
V�Ei

Y
j ��i

�j ��	

Similarly we have�

P �Yi	 �
X
Zi

X
V�Ei

�� � � ��m

�

�X
Zi

�i

��� X
V�Ei

Y
j ��i

�j

�
A ��	

Let �i �
X
Zi

�i� Combining equations ��	 and ��	 from above gives�

�i �
P �Ei	

P �Yi	
�i ��	

Now writing P ��V 	 in its product form we get

P ��V 	 � �� � � ��m

�
P �E�	 � � �P �Em	

P �Y�	 � � �P �Ym	
�� � � ��m ��	

We want to show that ��Y 	 � �� � � ��m is P ��Y 	� the maximum entropy dis�
tribution for the constraints P �Yi	� To do this� it is su�ces to prove that the
marginal constraints hold�

P ��Ei	 �
X
V�Ei

�
�Y

j

P �Ej	

P �Yj	

�
A��Y 	

�
X
V�Ei

��Y 	
P �Ei	

P �Yi	

Y
j ��i

P �Ej	

P �Yj	

�
P �Ei	

P �Yi	

X
Y�Yi

�
���Y 	Y

j ��i

�

P �Yj	

X
Z�Zi

�
�Y
j ��i

P �Ej	

�
A
�
A ���	
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where Z � Z� � � � � � Zm� so that V � Y � Z� Now� since the Zj�s are disjoint�X
Z�Zi

Y
j ��i

P �Ej	 �
Y
j ��i

X
Z�Zi

P �Ej	

�
Y
j ��i

X
Zj

P �Ej	

�
Y
j ��i

P �Yj	 ���	

Substituting equation ���	 into equation ���	 gives�

P ��Ei	 �
P �Ei	

P �Yi	

X
Y�Yi

��Y 	

However since P ��Ei	 � P �Ei	 we get P �Yi	 �
X
Y�Yi

��Y 	� so ��Y 	 satis�es the

constraints P �Yi	�

� A New ME Method

In this section we present a new procedure for calculating the maximum entropy
distribution� The main advantage of our procedure is that it avoids the iteration
previously required by providing a direct formula for the desired answer� The
major disadvantage is that the method cannot ordinarily be applied if the data
is already tabulated and the constraints already derived the method requires
that one �plan ahead� and tabulate additional constraints when processing the
data�

Equation ��	 allows one to avoid iteration when calculating the maximum
entropy distribution for schemas having acyclic hypergraphs� What should one
do for cyclic hypergraphs� Our method is based on the observation that a
hypergraph can always be made acyclic by adding hyperedges� �This is trivial to
prove� since at worst a hypergraph can be made acyclic by adding the hyperedge
containing all vertices�	 For example� the hypergraph�

�V � E	 � �fABCDEFg� ffABg� fACDg� fDEg� fAEFgg	

becomes acyclic when the hyperedge fADEg is added� Thus by adding addi�
tional constraints �edges	 the maximum entropy calculation can be simpli�ed so
that no iteration is required� Here is a summary of how our method works�
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�� We begin with a set of variables �attributes	 and a set of constraint groups
deemed to be of interest� �Cheeseman �Ch��� discusses a learning program
which uses the raw data to �nd a set of signi�cant constraints� Edwards
and Kreiner �EK��� also discuss how to choose a good set of constraints�	
Here a �constraint group� is a set of variables the intent is that during
data�gathering there will be one table created for each constraint group�
and the observed events will be tabulated once in each table according
to the values of the attributes in the constraint group� For example� if
fA�B�Cg is a constraint group of three binary valued attributes� then
there will be a table of size � used to categorize the data with respect to
these three attributes� This will give rise to � constraints on the maximum�
entropy distribution desired� one for each of the eight observed probabilities
P �ABC	�

�� Construct the corresponding hypergraph G � �V � E	� where there is one
vertex for each variable and one hyperedge corresponding to each con�
straint group�

�� Perform Graham�s algorithm on G� and let G� denote the resulting hyper�
graph� If G� is the empty hypergraph� then G is acyclic� and the following
step is skipped�

�� Find a minimal set X of additional hyperedges �constraint groups	 which
can be added to G� to make it acyclic� Note that any original edges sub�
sumed by edges in X are eliminated�

�� Collect data for the expanded set E � X of constraints ��

�� Apply equation ��	 to calculate individual elements of the maximum en�
tropy distribution� If sums of elements are desired� use Cheeseman�s sum�
mation technique� choosing a good variable ordering� Note that instead of
having a summation over a product of ��s� here the summation is over a
product of probabilities which are equivalent in form to the ��s�

� Possible Problems With Our Method

In this section we consider possible ine�ciencies of our method� First� it may be
necessary to add �large� hyperedges containing many vertices in order to make

�Our method is unusual in that it extends the set of tables 	constraints
 used to tabulate
the data� To �ll in the entries of a new table� the raw data must still be available in step 	
�
Thus steps ��� may be considered to be �planning� steps�
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the hypergraph acyclic� For example� to make the complete undirected graph
�containing all hyperedges of size two	 acyclic� one must add the �maximum�
hyperedge containing all vertices� Since the size of the table corresponding
to a hyperedge is an exponential function of the size of the hyperedge� adding
large hyperedges creates a problem� Furthermore� the table corresponding to the
maximum hyperedge is itself the probability distribution that we are estimating�
so the above situation is clearly undesirable� This kind of behavior depends on
the structure of the hypergraph hypergraphs which are �highly connected� will
tend to require the addition of large hyperedges� However� when the graph is
highly connected other computational techniques seem to �blow up� as well�

Second� because of our method�s unique approach� we have a unique concern�
Recall that since the data is tabulated after adding the additional constraints
steps ��� of our algorithm must be performed while the source of the constraints
�i�e�� the raw data	 is still available� If the added hyperedges are too large�
there may not be enough data to calculate meaningful statistics� Tabulating
������� data points in a table of size � �� ��� will give reasonable estimates�
while tabulating them in a table of size � �� ���� ��� will not�

� Comparison with Cheeseman	s Method

We now compare the tables �constraints	 added by our technique� with the
intermediate tables used in Cheeseman�s method� We demonstrate� by means
of an example� that these are the same� except that Cheeseman�s tables are half
the size� since they are are already summed over the variable being eliminated�

When evaluating a sum one can visualize an imaginary �scan line� moving
from left to right across the hypergraph� where all variables to the left of the
scan line have already been summed over�

� According to the position of a scan line the vertices of the graph may
be divided into three parts ��eliminated�� �boundary�� and �unseen�	 as
follows�

�� VE � fv 	 V j v is left of the scan line g

�� VB � fv� 	 V � VE j 
v 	 VE � �v� v�	 	 E g

�� VU � V � �VE � VB	

� Let G�� G�� � � � � Gl be the connected components of the subgraph induced
by VE � VB�

� Let ��Gi	 denote the set of vertices of VB in Gi�
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� Let ���Gi	 be that subset of ��Gi	 consisting of the vertices adjacent to
some vertex in VU or VB�

Theorem � Let X�� X�� � � � � Xl be a collection of subsets of VB� Then fXjg is

su�cient and necessary for Cheeseman�s algorithm if

��i	�
j	 j ���Gi	 � Xj� ���	

Now we will look at the following example�

B D F

� � �

A �

� �
C E

To explain this example we introduce new notation� where the variable sets
for the intermediate tables are put in parenthesis above the summation sign�
Consider the vertex ordering DEFCAB given such a vertex ordering� theorem
� speci�es the temporary tables needed�

P ���	 �
X
AB

�AB

�AB�X
C

�AC�BC

�BC�X
F

�CF

�BF�CF �X
E

�CE�EF

�BF �X
D

�BD�DF

�This summation is only being used for explanatory purposes� Since the ele�
ments of the probability distribution sum to �� we know that P ���	 � ��	 When
evaluating

P
D it will be necessary to keep a table with the value of �BD�DF

for 
BF � When evaluating
P

E as well as keeping the table for B and F � an�
other table with all combinations of C and F must be created� Below are the
temporary tables used by Cheeseman�s method�

BF�CF�BC�AB

Now we look at the hyperedges which must be added to make a hypergraph
acyclic�

� Let v�� � � � � vn be an ordering of the vertices�

� Let Gi �

�
G if i � �
Gi�� � ��vi	� fe j vi 	 eg otherwise
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� Let ��vi	 � fv j v is adjacent to vi in Gi�� g�

� Let  �vi	 �

�
� if ��vi	 � �
��vi	� vi otherwise

Theorem � The set of all non�empty  �vi	 is necessary and su�cient to make

a hypergraph� G� acyclic�

Now we return to our example� Theorem � de�nes a set of additional hyper�
edges that make our hypergraph acyclic� First� the hyperedge BFD eliminates
vertex D� �Hyperedge BFD subsumes hyperedges BD and DF and thus elim�
inates them� Now D is only in hyperedge BDF and so is eliminated� leaving
hyperedge BF �	 Second� hyperedge CFE eliminates vertex E� Now vertex F is
only in hyperedges BF and CF so BCF eliminates it� Finally� hyperedge ABC
eliminates the remaining vertices� Thus the following additional hyperedges will
make our example graph acyclic �in parenthesis is the variable eliminated by
adding the edge	�

BF �D	� CF �E	� BC�F 	� AB�C	

Ignoring the variables in parentheses� these are identical to Cheeseman�s tables�
However there are important di!erences between these methods�

First� in terms of time complexity� Cheeseman�s method speci�es an iterative
approximation of the �s� whereas our method requires no such iteration� So� if
Cheeseman�s method requires �� iterations on the average� our method should
yield an average speed�up of a factor of ���

Second� in terms of space complexity� both methods use approximately the
same amount of space� However� our method adds what might be called �per�
manent� edges� since they correspond to tabulations of the raw data� Note�
however� that new edges may subsume and thus eliminate original edges� so the
space required by our method may not be quite as great as it �rst appears� In
Cheeseman� method the tables exist only temporarily during the course of the
computation� and not all such tables may be needed at the same time�

And �nally� in terms of the �precomputation� needed� both methods need to
compute a vertex ordering to use� We observe that a good summation ordering
is a good ordering for eliminating vertices� So the problem of choosing the
hyperedges to make a graph acyclic seems comparable to the problem of choosing
an optimal summation ordering�
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 Comparison to Pearl	s Work

In this section we will compare our work to that of Pearl� and show that the
formula we use is a proper generalization of Pearl�s� Pearl�s technique depends on
the Bayesian network being singly�connected� A Bayesian network is a directed
acyclic graph such a network is said to be singly�connected if it has no undirected
cycles �i�e�� no cycles if we ignore the directions of the edges	�

We begin by proving that a singly�connected network is a special case of an
acyclic hypergraph� Then we show that both Pearl�s and Malvestuto�s formulas
yield the same estimated probability distribution for a singly�connected network�
Given a network N � we de�ne a corresponding hypergraph G as follows� The
vertices of G are the nodes of N � For each node x in N we create a hyperedge
in G� consisting of the corresponding vertex and the vertices corresponding to
all immediate predecessor of x in N �

Theorem � If a Bayesian network N is singly�connected� then the correspond�

ing hypergraph G is acyclic�

Proof� Since N is singly�connected� it contains no undirected cycles� by the
de�nition of singly�connected� Since an acyclic undirected graph is a tree or
forest� N must contain some node s with degree at most one� The corresponding
vertex in G is contained in exactly one hyperedge and so can be eliminated by
reduction step �� Finally� we must show that the reduced networkN � so obtained
corresponds to the reduced hypergraph G� that remains after eliminating the
vertex corresponding to s� When s is a source in N �or a sink which is the second
to last node	 this correspondence is obtained immediately� In the remaining
cases� the correspondence holds only after applying reduction step � to eliminate
the hyperedge remaining after s is eliminated� �This hyperedge contains only
the parent of s�	 The network N � is singly�connected� and so by induction every
node in G can be eliminated� Thus G is acyclic�

Theorem � A Bayesian network is not necessarily singly�connected if the cor�

responding hypergraph is acyclic�

Proof� We prove this by means of an example� The following Bayesian network
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is not singly�connected since there is an undirected cycle�

B C

� �

�
A

�
D

The hypergraph corresponding to the above network is acyclic as shown by the
reduction below�

fB�C�ABC�BCDg
�

fBCg
�
�

Thus Pearl�s condition of the network being singly�connected is a special case of
having an acyclic hypergraph� So when given a singly�connected network� our
technique will apply without adding any constraints�

Now we show �by example	 that for singly�connected networks� Pearl�s and
Malvestuto�s formulas for the estimated probability distribution are equivalent�
We use the following notation for stating Pearl�s formula�

� ffxg are the fathers �immediate ancestors	 of node x in the network�

� R is the set of roots �sources	�

Pearl�s equation is

P ��V 	 �

�Y
x�R

P �x	

��Y
x��R

P �xjffxg	

�
���	

We use the following example to compare Pearl�s and Malvestuto�s formulas�

A B

C

D F

E

��



Pearl�s formula gives�

P ��A � � �F 	 � P �A	P �B	P �CjAB	P �DjC	P �F jC	P �EjD	

� P �A	P �B	
P �ABC	

P �AB	

P �CD	

P �C	

P �CF 	

P �C	

P �DE	

P �D	

By de�nition A and B must be independent since otherwise there would be a
link connecting them� Thus P �AB	 � P �A	P �B	 and the above becomes

P ��A � � �F 	 � P �ABC	
P �CD	

P �C	

P �CF 	

P �C	

P �DE	

P �D	
���	

To apply Malvestuto�s formula� it is necessary to perform Graham�s algo�
rithm� �Elements of Y ���

i are underlined�	

fABC�CD�CF�DEg
�

fCDg
�
�

Applying equation ��	 gives�

P ��A � � �F 	 �
P �ABC	

P �C	

P �CF 	

P �C	

P �DE	

P �D	
P �CD	 ���	

As shown by equations ���	 and ���	 the probability distribution given by Pearl�s
and Malvestuto�s formulas are the same� So Pearl�s formula is a special case of
Malvestuto�s formula� Thus our method is a proper generalization of the method
given by Pearl� That is� not only does our technique give the same results as
Pearl�s when the network is singly�connected� but our formula applies �without
adding any hyperedges	 to cases where Pearl�s does not�

� Conclusions and Open Problems

We have presented an e�cient algorithm for calculating the maximum entropy
distribution given a set of attributes and constraints� Using a hypergraph to
model the attributes and constraints� we show the bene�ts of making the corre�
sponding hypergraph acyclic� We then show how to make a hypergraph acyclic
by adding hyperedges �constraints	� We have shown that our technique is at

��



least as e�cient as Cheeseman�s method� and that our technique generalizes
Pearl�s method for singly�connected networks�

An open problem is how to choose the best set of hyperedges which will make
a hypergraph acyclic we conjecture that this problem is NP�complete� If so� then
step ��	 of our method cannot be done e�ciently� One can use heuristics �such
as a minimum�degree heuristic	 to approximate the optimal answer� or maybe
there is a pseudo�polynomial time algorithm in the size of the contingency tables
corresponding to the edges of the optimal hypergraph�

We intend to try our technique on some realistic examples� Our goal is to
determine if the size of the hyperedges will remain within reasonable limits for
such realistic examples� We expect that in practice our new method will give
substantial improvements in running time�

Finally� we will study the e!ects on accuracy of keeping tables which may
be larger than the original tables�
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