
Learning Binary Relations and Total Orders
(Extended Abstract)

Sally A. Goldman Ronald L. Rivest Robert E. Schapire

MIT Laboratory for Computer Science
Cambridge, Massachusetts 02139

Abstract. We study the problem of designing polyno-
mial prediction algorithms for learning binary relations. We
study these problems under an on-line model in which the
instances are drawn by the learner, by a helpful teacher, by
an adversary or according to a probability distribution on
the instance space. We represent the relation as an n x m
binary matrix, and present results for when the matrix is
restricted to have at most k distinct row types, and when it
is constrained by requiring that the predicate form a total
order.

1 Introduction

Acquiring information about a predicate relating the ele-
ments of two sets is an important problem for many do-
mains. For example, one may wish to learn a “has-part”
predicate relating a set of animals to a set of attributes. We
consider the problem of designing prediction algorithms to
learn binary relations where the learner has little informa-
tion about the predicate forming the relation. We represent
the relation as an n x m binary matrix. (One could also
model it by a bipartite graph.) The learner is repeatedly
given an element from each set and asked to predict the
corresponding matrix entry. In such a scenario a significant
fraction of the matrix may be queried, and so the natural
dimension measure of the problem is not the size of an in-
stance, but rather the size nm of the instance space. As this
problem demonstrates, there are interesting concept classes
with polynomial sized instance spaces.

Such concept classes are uninteresting in Valiant’s [15]
probably approximately correct (PAC) model of learning. In
this model, instances are chosen randomly from an arbitrary
unknown probability distribution on the instance space. A
concept class is PAC-learnable if the learner after seeing
a polynomial number of instances can output a hypothesis
that is correct on all but an arbitrarily small fraction of the
instances with high probability. Since the learner sees most
of the probability weight of the instance space when pre-
sented with a polynomial number of instances, these concept
classes are trivially PAC-learnable. A goal of our research
is to build a framework in which to study such problems.

To study learning algorithms for these concept classes
we extend the basic mistake bound model [G, 7, 91 to one in

This paper prepared with support from NSF grant DCR-8607494,
ARO Grant DAAL0386-K-0171, and a grant from the Siemens
Corporation. Authors’ network addresses: sally@theory.lcs.mit.edu,
rivestOtheory.lcs.mit.edu, rs@theory.lcs.mit.edu.

which a helpful teacher or the learner selects the query se-
quence, in addition to considering when instances are chosen
by an adversary or according to a probability distribution on
the instance space. Previously, helpful teachers have been
used to provide counterexamples to conjectured concepts [l],
or to break up the concept into smaller sub-concepts [ll].
In our framework, the teacher only selects the presentation
order for the instances.

Since the learner can be forced to make n m mistakes
when learning an arbitrary matrix, we consider restricting
the matrix to have at most k distinct row types. (Two rows
are of the same type if they agree in all columns.) We present
an efficient algorithm making at most km+(n - k) lg k mis-
takes when the learner chooses the query sequence. When
the adversary selects the query sequence, we present an ef-
ficient algorithm for k = 2 that makes at most 2m + n - 2
mistakes, and for arbitrary k we present an efficient algo-
rithm making at most km + nd- mistakes. We
prove any algorithm makes at least km+ (n- k)[lg k] when
an adversary selects the query sequence. We use the ex-
istence of projective geometries to prove a lower bound of
O (m i n (n 6 , m f i }) for a large class of algorithms against
an adversary. Finally, we describe a technique to simplify
the analysis of expected mistake bounds when the query se-
quence is chosen at random, and use it to prove an O(km +
n k a) expected mistake bound for a simple algorithm.
(Here H is the maximum Hamming distance between any
two rows.)

In the second half of this paper we require the binary
relation to form a total order. The halving algorithm [3, 91
yields a good mistake bound against any query sequence.
(The halving algorithm predicts according to the majority of
the feasible concepts, and thus each mistake halves the num-
ber of concepts to consider.) So a second goal of this research
is to develop efficient implementations of the halving algo-
rithm. We describe a technique that uses a fully polynomial
randomized approximation scheme (fpras) to implement a
randomized version of the halving algorithm. We apply this
technique using a fpras due to Dyer, Frieze, and Kannan [5]
and Matthews [lo] for counting the number of extensions
of a partial order to obtain a polynomial prediction algo-
rithm for learning a total order that makes n lg n + o(n lg n)
mistakes with very high probability against an adversary
selected query sequence. The probability of making “too
many” mistakes is taken over the coin flips of the learning
algorithm and does not depend on the query sequence. We
contrast this result with a O(n lg n) bound when the learner
selects the query sequence, and a n - 1 mistake bound when

46

CH2806-8/89/0000/0046/$01 .OO 0 1989 IEEE

mailto:sally@theory.lcs.mit.edu
http://rivestOtheory.lcs.mit.edu
mailto:rs@theory.lcs.mit.edu

a teacher selects the query sequence. Finally, we discuss how
the halving algorithm may be used to construct an efficient
counting algorithm.

2 Learning Scenario and Mistake Bound
Model

In this section we give formal definitions and then discuss
the learning scenario used in this paper.

For each n 2 1, let X, denote a finite learning domain
where n is a natural dimension measure for the domain.
Let X = X,, and x E X denote an instance. Given a
learning domain X, for each n 2 1, let C, C_ 2xn be a family
of concepts on X,. Let C = C, denote a concept class
over domain X. Given any concept c E C,, we say that 2:
in c is a positive instance of c , and x in X , - c is a negative
instance of c . A prediction algorithm for C , is an algorithm
that runs under the following scenario. A learning session
consists of a set of trials. In each trial, the algorithm predicts
if z E X, is a positive instance of the target concept c E Cn,
and is then given feedback. If the prediction was incorrect,
the algorithm has made a mistake. A learner is consistent if,
on every trial, there is some concept in C, that agrees with
the learner’s prediction, as well as with the labeled instances
observed on the preceding trials.

The number of mistakes made by an algorithm depends
on the sequence of instances presented to the learner. We
extend the mistake bound model to include several methods
for the selection of instances. The query sequence is some
permutation x = {z1,22,. . . , zp,l} of X, where zt is the
instance presented to the learner a t the t t h trial. We call
the agent selecting the query sequence the instance selector.
We consider the following instance selectors:

Learner - The learner chooses r. To select zt, the
learner may use time polynomial in n and all informa-
tion obtained in the first 2 - l trials.

e Helpful Teacher - A teacher who knows the target
concept and wants to minimize the learner’s mistakes
chooses x . To select zt, the teacher uses knowledge of
the target concept, zl,. . . , z t - l , and the learner’s pre-
dictions on x1,. . . , xt -1 . To avoid allowing the learner
and teacher to have a coordinated strategy, in this sce-
nario we consider the worst case mistake bound over
all consistent learners.

e Adversary - The adversary who selected the target
concept chooses x . This adversary, who tries to max-
imize the learner’s mistakes, knows the learner’s algo-
rithm and has unlimited computing power.

e Random - In this model, A is selected randomly ac-
cording to a uniform probability distribution on the
permutations of X,.

We consider how a prediction algorithm’s performance
depends on the instance selector. Let d Z (C) denote the set
of prediction algorithms for learning concept class C with
instance selector Z. For prediction algorithm A E d Z (C) ,
we define the mistake bound MB(A, C ,) to be the worst case
number of mistakes made by A for any target concept in C,
under any query sequence provided by Z. (When Z = ad-
versary, MB(A,C,) = MA(C,) as defined by Littlestone [9].)
We say that A is a polynomial prediction algorithm if A
makes each prediction in time polynomial in n.

3 Learning a Binary Matrix
We now present our results for learning an n x m binary
matrix M . Unless the matrix is constrained, the learner can
be forced to make n m mistakes. There are many ways to
reflect the “structure” in a binary relation. In this section we
model the natural situation in which the matrix has at most
k distinct row types, yet no other restrictions are placed
on the predicate forming the relation. We say an entry i , j
of the matrix (LV ,~) is known if the learner was previously
presented that entry. We assume without loss of generality
that the learner is never asked to predict the value of a
known entry. We say rows i and a‘ are consistent if M,, =
M,I, for all columns j in which both entries i , j and if, j are
known.

To motivate our problem, suppose the learner is at a zoo
that has n animals and m features are of interest (e.g. “has-
wings”). The learner wants to accurately predict if a given
animal has a given feature. We model this problem as that of
learning an n x nt binary matrix M whose n rows correspond
to animals and m columns correspond to features. Having
only k row types corresponds to there being only k types
of animals. The learning session proceeds as follows: the
instance selector selects an animal a and asks the learner to
predict whether animal i has feature j . The learner predicts
the value of M,,,, and is then told (or is allowed to observe)
whether animal : has feature j.

Clearly, any learning algorithm makes at least k m mis-
takes for some matrix, regardless of the query sequence. If
computational efficiency is not a concern, for all query se-
quences the halving algorithm [3, 91 provides a k m + n lg k
mistake bound. We obtain this result by using a simple
counting argument on the size of the concept class.

3.1 Learner Selected Query Sequence

In this section, we present an efficient algorithm for learning
the matrix when the learner selects the query sequence.

Theorem 1 There exists a polynomial prediction algorithm
that achieves a k m + (n - k) lg k mistake bound with a learner
selected query sequence.

Proof Sketch: The query sequence selected is that of pre-
dicting the entries of the matrix in row major order. The
learner begins assuming that k = 1 and increments its esti-
mate for k as needed. The algorithm predicts M,, according
to the majority of row types seen that are consistent with
row i , and thus if a mistake is made, then at least half of
the row types can be eliminated. At most m mistakes are
made for the first row of each type. For the remaining n - k
rows, at most lgk mistakes are made before all row types
are eliminated.

Note that this algorithm need not know k a priori. Fur-
thermore, it obtains the same mistake bound even if an ad-
versary tells the learner which row to examine, and in what
order to predict the columns, provided the learner sees all
of a row before going on to the next. However, this problem
becomes much harder if the adversary can select the query
sequence without restriction.

3.2 Adversary Presentation

In this section, we consider upper and lower bounds on
learning algorithms for handling adversary selected query
sequences. We begin by giving an algorithm for k = 2.

47

Theorem 2 There exists an algorithm that makes at most
2 m + n - 2 mistakes against an adversary selected query
sequence for k = 2 .

Proof Sketch: The algorithm uses a graph G whose ver-
tices are the rows of the matrix and that initially has no
edges. We place an edge in G when it is known that
rows i and j are inconsistent. To predict Mi, the algorithm
uses a row of the same color in the 2-coloring of G. The
prediction algorithm is designed so that except for a t most
2 m - 1 mistakes, every mistake adds an edge to G between
two nodes previously assigned the same color. Thus, after a t
most n - 1 additional mistakes, there is a unique 2-coloring
of G, and no more mistakes are made.

An interesting theoretical question is to find a linear mis-
take bound for constant k 2 3 when provided with a k-
colorability oracle, We define the related matrix k-complexity
problem as follows: given an n x n binary matrix M that
is partially known, decide if there is some matrix with at
most k row types that is consistent with M. The matrix
k-complexity problem can be shown to be AfP-complete by
a reduction from graph k-colorability. (Proof omitted.)

We now present a simple algorithm designed to learn a
matrix with arbitrary complexity k when an adversary se-
lects the query sequence. We say that an algorithm A is a
row-filter algorithm if A makes its prediction for M,, strictly
as a function of j and all entries in the set I of rows con-
sistent with row i and defined in column j . That is, A’s
prediction is f (I , j) where f is some (possibly probabilis-
tic) function. Consider the following row-filter algorithm,
ConsMajorityPredict, in which f (I , j) computes the major-
ity vote of the entries in column j of the rows in I. (Guess
randomly in the case of a tie.) ConsMajorityPredict only
takes time linear in the number of known entries of the ma-
trix to make a prediction.

Theorem 3 The algorithm ConsMajorityPredict makes at
most km + n , / m mistakes against an adversary se-
lected query sequence.

Proof Sketch: We use a potential argument. For all i ,
let d(i) be the number of rows consistent with row i . We
define the potential of a partially known matrix to be 8 = E:=, d(a). We can prove that 8 is decreased by at most

non-increasing.
Next we prove that the rth mistake made when predict-

ing an entry in column j of some row i of type z decreases 9
by at least 2(r - 1). The key observation is that since r - 1
mistakes have occurred, a t least r - 1 entries are known in
column j of rows of type t. So if a mistake occurs there
must be at least r - 1 entries in I (and thus consistent with
row i) that differ in column j with row z. Thus after the
r t h mistake in column j of row type z , 8 is decreased by at
least E:=, 2 (z - 1) 2 (r - I) ~ .

By using the above observation, we can prove that after
M mistakes have been made the total decrease in 9 is at
least k m (g - 1)2. Thus, combining our bounds on the
decrease of 8 it follows that

T n k-1 2 during the learning session, and furthermore, 8 is

This implies the desired bound on A!.
We note that by using the simpler argument that each

mistake decreases 9 by at least 2, we obtain a k m + * n 2

Figure 1: A projective geometry for p = 2, m = 7 .

mistake bound for any row-filter algorithm. Also, Man-
fred Warmuth [16] has independently given an algorithm
based on a majority voting scheme that achieves an O (k m +
n m) mistake bound..

Theorem 4 Any algorithm makes at least k m + (n - k) [l g kJ
mistakes for m 2 [lg k J when the adversary selects the query
sequence.
Proof Sketch: The adversary starts by presenting entries
in the first lg k columns and replying that each prediction
is incorrect. Each row can now be classified as one of k row
types. Next the adversary presents the remaining columns
for one row of each type, again replying that each prediction
is incorrect. m

By applying this result when k = 2 we see that the up-
per bound of Theorem 2 is tight. (If m 5 [lgk] then we
get an m n lower bound for any query sequence.) Also, by
modifying this technique we obtain an R (k m + (n - k) Ig k)
lower bound against all instance selectors.

Now we present a lower bound on the number of mistakes
an adversary can force against any row-filter algorithm.

Theorem 5 Let p be a prime integer and let m = (p 2 + p +
1). Any row-filter algorithm for learning a 2n x m matrix
with m 2 n and k 2 2 makes at least n (p + 1) = O (n f i)
mistakes when the adversary selects the query sequence.
Proof Sketch: We assume that the adversary knows the
learner’s algorithm and has access to any random bits it uses.
(We prove a similar lower bound on the expected mistake
bound when the adversary cannot access the random bits.)

Our proof depends upon the existence of a projective ge-
ometry r on m points and lines [4]. That is, there exists
a set of m points and a set of m lines such that each line
contains exactly p + 1 points and each point is at the inter-
section of exactly p + 1 lines. Furthermore, any pair of lines
intersects at exactly one point, and any two points define
exactly one line. Figure 1 shows a matrix representation of
such a geometry; an “x” in entry i,j indicates that point j
is on line i. We use the first n rows of r.

The matrix A I consists of two row types: the odd rows
are filled with ones and the even rows with zeros. The adver-
sary’s query sequence maintains the condition that an entry
i , j is not revealed unless line [i / 2 1 of I? contains point j. We
prove that I = I’ for entries 2 i , j and 2i - 1, j , and thus the
learner makes the same prediction for both entries. Since
the rows are of opposite parity, the learner is forced to make
a mistake on one of these entries.

We use a similar argument to get an O (m 6) bound
for m < n . Combined with the lower bound of Theorem 4

We now focus on lower bounds.

*His algorithm is not a row-filter algorithm.

we obtain a R(km + (n - k) lg k + min{nfi, m f i }) lower
bound.

Given this lower bound, one may question the 2 m + n - 2
upper-bound for k = 2. However, the algorithm described is
not a row-filter algorithm. Also compared to our results for
the learner selected query sequence, it is clear that allowing
the learner to select the query sequence is quite helpful.

3.3 Random Presentation

In this section we consider when the learner is presented at
each step with one of the remaining entries of the matrix se-
lected uniformly and independently a t random. We present
a prediction algorithm that makes O(km + n k n) mistakes
on average where H is the maximum Hamming distance
between any two rows of the matrix. We note that when
H = n(5) the result of Theorem 3 supersedes this result.
A key result of this section is a proof relating two different
probabilistic models for analyzing the mistake bounds under
a random presentation.

We now define the algorithm RandomConsistentPredict.
The learner makes its prediction on M,, as follows: let I be
the set of rows in M consistent with row i and known in
column j . Choose one row a’ of Z uniformly at random and
guess Mp, . (If Z is empty, then make a random guess.)

Theorem 0 Let H be the maximum Hamming distance be-
tween any two rows of M . The expected number of mistakes
made by RandomConsistentPredict is O(km + n k n) .
Proof Sketch: Let Ut be the probability that the predic-
tion rule makes a mistake on the (t + l) ” step. The expected
number of mistakes is

The condition that exactly t entries are known makes
the computation of Ut rather messy since the probability of
having seen some entry of the matrix is not independent of
knowing the others. Instead, we compute the probability Vt
of a mistake under the simpler assumption that each entry of
the matrix has been seen with probability t / S , independent
of the rest of the matrix.

We first prove that csz: Vt = O(km + n k n) . We
note that by its definition

Ut, where S = mn.

= Pr[mistake I i , j presented next].
$93

After a lengthy probability computation we obtain a formula
upper bounding Vt. We then use integrals to upper bound
the discrete sum to obtain the stated result.

Finally, we prove the main result of this section, namely, cfii Ut = 0 (cfr: Vt). We obtain this result by noting
that

s-1 s-1

t=O r=O t=O

and then using Stirling’s approximation to show that the
coefficients of the Ur’s on the right are bounded below by a
constant. W

4 The Halving Algorithm and Approximate
Counting

We now begin our discussion of learning a binary relation
on a set in which the predicate is restricted to form a total

order. First we give background information on the halving
algorithm and approximate counting schemes.

We now review the halving algorithm [3, 91. Let V de-
note the set of concepts in C, that are consistent with all
previous queries. Given an instance x in X,, for each con-
cept in V the halving algorithm computes the value for z
and predicts according to the majority. Finally, all concepts
in V that are inconsistent with the correct prediction are
deleted. Littlestone [9] shows that this algorithm makes at
most lg IC,l mistakes. Now suppose the prediction algorithm
maintains a set V’, the set of all concepts in C, consistent
with all incorrectly predicted instances. Littlestone [9] also
proves that this space-efficient halving algorithm makes at
most lglC,I mistakes. So for any prediction algorithm A
that only remembers its mistakes, the number of instances
stored by A is bounded by MB(A,Cn).

We define the approximate halving algorithm to be the
following generalization of the halving algorithm. Given in-
stance 3: in X, the approximate halving algorithm predicts
in agreement with at least vIV(of the concepts in V for some
constant 0 < v < 112.

Theorem 7 The approximate halving algorithm makes at
most log(l-vl-, IC,l mistakes for concept class C.

Proof: Each time a mistake is made, the number of ele-
ments that remain in the concept space are reduced by a
factor of 9. Thus after a t most log l - v) - ~ IC,! mistakes

W
We note that the above result holds for a space efficient

version of the approximate halving algorithm.
We now introduce the notion of an approximate counting

scheme for the problem of counting the number of elements
in a finite set S. Sometimes exact counting can be done
in polynomial time; however, the counting problem is often
#P-complete and thus assumed to be intractable. (For a
discussion of #P see Valiant’s paper [14].) For many #P-
complete problems good approximations are possible [8, 12,
131. A randomized approximation scheme, R, for a counting
problem satisfies the following condition for all E, 6 > 0:

there is one consistent concept left in bn.

where R(n, E, 6) is R’s estimate on input n, 6, and 6. Such a
scheme is fully polynomial if it runs in time polynomial in
n, $, lg $. For a further discussion see Sinclair’s thesis [12].

4.1 Learning a Total Order

In this section we show how to use a fpras to implement a
randomized version of the approximate halving algorithm,
and apply this result for the problem of learning a total
order on a set of n elements. For this concept class Xn =
(1,. .. , n } x (1 !.. .. ,n}. An instance (i , j) is in the target
concept iff: 5 3 i n the corresponding total order.

Under the teacher selected query sequence we obtain an
n- 1 mistake bound. Using any standard sorting algorithm,
we achieve a O(n lg n) mistake bound when the learner se-
lects the query sequence. With the adversary instance selec-
tor, this problem is like that of sorting when an adversary
selects the order of the comparisons. We present a polynG
mial prediction algorithm making n lg n + o(n lg n) mistakes
with very high probability.

We begin by showing how to use an exact counting algo-
rithm to implement the halving algorithm.

49

Lemma 1 Given a polynomial algorithm R to exactly count
the number of concepts in C, consistent with a given set E
of examples, one can construct an eficient implementation
of the halving algorithm for C.
Proof Sketch: The learner implements the halving algo-
rithm making calls to R to help choose its predictions. To
make a prediction for x E X, the learner calk R with x as
a positive (negative) example and predicts with the option

We modify this basic technique to use a fpras instead
of the exact counting algorithm to obtain an efficient im-
plementation of a randomized version of the approximate
halving algorithm.

Theorem 8 Let R be a fpras for counting the number of
concepts in C, consistent with a given set E of examples.
If IX,(is polynomial in n, one can produce a prediction
algorithm that for any 6 > 0 runs polynomial in n and lg 4
and makes (1 +o(l))lg IC,l mistakes with probability at least
1-6 .

Proof Sketch: The prediction algorithm implements the
procedure described in Lemma 1 with the exact counting
algorithm replaced by the fpras R(n, $,A). Consider
the prediction for x in X,. Let V be the set of concepts
that are consistent with all previous instances. Let r1 (ro)
be the number of concepts in V for which x is a positive
(negative) instance. Let P1 (respectively i o) be the estimate
output by R for r1 (TO). Without loss of generality, assume
the algorithm predicts that 2 is a negative instance, and
thus QO 2 i l . Applying the definition of a fpras and the
observation that r0 + r1 = IVI, gives that 70 2 -*f.

We define an appropriate prediction to be a prediction
that agrees with at least 1t of the concepts in V. A
straightforward argument yields that the probability all IX,I
predictions are appropriate is a t least 1 - 6. When all pre-
dictions are appropriate this algorithm implements the ap-
proximate halving algorithm with 'p = lt(;tc)T and thus,
by Theorem 7, at most log(l-v)-l lC,,l mistakes are made.
Substituting 6 with its value of and simplifying the ex-
pression we obtain that with probability at least 1 - 6, the
number of mistakes is a t most

producing the larger count. w

- 7 5

w
We note that in the proof above, we could increase the

probability of obtaining a (1 + o(1)) lg IC,I mistake bound
since the desired mistake bound follows even if o(lg IC,\) of
the predictions are not appropriate.

We now apply this result to obtain the main result of
this section.

Theorem 9 There exists an algorithm A, in dadversary
for learning total orders such that for all 6 > 0, A, runs in
time polynomial in n and lg and makes at most i t lgn +
o (n lg n) mistakes with probability at least 1 - 6.

Proof Sketch: We apply the results of Theorem 8 using
the fpras for counting the number of extensions of a partial
order given independently by Dyer, Frieze and Kannan [5],
and Matthews [lo]. We know that with probability at least
1 - 6, the number of mistakes is (1 + o(1))lg~Cn~. Since

(C)

(C,J = n! the desired result is obtained.

So for learning total orders for all instance selectors ex-
cept for the helpful teacher, a polynomial prediction algo-
rithm can do equally well asymptotically if a small proba-
bility of failure is allowed. However, for learning a binary
matrix we have shown that when using a row-filter algorithm
a learner can do asymptotically better under the learner in-
stance selector versus the adversary instance selector.

Finally, we extend the mistake bound model to accom-
modate such randomized prediction algorithms. Although
we are interested in worst case bounds, we now allow the al-
gorithm to exceed the mistake bound with a specified prob-
ability 6 that is taken over the coin flips of the prediction
algorithm. We define the randomized mistake bound (RMB)
as follows. For prediction algorithm A E d z (C) with dimen-
sion measure n and confidence 6 > 0, we let RMB(A, Cn, 6)
denote a mistake bound m, such that with probability at
least 1 - 6, the worst case number of mistakes made by A is
at most m. (The probability is taken over the coin flips used
by A, and the mistake bound m is taken over all possible
query sequences of 2.)

4.2

In this section we discuss the relationship between count-
ing schemes and the halving algorithm. Let W be a set of
elements for which some subset S of the elements are dis-
tinguished. A majority algorithm takes as input (in some
specified form) V E W and outputs a bit that is 1 iff at
least half of the elements in V are distinguished. On the
other hand, a counting algorithm must output the number
of elements in V that are distinguished.

In Lemma 1 we used a counting algorithm to implement
a majority algorithm. We now discuss when a majority al-
gorithm can be used t o implement a counting algorithm.

Theorem 10 Let A be a majority algorithm for W with
running time TA. Let V be any input to A, and suppose A
outputs 1 (respectively, 0). Suppose further that it is possible
in time O(TA) to create a new input V' (of the proper form)
obtained by deleting IVl/Z distinguished (non-distinguished)
elements from V . Then there exists an exact counting algo-
rithm A' that runs in time o (T ~ l g (V () .

Majority Algorithms vs Counting Algorithms

We omit the proof here. We note that this result can
be extended to apply if one can appropriately expand V to
include I V l / 2 non-distinguished (distinguished) elements if
A outputs 1 (respectively, 0). Applying Theorem 10 to k-
CNF we obtain the following result.

Theorem 11 There exists a polynomial time algorithm to
ezactly count the number of k-CNFformuIasfor which some
x E X , is a positive instance.
Proof Sketch: Consider Valiant's [15] algorithm for k-
CNF. As Angluin [2] notes, if Valiant's algorithm predicts
0, then there exists some clause r that is 0. So by removing
r the condition needed for Theorem 10 is satisfied.

By studying the recursive structure of the counting al-
gorithm, we obtain the following counting algorithm for k-
CNF. Let T be the number of possible clauses that are true
for instance x. Then the number of formulas that predict
that x is a positive instance is ZT. Also Theorem 11 can
be generalized to prove that an approximate majority algo-
rithm (i.e. the approximate halving algorithm) can be used
to obtain an approximate counting algorithm. We omit the
details here.

50

Concept
Class

1 n x m

binary matrix

(k row types)

Total Order

on n elements

Instance Lower
Selector Bound

Learner km

Adversary

Adversary

Adversary

Uniform Dist.

Teacher

Em + (n - k)[lgkJ
2m4-71-2

n(km+(n-b)Ig b+min{nfi,m+})

km

n - 1

Learner I iXnlg n)

Upper
Bound Notes

~~

2 m + n - 2 k = 2

bm f nd- row-filter algorithm

O(km + n k a) I avg. case, row-filter alg. I

Table 1: Summary of our results.

5 Conclusions and Open Problems

Our results are summarized in Table 1. All upper bounds
are for polynomial prediction algorithms. The results listed
are for deterministic mistake bounds unless otherwise stated.
We have presented general techniques to help develop effi-
cient versions of the halving algorithm. In particular, we
have shown how a fpras can be used to efficiently implement
a randomized version of the approximate halving algorithm.
We have also extended the mistake bound model by adding
the notion of an instance selector and generalizing it to ac-
commodate randomized prediction algorithms.

In general, it would be nice to tighten any of the given
bounds. We suspect that the projective geometry lower
bound can be modified to incorporate k in the bound. An-
other nice problem is to find a “practical” prediction algo-
rithm for the problem of learning a total order.

Acknowledgments

The results in Sections 4 and 4.1 were inspired by an “open
problems session” led by Manfred Warmuth a t our weekly
Machine Learning Reading Group meeting, where he pro-
posed the basic idea of using an approximate halving algo-
rithm based on approximate and probabilistic counting, and
also suggested the problem of learning a total order on n el-
ements. We thank Tom Leighton for helping to improve the
lower bound of Theorem 5. We also thank Nick Littlestone
and Bob Sloan for their comments.

References
[l] D. Angluin. Learning regular sets from queries and coun-

terexamples. Information and Computation, 75:87-106,
November 1987.

[2] D. Angluin. Queries and concept learning. Machine Learn-
ing, 2(4):319-342, 1988.

[3] J. Barzdin and R. Freivald. On the prediction of general
recursive functions. Sov. Math. Dokl., 13:1224-1228, 1972.

[4] R. Carmichael. Introduction to the Theory of Groups of
Finite Order. Dover Publications, New York, 1937.

tDue to Manfred Warmuth.

[5] M. Dyer, A. Frieze, and R. Kannan. A random polynomial
time algorithm for estimating the volumes of convex bod-
ies. In Proceedings of the t l s t Annual AGM Sympoaium on
Theory of Computing, pages 375-381, Seattle, Washington,
May 1989.

[SI D. Haussler, M. Kearns, N. Littlestone, and M. Warmuth.
Equivalence of models for polynomial le-bility. In First
Workshop on Computational Learning Theory, pages 42-55,
Morgan-Kaufmann, August 1988.

[7] D. Haussler, N. Littlestone, and M. Wannuth. Expected
mistake bounds for on-line learning algorithms. 1988. Un-
published manuscript.

[SI M. Jerrum and A. Sinclair. Conductance and the rapid mix-
ing property for Markov chains: the approximation of the
permanent resolved. In Proceedings of the 20th Annual A CM
Symposium on Theory of Computing, pages 235-244, May
1988.

[9] N. Littlestone. Learning when irrelevant attributes abound:
a new linear-threshold algorithm. Machine Learning, 2:285-
318, 1988.

[lo] P. Matthews. Generating a random linear extension of a
partial order. 1989. Unpublished manuscript.

[ll] R. Rivest and R. Sloan. Learning complicated concepts reli-
ably and usefully. In David Haussler and Leonard Pitt, ed-
itors, First Workshop on Computational Learning Theory,
pages 69-79, Morgan Kaufmann, August 1988.

[12] A. Sinclair. Randomised Algorithms for Counting and Gen-
erating Combinatorial Structures. PhD thesis, University
of Edinburgh, Department of Computer Science, November
1988.

[13] L. Stockmeyer. The complexity of approximate counting. In
proceedings of the 15th Annual AGM Symposium on Theory
of Computing, pages 118-126, May 1983.

(141 L. Valiant. The complexity of computing the permanent.
Theoretical Computer Science, 8:198-201, 1979.

[15] L. Valiant. A theory of the learnable. Communications of
the ACM, 27(11):1134-1142, November 1984.

[16] M. Warmuth. Personal communication.

51

