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Abstract. Counting votes is complex and error-prone. Several statisti-
cal methods have been developed to assess election accuracy by manually
inspecting randomly selected physical ballots. Two ‘principled’ methods
are risk-limiting audits (RLAs) and Bayesian audits (BAs). RLAs use fre-
quentist statistical inference while BAs are based on Bayesian inference.
Until recently, the two have been thought of as fundamentally different.
We present results that unify and shed light upon ‘ballot-polling’ RLAs
and BAs (which only require the ability to sample uniformly at random
from all cast ballot cards) for two-candidate plurality contests, the are
building blocks for auditing more complex social choice functions, in-
cluding some preferential voting systems. We highlight the connections
between the methods and explore their performance.
First, building on a previous demonstration of the mathematical equiv-
alence of classical and Bayesian approaches, we show that BAs, suitably
calibrated, are risk-limiting. Second, we compare the efficiency of the
methods across a wide range of contest sizes and margins, focusing on
the distribution of sample sizes required to attain a given risk limit.
Third, we outline several ways to improve performance and show how
the mathematical equivalence explains the improvements.

Keywords: Statistical audit · Risk-limiting · Bayesian

1 Introduction

Even if voters verify their ballots and the ballots are kept secure, the count-
ing process is prone to errors from malfunction, human error, and malicious
intervention. For this reason, the US National Academy of Sciences [4] and the
American Statistical Association7 have recommended the use of risk-limiting
audits to check reported election outcomes.

7amstat.org/asa/files/pdfs/POL-ASARecommendsRisk-LimitingAudits.pdf
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The simplest audit is a manual recount, which is usually expensive and time-
consuming. An alternative is to examine a random sample of the ballots and
test the result statistically. Unless the margin is narrow, a sample far smaller
than the whole election may suffice. For more efficiency, sampling can be done
adaptively: stop when there is strong evidence supporting the reported outcome
[7].

Risk-limiting audits (RLAs) have become the audit method recommended
for use in the USA. Pilot RLAs have been conducted for more than 50 elections
in 14 US states and Denmark since 2008. Some early pilots are discussed in
a report from the California Secretary of State to the US Election Assistance
Commission.8 In 2017, the state of Colorado became the first to complete a
statewide RLA.9 The defining feature of RLAs is that, if the reported outcome
is incorrect, they have a large, pre-specified minimum probability of discovering
this and correcting the outcome. Conversely, if the reported outcome is correct,
then they will eventually certify the result. This might require only a small
random sample, but the audit may lead to a complete manual tabulation of the
votes if the result is very close or if tabulation error was an appreciable fraction
of the margin.

RLAs exploit frequentist statistical hypothesis testing. There are by now
more than half a dozen different approaches to conducting RLAs [8]. Election
audits can also be based on Bayesian inference [6].

With so many methods, it may be hard to understand how they relate to
each other, which perform better, which are risk-limiting, etc. Here, we review
and compare the statistical properties of existing methods in the simplest case: a
two-candidate, first-past-the-post contest with no invalid ballots. This allows us
to survey a wide range of methods and more clearly describe the connections and
differences between them. Most real elections have more than two candidates, of
course. However, the methods designed for this simple context are often adapted
for more complex elections by reducing them into pairwise contests (see below
for further discussion of this point). Therefore, while we only explore a simple
scenario, it sheds light on how the various approaches compare, which may inform
future developments in more complex scenarios. There are many other aspects
to auditing that matter greatly in practice, we do not attempt to cover all of
these but we comment on some below.

For two-candidate, no-invalid-vote contests, we explain the connections and
differences among many audit methods, including frequentist and Bayesian ap-
proaches. We evaluate their efficiency across a range of election sizes and margins.
We also explore some natural extensions and variations of the methods. We en-
sure that the comparisons are ‘fair’ by numerically calibrating each method to
attain a specified risk limit.

We focus on ballot-polling audits, which involve selecting ballots at random
from the pool of cast ballots. Each sampled ballot is interpreted manually; those

8https://votingsystems.cdn.sos.ca.gov/oversight/risk-pilot/final-report-073014.pdf
9https://www.denverpost.com/2017/11/22/colorado-election-audit-complete/

https://votingsystems.cdn.sos.ca.gov/oversight/risk-pilot/final-report-073014.pdf
https://www.denverpost.com/2017/11/22/colorado-election-audit-complete/
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interpretations comprise the audit data. (Ballot-polling audits do not rely on the
voting system’s interpretation of ballots, in contrast to comparison audits.)

Paper outline: Section 2 provides context and notation. Section 3 sketches
the auditing methods we consider and points out the relationships among them
and to other statistical methods. Section 4 explains how we evaluate these meth-
ods. Our benchmarking experiments are reported in Section 5. We finish with a
discussion and suggestions for future work in Section 6.

2 Context and notation: two-candidate contests

We consider contests between two candidates, where each voter votes for exactly
one candidate. The candidate who receives more votes wins. Ties are possible if
the number of ballots is even.

Real elections may have invalid votes, for example, ballots marked in favour of
both candidates or neither; for multipage ballots, not every ballot paper contains
every contest. Here we assume every ballot has a valid vote for one of the two
candidates. See Section 6.

Most elections have more than two candidates and can involve complex algo-
rithms (‘social choice functions’) for determining who won. A common tactic for
auditing these is to reduce them to a set of pairwise contests such that certifying
all of the contests suffices to confirm the reported outcome [3,1,8]. These contests
can be audited simultaneously using methods designed for two candidates that
can accommodate invalid ballots, which most of the methods considered below
do. Therefore, the methods we evaluate form the building blocks for many of the
more complex methods, so our results are more widely relevant.

We do not consider stratified audits, which account for ballots cast across
different locations or by different voting methods within the same election.

2.1 Ballot-polling audits for two-candidate contests

We use the terms ‘ballot’ and ‘ballot card’ interchangeably, even though typical
ballots in the US consist of more than one card (and the distinction does matter
for workload and for auditing methods). We consider unweighted ballot-polling
audits, which require only the ability to sample uniformly at random from all
ballot cards.

The sampling is typically sequential. We draw an initial sample and assess the
evidence for or against the reported outcome. If there is sufficient evidence that
the reported outcome is correct, we stop and ‘certify’ the winner. Otherwise,
we inspect more ballots and try again, possibly continuing to a full manual
tabulation. At any time, the auditor can chose to conduct a full hand count
rather than continue to sample at random. That might occur if the work of
continuing the audit is anticipated to be higher than that of a full hand count
or if the audit data suggest that the reported outcome is wrong. One reasonable
rule is to set a maximum sample size (number of draws, not necessarily the
number of distinct ballots) for the audit; if the sample reaches that size but the
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outcome has not been confirmed, there is a full manual tabulation. The outcome
according to that manual tabulation becomes official.

There are many choices to be made, including:

How to assess evidence. Each stage involves calculating a statistic from the
sample. What statistic do we use? This is one key difference amongst auditing
methods, see Section 3.

Threshold for evidence. The decision of whether to certify or keep sampling
is done by comparing the statistic to a reference value. Often the value is
chosen such that it limits the probability of certifying the outcome if the
outcome is wrong, i.e. limits the risk (see below).

Sampling with or without replacement. Sampling may be done with or
without replacement. Sampling without replacement is more efficient; sam-
pling with replacement often yields simpler mathematics. The difference in
efficiency is small unless a substantial fraction (e.g. 20% or more) of the
ballots are sampled.

Sampling increments. By how much do we increase the sample size if the
current sample does not confirm the outcome? We could enlarge the sample
one ballot at a time, but it is usually more efficient to have larger ‘rounds’.
The methods described here can accommodate rounds of any size.

We assume that the auditors read votes correctly, which generally requires
retrieving the correct ballots and correctly applying legal rules for interpreting
voters’ marks.

2.2 Notation

Let X1, X2, · · · ∈ {0, 1} denote the sampled ballots, with Xi = 1 representing a
vote in favour of the reported winner and Xi = 0 a vote for the reported loser.

Let n denote the number of (not necessarily distinct) ballots sampled at a
given point in the audit, m the maximum sample size (i.e. number of draws) for
the audit, and N the total number of cast ballots. We necessarily have n 6 m
and if sampling without replacement we also have m 6 N .

Each audit method summarizes the evidence in the sample using a statistic
of the form Sn(X1, X2, . . . , Xn, n,m,N). For brevity, we suppress n, m and N
in the notation.

Let Yn =
∑n
i=1Xi be the number of sampled ballots that are in favour of the

reported winner. Since the ballots are by assumption exchangeable, the statistics
used by most methods can be written in terms of Yn.

Let T be the true total number of votes for the winner and pT = T/N the
true proportion of such votes. Let pr be the reported proportion of votes for the
winner. We do not know T nor pT , and it is not guaranteed that pr ' pT .

For sampling with replacement, conditional on n, Yn has a binomial distribu-
tion with parameters n and pT . For sampling without replacement, conditional
on n, Yn has a hypergeometric distribution with parameters n, T and N .



Evaluation of Two-Candidate Ballot-Polling Election Auditing Methods 5

2.3 Risk-limiting audits as hypothesis tests

Risk-limiting audits amount to statistical hypothesis tests. The null hypothesis
H0 is that the reported winner(s) did not really win. The alternative H1 is that
the reported winners really won. For a single-winner contest,

H0 : pT 6 1
2 , (reported winner is false)

H1 : pT >
1
2 . (reported winner is true)

If we reject H0, we certify the election without a full manual tally. The certifica-
tion rate is the probability of rejecting H0. Hypothesis tests are often character-
ized by their significance level (false positive rate) and power. Both have natural
interpretations in the context of election audits by reference to the certification
rate. The power is simply the certification rate when H1 is true. Higher power re-
duces the chance of an unnecessary recount. A false positive is a miscertification:
rejecting H0 when in fact it is true. The probability of miscertification depends
on pT and the audit method, and is known as the risk of the method. In a
two-candidate plurality contest, the maximum possible risk is typically attained
when pT = 1

2 .

For many auditing methods we can find an upper bound on the maximum
possible risk, and can also set their evidence threshold such that the risk is
limited to a given value. Such an upper bound is referred to as a risk limit,
and methods for which this is possible are called risk-limiting. Some methods
are explicitly designed to have a convenient mechanism to set such a bound, for
example via a formula. We call such methods automatically risk-limiting.

Audits with a sample size limit m become full manual tabulations if they
have not stopped after drawing the mth ballot. Such a tabulation is assumed to
find the correct outcome, so the power of a risk-limiting audit is 1. We use the
term ‘power’ informally to refer to the chance the audit stops after drawing m
or fewer ballots.

3 Election auditing methods

We describe Bayesian audits in some detail because they provide a mathemat-
ical framework for many (but not all) of the other methods. We then describe
the other methods, many of which can be viewed as Bayesian audits for a spe-
cific choice of the prior distribution. Some of these connections were previously
described by [11]. These connections can shed light on the performance or in-
terpretation of the other methods. However, our benchmarking experiments are
frequentist, even for the Bayesian audits (for example, we calibrate the methods
to limit the risk).

Table 1 lists the methods described here; the parameters of the methods are
defined below.
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Table 1: Summary of auditing methods. The methods in the first
part of the table are benchmarked in this report.

Method Quantities to set Automatically risk-limiting

Bayesian f(p) —
Bayesian (risk-max.) f(p), for p > 0.5 X
BRAVO p1 X
MaxBRAVO None —

ClipAudit None —†

KMart g(γ)‡ X
Kaplan–Wald γ X
Kaplan–Markov γ X
Kaplan–Kolmogorov γ X

† Provides a pre-computed table for approximate risk-limiting thresholds
‡ Extension introduced here

3.1 Bayesian audits

Bayesian audits quantify evidence in the sample as a posterior distribution of the
proportion of votes in favour of the reported winner. In turn, that distribution
induces a (posterior) probability that the outcome is wrong, Pr(H0 | Yn), the
upset probability.

The posterior probabilities require positing a prior distribution, f for the
reported winner’s vote share p. (For clarity, we denote the fraction of votes for
the reported winner by p when we treat it as random for Bayesian inference and
by pT to refer to the actual true value.)

We represent the posterior using the posterior odds,

Pr(H1 | X1, . . . , Xn)

Pr(H0 | X1, . . . , Xn)
=

Pr(X1, . . . , Xn | H1)

Pr(X1, . . . , Xn | H0)
× Pr(H1)

Pr(H0)
.

The first term on the right is the Bayes factor (BF) and the second is the prior
odds. The prior odds do not depend on the data: the information from the data
is in the BF. We shall use the BF as the statistic, Sn. It can be expressed as,

Sn =
Pr(X1, . . . , Xn | H1)

Pr(X1, . . . , Xn | H0)
=

∫
p>0.5

Pr(Yn | p) f(p) dp∫
p60.5

Pr(Yn | p) f(p) dp
.

The term Pr(Yn | p) is the likelihood. The BF is similar to a likelihood ratio, but
the likelihoods are integrated over p rather than evaluated at specific values (in
contrast to classical approaches, see Section 3.2).

Understanding priors. The prior f determines the relative contributions of
possible values of p to the BF. It can be continuous, discrete or neither. A conju-
gate prior is often used [6], which has the property that the posterior distribution
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is in the same family, which has mathematical and practical advantages. For sam-
pling with replacement the conjugate prior is beta (which is continuous), while
for sampling without replacement it is a beta-binomial (which is discrete).

Vora [11] showed that a prior that places a probability mass of 0.5 on the
value p = 0.5 and the remaining mass on (1/2, 1] is risk-maximizing : for such a
prior, limiting the upset probability to α also limits the risk to α.

We explore several priors below, emphasizing a uniform prior (an example of
a ‘non-partisan prior’ [6]), which is a special case within the family of conjugate
priors used here.

Bayesian audit procedure. A Bayesian audit proceeds as follows. At each
stage of sampling, calculate Sn and then:{

if Sn > h, terminate and certify,
if Sn 6 h, continue sampling.

(*)

If the audit does not terminate and certify for n 6 m, there is a full manual
tabulation of the votes.

The threshold h is equivalent to a threshold on the upset probability: Pr(H0 |
Yn) < υ corresponds to h = 1−υ

υ
Pr(H0)
Pr(H1)

. If the prior places equal probability on

the two hypotheses (a common choice), this simplifies to h = 1−υ
υ .

Interpretation. The upset probability, Pr(H0 | Yn), is not the risk, which we
write informally as maxH0

Pr(certify | H0). The procedure outlined above limits
the upset probability. This is not the same as limiting the risk. Nevertheless, in
the election context considered here, Bayesian audits are risk-limiting, but with
a risk limit that is in general larger than the upset probability threshold.10

For a given prior, sampling scheme, and risk limit α, we can calculate a value
of h for which the risk of the Bayesian audit with threshold h is bounded by α.
For risk-maximizing priors, taking h = 1−α

α yields an audit with risk limit α.

3.2 SPRT-based audits

The basic sequential probability ratio test (SPRT) [12], adapted slightly to suit
the auditing context here11, tests the simple hypotheses

H0 : pT = p0,

H1 : pT = p1,

10This is a consequence of the fact that the risk is maximized when pT = 0.5, a fact
that we can use to bound the risk by choosing an appropriate value for the threshold.
The mathematical details are shown in Section A.

11The SPRT allows rejection of either H0 or H1, but we only allow the former here.
This aligns it with the broader framework for election audits described earlier. Also,
we impose a maximum sample size, as per that framework.
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using the likelihood ratio:{
if Sn = Pr(Yn|p1)

Pr(Yn|p0) >
1
α , terminate and certify (reject H0),

otherwise, continue sampling.

This is equivalent to (*) for a prior with point masses of 0.5 on the values p0
and p1 with h = 1/α. This procedure has a risk limit of α.

The test statistic can be tailored to sampling with or without replacement by
using the appropriate likelihood. The SPRT has the smallest expected sample
size among all level α tests of these same hypotheses. This optimality holds only
when no constraints are imposed on the sampling (such as a maximum sample
size).

The SPRT statistic is a nonnegative martingale whenH0 holds; Kolmogorov’s
inequality implies that it is automatically risk-limiting. Other martingale-based
tests are discussed in Section 3.4.

The statistic from a Bayesian audit can also be a martingale, if the prior
is the true data generating process under H0. This occurs, for example, for a
risk-maximizing prior if pT = 0.5.12

BRAVO. In a two-candidate contest, BRAVO [3] applies the SPRT with:

p0 = 0.5,

p1 = pr − ε,

where ε is a pre-specified small value for which p1 > 0.5.13 Because it is the
SPRT, BRAVO has a risk limit no larger than α.

BRAVO requires picking p1 (analogous to setting a prior for a Bayesian
audit). The recommended value is based on the reported winner’s share, but
the SPRT can be used with any alternative. Our numerical experiments do not
involve a reported vote share; we simply set p1 to various values.

MaxBRAVO. As an alternative to specifying p1, we experimented with replac-
ing the likelihood, Pr(Yn | p1), with the maximized likelihood, maxp1 Pr(Yn | p1),
leaving other aspects of the test unchanged. This same idea has been used
in other contexts, under the name MaxSPRT [2]. We refer to our version as
MaxBRAVO. Because of the maximization, the method is not automatically
risk-limiting, so we calibrate the stopping threshold h numerically to attain the
desired risk limit, as we do for Bayesian audits.

3.3 ClipAudit

Rivest [5] introduces ClipAudit, a method that uses a statistic that is very easy to
calculate, Sn = (An−Bn)/

√
An +Bn, where An = Yn and Bn = n−Yn. Appox-

imately risk-limiting thresholds for this statistic were given (found numerically),

12Such a prior places all its mass on p = 0.5 when p 6 0.5.
13The SPRT can perform poorly when pT ∈ (p0, p1); taking ε > 0 protects against

the possibility that the reported winner really won, but not by as much as reported.
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along with formulae that give approximate thresholds. We used ClipAudit with
the ‘best fit’ formula [5, equation (6)].

As far as we can tell, ClipAudit is not related to any of the other methods we
describe here, but Sn is the test statistic commonly used to test the hypothesis
H0 : pT = 0.5 against H1 : pT > 0.5:

Sn =
An −Bn√
An +Bn

=
Yn − n+ Yn√

n
=

Yn/n− 0.5√
0.5× (1− 0.5)/n

=
p̂T − p0√

p0 × (1− p0)/n
.

3.4 Other methods

Several martingale-based methods have been developed for the general prob-
lem of testing hypotheses about the mean of a non-negative random variable.
SHANGRLA exploits this generality to allow auditing of a wide class of elec-
tions [8]. While we did not benchmark these methods in our study (they are
better suited for other scenarios, such as comparison audits, and will be less
efficient in the simple case we consider here), we describe them here in order to
usefully point out some of the connections between methods.

For each of the methods below, the essential difference is in the definition of
the statistic, Sn. The procedure in each case is the same: we certify the election
if Sn > 1/α, otherwise we keep sampling. All of the procedures can be shown to
have a risk limit of α.

All the procedures have a ‘padding’ parameter γ that prevents degenerate
values of Sn. This parameter either needs to be set to a specific value or is
integrated out.

The statistics below that are designed for sampling without replacement de-
pend on the order in which ballots are sampled. None of the other statistics (in
this section or earlier) have that property.

We use t to denote the value of E(Xi) under the null hypothesis. In the
two-candidate context discussed in this paper, this would be set to t = p0 = 0.5.

We have presented the formulae for the statistics a little differently to other
papers in order to highlight the connections between these methods. For sim-
plicity of notation, we define Y0 = 0.

KMart. This method was described online under the name KMart14 and is
implemented in SHANGRLA [8]. There are two versions of the test statistic,
designed for sampling with or without replacement15, respectively:

Sn =

∫ 1

0

n∏
i=1

(
γ

[
Xi

t
− 1

]
+ 1

)
dγ, and Sn =

∫ 1

0

n∏
i=1

(
γ

[
Xi

(
N−i+1
N

)
t− 1

N Yi−1
− 1

]
+ 1

)
dγ.

This method is related to Bayesian audits for two-candidate contests: for
sampling with replacement and no invalid votes, we have shown that KMart

14https://github.com/pbstark/MartInf/blob/master/kmart.ipynb
15When sampling without replacement, if we ever observe Yn > Nt then we ignore

the statistic and terminate the audit since H1 is guaranteed to be true.

https://github.com/pbstark/MartInf/blob/master/kmart.ipynb
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is equivalent to a Bayesian audit with a risk-maximizing prior that is uniform
over p > 0.5.16 The same analysis shows how to extend KMart to be equiva-
lent to using an arbitrary risk-maximizing prior, by inserting an appropriately
constructed weighting function g(γ) into the integrand.16

There is no direct relationship of this sort for the version of KMart that
uses sampling without replacement, since this statistic depends on the order the
ballots are sampled but the statistic for Bayesian audits does not.

Kaplan–Wald. This method is similar to KMart but involves picking a value
of γ rather than integrating over γ [10]. The previous proof 16 shows that: for
sampling with replacement, Kaplan–Wald is equivalent to BRAVO with p1 =
(γ + 1)/2; for sampling without replacement, there is no such relationship.

Kaplan–Markov. This method applies Markov’s inequality to the martingale∏
i6nXi/E(Xi), where the expectation is calculated assuming sampling with

replacement [9]. This gives the statistic, Sn =
∏n
i=1 (Xi + γ) / (t+ γ).

Kaplan–Kolmogorov. This method is the same as Kaplan–Markov but with
the expectation calculated assuming sampling without replacement [8]. This
gives the statistic, Sn =

∏n
i=1

[
(Xi + γ)

(
N−i+1
N

)]
/
[
t− 1

N Yi−1 + N−i+1
N γ

]
.17

4 Evaluating auditing methods

We evaluated the methods using simulations; see the first part of Table 1.
For each method, the termination threshold h was calibrated numerically to

yield maximum risk as close as possible to 5%. This makes comparisons among
the methods ‘fair’. We calibrated even the automatically risk-limiting methods,
resulting in a slight performance boost. We also ran some experiments without
calibration, to quantify this difference.

We use three quantities to measure performance: maximum risk and ‘power’,
defined in Section 2.3, and the mean sample size.

Choice of auditing methods. Most of the methods require choosing the form
of statistics, tuning parameters, or a prior. Except where stated, our benchmark-
ing experiments used sampling without replacement. Except where indicated,
we used the version of each statistic designed for the method of sampling used.
For example, we used a hypergeometric likelihood when sampling without re-
placement. For Bayesian audits we used a beta-binomial prior (conjugate to the
hypergeometric likelihood) with shape parameters a and b. For BRAVO, we tried
several values of p1.

16The mathematical details are shown in Section B.
17As for KMart, if Yn > Nt we ignore the statistic and terminate the audit.
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The tests labelled ‘BRAVO’ are tests of a method related to but not identical
to BRAVO, because there is no notion of a ‘reported’ vote share in our experi-
ments. Instead, we set p1 to several fixed values to explore how the underlying
test statistic (from the SPRT) performs in different scenarios.

For MaxBRAVO and Bayesian audits with risk-maximizing prior, due to time
constraints we only implemented statistics for the binomial likelihood (which
assumes sampling with replacement). While these are not exact for sampling
without replacement, we believe this choice has only a minor impact when m�
N (based on our results for the other methods when using different likelihoods).

For Bayesian audits with a risk-maximizing prior, we used a beta distribution
prior (conjugate to the binomial likelihood) with shape parameters a and b.

ClipAudit only has one version of its statistic. It is not optimized for sampling
without replacement (for example, if you sample all of the ballots, it will not
‘know’ this fact), but the stopping thresholds are calibrated for sampling without
replacement.

Election sizes and sampling designs. We explored combinations of elec-
tion sizes N ∈ {500, 1000, 5000, 10000, 20000, 30000} and maximum sample sizes
m ∈ {500, 1000, 2000, 3000}. Most of our experiments used a sampling incre-
ment of 1 (i.e. check the stopping rule after each ballot is drawn). We also varied
the sampling increment (values in {2, 5, 10, 20, 50, 100, 250, 500, 1000, 2000}) and
tried sampling with replacement.

Benchmarking via dynamic programming. We implemented an efficient
method for calculating the performance measures using dynamic programming.18

This exploits the Markovian nature of the sampling procedure and the low di-
mensionality of the (univariate) statistics. This approach allowed us to calculate—
for elections with up to tens of thousands of votes—exact values of each of the
performance measures, including the tail probabilities of the sampling distribu-
tions, which require large sample sizes to estimate accurately by Monte Carlo.
We expect that with some further optimisations our approach would be com-
putationally feasible for larger elections (up to 1 million votes). The complexity
largely depends on the maximum sample size, m. As long as this is moderate
(thousands) our approach is feasible. For more complex audits (beyond two-
candidate contests), a Monte Carlo approach is likely more practical.

5 Results

5.1 Benchmarking results

Sample size distributions. Different methods have different distributions of
sample sizes; Figure 1 shows these for a few methods when pT = 0.5. Some meth-
ods tend to stop early; others take many more samples. Requiring a minimum
sample size might improve performance of some of the methods; see Section 5.3.

18Our code is available at: https://github.com/Dovermore/AuditAnalysis

https://github.com/Dovermore/AuditAnalysis
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Fig. 1: Sample size distributions. Audits of elections withN = 20, 000 ballots,
maximum sample size m = 2, 000, and true vote share a tie (pT = 0.5). Each
method is calibrated to have maximum risk 5%. The depicted probabilities all
sum to 0.05; the remaining 0.95 probability in each case is on the event that
the audit reaches the full sample size (n = m) and progresses to a full manual
tabulation. ‘Bayesian (r.m.)’ refers to the Bayesian audit with a risk-maximizing
prior. The sawtooth pattern is due to the discreteness of the statistics.

Mean sample sizes. We focus on average sample sizes as a measure of audit
efficiency. Table 2 shows the results of experiments with N = 20, 000 and m =
2, 000. We discuss other experiments and performance measures below.

No method was uniformly best. Given the equivalence of BRAVO and Bayesian
audits, the comparisons amount to examining dependence on the prior.

In general, methods that place more weight on close elections, such as BRAVO
with p1 = 0.55 or a Bayesian audit with a moderately constrained prior (a =
b = 100) were optimal when pT was closer to 0.5. Methods with substantial prior
weight on wider margins, such as BRAVO with p1 = 0.7 and Bayesian audits
with the risk-maximizing prior, perform poorly for close elections.

Consistent with theory, BRAVO was optimal when the assumptions matched
the truth (p1 = pT ). However, our experiments violate the theoretical assump-
tions because we imposed a maximum sample size, m. (Indeed, when p1 = pT =
0.51, BRAVO is no longer optimal in our experiments.)
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Table 2: Results from benchmarking experiments. Audits of elections with
N = 20, 000 ballots and a maximum sample sizem = 2, 000. The numeric column
headings refer to the value of pT ; the corresponding margin of victory (mov) is
also reported. Each row refers to a specific auditing method. For calibrated
methods, we report the threshold obtained. For easier comparison, we present
these on the nominal risk scale for BRAVO, MaxBRAVO and ClipAudit (e.g.
α = 1/h for BRAVO), and on the upset probability scale for the Bayesian
methods (υ = 1/(h + 1)). For the experiments without calibration, we report
the maximum risk of each method when set to a ‘nominal’ risk limit of 5%. We
only report uncalibrated results for methods that are automatically risk-limiting,
as well as ClipAudit using its ‘best fit’ formula to set the threshold. ‘Bayesian
(r.m.)’ refers to the Bayesian audit with a risk-maximizing prior. The numbers
in bold are those that are (nearly) best for the given experiment and choice of
pT . The section labelled ‘n > 300’ refers to experiments that required the audit
to draw at least 300 ballots.

Power (%) Mean sample size

pT (%) → 52 55 60 52 55 60 64 70
Method mov (%) → 4 10 20 4 10 12 28 40

Calibrated α or υ (%)
Bayesian, a = b = 1 0.2 35 99 100 1623 637 172 90 46
Bayesian, a = b = 100 1.2 48 100 100 1551 616 232 150 97
Bayesian, a = b = 500 3.6 53 100 100 1582 709 318 219 149
Bayesian (r.m.), a = b = 1 6.1 19 94 100 1742 813 185 89 41
BRAVO, p1 = 0.7 5.8 9 21 84 1828 1592 530 95 37
BRAVO, p1 = 0.55 5.3 37 99 100 1549 562 196 129 85
BRAVO, p1 = 0.51 22.7 55 100 100 1617 791 384 272 190
MaxBRAVO 1.6 30 98 100 1660 680 177 91 45
ClipAudit 4.7 33 98 100 1630 639 169 89 45

Calibrated, n > 300 α or υ (%)
Bayesian, a = b = 1 0.6 45 99 100 1547 601 311 300 300
Bayesian (r.m.), a = b = 1 34.4 39 99 100 1554 587 307 300 300
BRAVO, p1 = 0.7 100.0 0 6 83 1994 1900 708 309 300
BRAVO, p1 = 0.55 6.0 38 99 100 1545 583 309 300 300
BRAVO, p1 = 0.51 22.7 55 100 100 1617 791 392 313 300
MaxBRAVO 5.0 44 99 100 1546 595 310 300 300
ClipAudit 11.4 44 99 100 1545 595 310 300 300

Uncalibrated Risk (%)
Bayesian (r.m.), a = b = 1 3.7 17 93 100 1785 864 198 95 44
BRAVO, p1 = 0.7 4.3 8 20 83 1846 1621 552 99 38
BRAVO, p1 = 0.55 4.7 37 98 100 1561 572 200 131 86
BRAVO, p1 = 0.51 0.029 6 89 100 1985 1505 760 542 377
ClipAudit 5.1 34 98 100 1618 628 167 88 45
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Two methods were consistently poor: BRAVO with p1 = 0.51 and a Bayesian
audit with a = b = 500. Both place substantial weight on a very close election.

MaxBRAVO and ClipAudit, the two methods without a direct match to
Bayesian audits, performed similarly to a Bayesian audit with a uniform prior
(a = b = 1). All three are ‘broadly’ tuned: they perform reasonably well in most
scenarios, even when they are not the best.

Effect of calibration on the uncalibrated methods. For most of the auto-
matically calibrated methods, calibration had only a small effect on performance.
BRAVO with p1 = 0.51 is an exception: it was very conservative because it nor-
mally requires more than m samples.

Other election sizes and performance measures. The broad conclusions
are the same for a range of values ofm andN , and when performance is measured
by quantiles of sample size or probability of stopping without a full hand count
rather than by average sample size.

Sampling with vs without replacement. There are two ways to change
our experiments to explore sampling with replacement: (i) construct versions of
the statistics specifically for sampling with replacement; (ii) leave the methods
alone but sample with replacement. We explored both options, separately and
combined; differences were minor when m� N .

5.2 Choosing between methods

Consider the following two methods, which were the most efficient for different
election margins: (i) BRAVO with p1 = 0.55; (ii) ClipAudit. For pT = 0.52, the
mean sample sizes are 1,549 vs 1,630 (BRAVO saved 81 draws on average). For
pT = 0.7, the equivalent numbers are 85 vs 45 (ClipAudit saved 40 draws on
average).

Picking a method requires trade-offs involving resources, workload predictabil-
ity, and jurisdictional idiosyncrasies in ballot handling and storage—as well as
the unknown true margin. Differences in expected sample size across ballot-
polling methods might be immaterial in practice compared to other desiderata.

5.3 Exploring changes to the methods

Increasing the sampling increment (‘round size’). Increasing the number
of ballots sampled in each ‘round’ increases the chance that the audit will stop
without a full hand count but increases mean sample size. This is as expected;
the limiting version is a single fixed sample of size n = m, which has the highest
power but loses the efficiency that early stopping can provide.

Increasing the sampling increment had the most impact on methods that
tend to stop early, such as Bayesian audits with a = b = 1, and less on methods
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that do not, such as BRAVO with p1 = 0.51. Increasing the increment also
decreases the differences among the methods. This makes sense because when
the sample size is m, the methods are identical (since all are calibrated to attain
the risk limit).

Considering the trade-off discussed in the previous section, since increasing
the sampling increment improves power but increases mean sample size, it re-
duces effort when the election is close, but increases it when the margin is wide.

Increasing the maximum sample size (m). Increasing m has the same
effect as increasing the sampling increment: higher power at the expense of more
work on average. This effect is stronger for closer elections, since sampling will
likely stop earlier when the margin is wide.

Requiring/encouraging more samples. The Bayesian audit with a = b = 1
tends to stop too early, so we tried two potential improvements, shown in Table 2.

The first was to impose a minimum sample size, in this case n > 300. This is
very costly if the margin is wide, since we would not normally require this many
samples. However, it boosts the power of this method and reduces its expected
sample size for close contests.

A gentler way to achieve the same aim is to make the prior more informative,
by increasing a and b. When a = b = 100, we obtain largely the same benefit for
close elections with a much milder penalty when the margin is wide. The overall
performance profile becomes closer to BRAVO with p1 = 0.55.

6 Discussion

We compared several ballot-polling methods both analytically and numerically,
to elucidate the relationships among the methods. We focused on two-candidate
contests, which are building blocks for auditing more complex elections. We
explored modifications and extensions to existing procedures. Our benchmarking
experiments calibrated the methods to attain the same maximum risk.

Many ‘non-Bayesian’ auditing methods are special cases of a Bayesian pro-
cedure for a suitable prior, and Bayesian methods can be calibrated to be risk-
limiting (at least, in the two-candidate, all-valid-vote context investigated here).
Differences among such methods amount to technical details, such as choices of
tuning parameters, rather than something more fundamental. Of course, upset
probability is fundamentally different from risk.

No method is uniformly best, and most can be ‘tuned’ to improve perfor-
mance for elections with either closer or wider margins—but not both simulta-
neously. If the tuning is not extreme, performance will be reasonably good for a
wide range of true margins. In summary:

1. If the true margin is known approximately, BRAVO is best.
2. Absent reliable information on the margin, ClipAudit and Bayesian audits

with a uniform prior (calibrated to attain the risk limit) are efficient.
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3. Extreme settings, such as p1 ≈ 0.5 or an overly informative prior may result
in poor performance even when the margin is small. More moderate settings
give reasonable or superior performance if the maximum sample size is small
compared to the number of ballots cast.

Choosing a method often involves a trade-off in performance between narrow
and wide margins.

There is more to auditing than the choice of statistical inference method.
Differences in performance across many ‘reasonable’ methods are small compared
to other factors, such as how ballots are organized and stored.

Future work: While we tried to be comprehensive in examining ballot-
polling methods for two-candidate contests with no invalid votes, there are many
ways to extend the analysis to cover more realistic scenarios. Some ideas include:
(i) more than two candidates and non-plurality social choice functions; (ii) in-
valid votes; (iii) larger elections; (iv) stratified samples; (v) batch-level audits;
(vi) multi-page ballots.

References

1. Blom, M., Stuckey, P.J., Teague, V.J.: Ballot-polling risk limiting audits for IRV
elections. In: Electronic Voting. pp. 17–34. Springer, Cham (2018)

2. Kulldorff, M., Davis, R.L., Kolczak, M., Lewis, E., Lieu, T., Platt, R.: A maximized
sequential probability ratio test for drug and vaccine safety surveillance. Sequential
Analysis 30(1), 58–78 (2011). https://doi.org/10.1080/07474946.2011.539924

3. Lindeman, M., Stark, P.B., Yates, V.S.: BRAVO: Ballot-polling risk-limiting audits
to verify outcomes. In: 2012 Electronic Voting Technology Workshop/Workshop on
Trustworthy Elections (EVT/WOTE ’12) (2012)

4. National Academies of Sciences, Engineering, and Medicine: Securing the Vote:
Protecting American Democracy. The National Academies Press, Washington, DC
(Sep 2018). https://doi.org/10.17226/25120

5. Rivest, R.L.: ClipAudit: A simple risk-limiting post-election audit. arXiv e-prints
arXiv:1701.08312 (Jan 2017)

6. Rivest, R.L., Shen, E.: A Bayesian method for auditing elections. In: 2012 Elec-
tronic Voting Technology/Workshop on Trustworthy Elections (EVT/WOTE ’12)
(2012)

7. Stark, P.: Conservative statistical post-election audits. Ann. Appl. Stat. 2, 550–581
(2008), http://arxiv.org/abs/0807.4005

8. Stark, P.: Sets of half-average nulls generate risk-limiting audits: SHANGRLA.
Voting ’20 in press (2020), preprint: http://arxiv.org/abs/1911.10035

9. Stark, P.B.: Risk-limiting postelection audits: Conservative P -values from common
probability inequalities. IEEE Transactions on Information Forensics and Security
4(4), 1005–1014 (Dec 2009). https://doi.org/10.1109/TIFS.2009.2034190

10. Stark, P.B., Teague, V.: Verifiable European elections: Risk-limiting audits for
D’Hondt and its relatives. USENIX Journal of Election Technology and Systems
(JETS) 1(3), 18–39 (Dec 2014), https://www.usenix.org/jets/issues/0301/stark

11. Vora, P.L.: Risk-Limiting Bayesian Polling Audits for Two Candidate Elections.
arXiv e-prints arXiv:1902.00999 (Feb 2019)

12. Wald, A.: Sequential tests of statistical hypotheses. Ann. Math. Statist. 16(2),
117–186 (June 1945). https://doi.org/10.1214/aoms/1177731118

https://doi.org/10.1080/07474946.2011.539924
https://doi.org/10.17226/25120
http://arxiv.org/abs/0807.4005
http://arxiv.org/abs/1911.10035
https://doi.org/10.1109/TIFS.2009.2034190
https://www.usenix.org/jets/issues/0301/stark
https://doi.org/10.1214/aoms/1177731118


Evaluation of Two-Candidate Ballot-Polling Election Auditing Methods 17

A Risk-limiting Bayesian audits with arbitrary priors

Vora [11] provides a construction of a risk-limiting Bayesian audit, by taking a
Bayesian audit with an arbitrary prior (fX) and constructing a new prior based
on it (f∗X) that has the property that a threshold on the upset probability is also
a risk limit.

The argument can be extended to show that any prior has a bounded risk
limit and can therefore be used to conduct a risk-limiting audit. Such a usage
would involve calculating an appropriate threshold on the upset probability that
results in a particular specified bound on the risk limit.

A.1 Lemma

In a two-candidate election, the risk of an audit is given by the (mis)certification
probability when the true tally is equal votes for each candidate, or the closest
possible such non-winning tally (notionally p = 0.5; in the notation of Vora [11]
this would be the case of x = N−1

2 for odd N , and x = N
2 for even N).

Proof:

This assertion can be proved by the same monotonicity argument used in the
proof of Theorem 2 of Vora [11]: hg(k, n, x,N) is a monotone increasing function
of x for x ∈ [0, N−12 ], and applying this termwise to the formula for the risk at
x, PT (Λ, x) leads to the conclusion.

A.2 Corollary

For any prior, the risk of the Bayesian audit with this prior is given by PT (Λ, N−12 ).

A.3 Lemma

The risk of a Bayesian audit is a monotone increasing function of γ, the threshold
on the upset probability. (In other words, relaxing the threshold leads to higher
risk.)

Proof:

If γ is increased, then:

– Any sequence in Λ remains in Λ, with the sample size at which the audit
stops possibly reducing (i.e. the audit terminates earlier).

– Some sequences in Λ̄ move to Λ, due to the relaxed threshold.

Therefore, overall there will be a shift of probability from Λ̄ to Λ. This is true
for any given true x, and in particular for the value which gives the largest
miscertification probability (x = N−1

2 ). Therefore, the risk has increased.
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A.4 Corollary

The monotonic relationship implies that we can reduce the risk by imposing a
stricter threshold on the upset probability. In particular, we can reduce it until
is less than any pre-specified limit. Thus, we can use any Bayesian audit in a
risk-limiting fashion.

Note that to implement this in practice we need to be able calculate the
risk for any given threshold and optimise the threshold value to reduce the risk
under the specified limit. This should be straightforward enough for the two-
candidate case via either simulation or exact calculation, since we know which
value of x gives rise to the maximum miscertification probability. Note that such
a calculation would need to be done separately for any given choice of sampling
scheme and prior.

B KMart as a Bayesian audit

This appendix shows a proof that KMart, assuming sampling with replacement,
is equivalent to a Bayesian audit with a risk-maximising uniform prior for the
reported winner’s true vote tally. It also introduces a more general version of
the test statistic that corresponds to an arbitrary risk-maximising prior. Both
results are shown for a simple two-candidate contest.

B.1 KMart is equivalent to a Bayesian audit

Suppose we are auditing a simple two-candidate election, using sampling with
replacement. We observe iid X1, X2, · · · ∈ {0, 1}, where Xj = 1 is a vote for
the reported winner and Xj = 0 is a vote for the reported loser. Let EXj = t,
the true tally of the reported winner. In other words, the Xj are a sequence of
Bernoulli trials with success probability t.

The null hypothesis for the audit is that the reported winner actually lost, i.e.
that t 6 1

2 . To carry out a test, we usually set this to the ‘hardest’ case19, which
is H0 : t = t0 = 1

2 . The alternative hypothesis is that the winning candidate was
reported correctly, i.e. H1 : t > 1

2 .
In practice we will always have a finite number of total votes, and thus a

realistic model would have the support of t be a discrete set (i.e. values of the
form k/N where N is the total number of votes). However, for mathematical
convenience here we will allow the support of t to be the unit interval, which is
continuous.

KMart audits. KMart is a risk-limiting election auditing method based on
martingale theory. For the context described above, it uses the following test

19‘Hardest’ means that it is the case that leads to the largest false positive rate
(miscertification probability), i.e. the risk.
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statistic:

An =

∫ 1

0

n∏
j=1

(
γ

[
Xj

t0
− 1

]
+ 1

)
dγ.

Since we are working with t0 = 1
2 , we can rewrite this expression,

An = 2n
∫ 1

0

n∏
j=1

(
γ

[
Xj −

1

2

]
+

1

2

)
dγ.

For a specified risk limit, α, the audit proceeds until An > 1/α, at which point
the election is certified (H0 is rejected), or is otherwise terminated in favour of
doing a full recount.

Bayesian audits. A Bayesian audit is based on standard Bayesian inference.
The verdict of the audit is based on the posterior probability that the reported
winner actually won (or lost, in which case this is called the upset probability).
Typically, a threshold will be placed on this probability for deciding whether to
certify the election or carry on sampling.

Bayesian audits can be represented in terms of the posterior odds, which
gives a similar formulation to other risk-limiting audits [11]. For the context
described above, they would use the following test statistic:

Bn =
Pr(H1 | X1, . . . , Xn)

Pr(H0 | X1, . . . , Xn)
=

Pr(X1, . . . , Xn | H1)

Pr(X1, . . . , Xn | H0)
× Pr(H1)

Pr(H0)
.

We will limit our discussion to risk-maximising prior distributions.20

These place a probability mass of 1
2 on the value of t = 1

2 , and the remaining
probability is over the set t ∈ ( 1

2 , 1]. That means that Pr(H1) = Pr(H0) = 1
2 ,

meaning that the prior odds drop out of the above equation. The remaining term
is the Bayes factor (BF). Let’s write this out more explicitly.

Let Yn =
∑n
j=1Xn. The denominator of the BF is simple: the likelihood of

the sample at the (point) null value,

Pr(X1, . . . , Xn | H0) = Pr

(
X1, . . . , Xn | t =

1

2

)
=

(
1

2

)Yn
(

1

2

)n−Yn

=
1

2n
.

The numerator requires integrating over the prior under H1. Letting this be f(t),
where t ∈ ( 1

2 , 1], allows us to write the numerator as,

Pr(X1, . . . , Xn | H1) =

∫ 1

1
2

tYn (1− t)n−Yn f(t) dt.

Putting these together gives,

Bn = 2n
∫ 1

1
2

tYn (1− t)n−Yn f(t) dt.

Similar to KMart, a Bayesian audit proceeds until Bn < 1/α.

20See Vora [11] for an example with a discrete support.
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Equivalence. Both An and Bn are expressed as integrals but with the Xj in
different ‘places’ in the integrand. The key to showing they are equivalent is to
notice that the Xj are binary variables, which allows us to set up an identity that
relates the two ways of writing the integral. Specifically, we have the following
identity,

γ

(
Xj −

1

2

)
+

1

2
=

(
1 + γ

2

)Xj
(

1− γ
2

)1−Xj

.

This allows us to rewrite An,

An = 2n
∫ 1

0

(
1 + γ

2

)Yn
(

1− γ
2

)n−Yn

dγ =

∫ 1

0

(1 + γ)
Yn (1− γ)

n−Yn dγ.

Next, let γ = 2t− 1 and change the variable of integration,

An =

∫ 1

1
2

(2t)Yn(2− 2t)n−Yn2 dt = 2n
∫ 1

1
2

tYn (1− t)n−Yn 2 dt.

Finally, note that this is identical to Bn if we set the prior to be uniform over
H1, i.e. f(t) = 2.

In other words, a KMart audit is equivalent to a Bayesian audit that uses a
risk-maximising uniform prior.

B.2 Extending KMart to arbitrary priors

From the above result, we can see that γ plays a similar role to t. The somewhat
arbitrary integral over γ used to define An can be generalised by specifying a
weighting function g(γ),

An =

∫ 1

0

n∏
j=1

(
γ

[
Xj

t0
− 1

]
+ 1

)
g(γ) dγ.

Applying the same transformations as above gives,

An = 2n
∫ 1

1
2

tYn (1− t)n−Yn 2× g(2t− 1) dt.

In other words, this generalised version of KMart is equivalent to a Bayesian
audit with the following risk-maximising prior:

f(t) = 2× g(2t− 1).

The original KMart is the special case where g(·) = 1.

B.3 Efficient computation by exploiting the equivalence

We can use the above equivalence to develop fast ways to compute the KMart
statistic, by relating it to standard Bayesian calculations using conjugate priors.

First, we show that if we take a conjugate prior distribution, truncate it, and
add some point masses, the resulting distribution is still conjugate. Then we use
this result to write a formula for the posterior distribution for the same case as
above (simple two-candidate election, sampling with replacement).



Evaluation of Two-Candidate Ballot-Polling Election Auditing Methods 21

Truncation and point masses preserve conjugacy. (The proofs shown here
are not too hard to derive and may well be described elsewhere.)

Suppose we have a single parameter, θ, some data, D, a likelihood function,
L(θ | D), and a conjugate prior distribution, f(θ). That means we have,

f(θ | D) ∝ L(θ | D)f(θ).

Let the normalising constant be,

k =

∫
L(θ | D)f(θ)dθ.

This allows us to express the posterior as,

f(θ | D) =
1

k
L(θ | D)f(θ),

The sections that follow each start with these definitions and transform the prior
in various ways.

Truncation. Truncate the prior to a subset S (i.e. we only allow θ ∈ S). Write
this truncated prior as,

f∗(θ) = f(θ)
IS(θ)

zS
,

where IS(θ) is the indicator function that takes value 1 when θ ∈ S, and zS =∫
f(θ)IS(θ)dθ =

∫
S
f(θ)dθ is the normalising constant due to truncation.

If we use this prior, what posterior do we get? It will be,

f∗(θ | D) =
1

k∗
L(θ | D)f∗(θ),

where,

k∗ =

∫
L(θ | D)f∗(θ)dθ.

Expanding this out gives,

f∗(θ | D) =
1

k∗zS
L(θ | D)f(θ)IS(θ) =

k

k∗zS
f(θ | D)IS(θ).

This is the original posterior truncated to S. Thus, the truncation results in
staying within the same family of (truncated) probability distributions, which
means this family is conjugate.

Adding a point mass. Define a ‘spiked’ prior where we add a point mass at θ0,

f∗(θ) = a δθ0(θ) + bf(θ),

where a+ b = 1. In other words, a mixture distribution with mixture weights a
and b. The normalising constant is,

k∗ =

∫
L(θ | D)f∗(θ)dθ = aL(θ0 | D) + bk.
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We can write the posterior as,

f∗(θ | D) =
1

k∗
L(θ | D)f∗(θ) =

aL(θ0 | D)

k∗
δθ0(θ) +

bk

k∗
f(θ | D).

This is a ‘spiked’ version of the original posterior. You can see this more clearly
by defining,

a∗ =
aL(θ0 | D)

k∗
, b∗ =

bk

k∗
,

where a∗ + b∗ = 1. Thus, ‘spiking’ a distribution results in a conjugate family.
Note that the mixture weights get updated as we go from the prior to the
posterior.

Truncating and adding point masses. We can combine both of the previous
operations and we will still retain conjugacy. In fact, due to the generality of the
proof, we can apply each one an arbitrary number of times, e.g. to add many
point masses.

Application to KMart. When sampling with replacement, the conjugate prior
for t (the true tally of the reported winner) is a beta distribution.

We showed earlier that KMart was equivalent to using a risk-maximising
prior. Starting with any beta distribution, we can form the corresponding risk-
maximising prior by truncating to t ∈ ( 1

2 , 1] and adding a probability mass of
1
2 at t = 1

2 . Based on the argument presented above, this prior is conjugate.
Moreover, we can express the posterior in closed form.

Let the original prior be t ∼ Beta(α, β). Note that this α is just a hyper-
parameter and not a specified risk limit. The risk-maximising prior retains the
functional form of this prior for t > 1

2 and also has a mass of 1
2 at t = 1

2 .
After we observe a sample of size n from the audit, we have a posterior with

an updated probability mass at t = 1
2 . This mass will be the upset probability.

We can derive an expression for it using equations similar to above (it will
correspond to a∗ using the notation from above).

Let f(t) be the pdf of the original beta prior, F (t) be its cdf, S = ( 1
2 , 1] the

truncation region, F ′(t) the cdf of the beta-distributed portion of the posterior
(i.e. the posterior distribution if we use the original beta prior), and B(·, ·) be
the beta function. We have,

k∗ =
1

2

(
1

2

)n
+

1

2

k′

zS
,

where

zS =

∫ 1

1
2

f(t)dt = 1− F
(

1

2

)
and

k′ =

∫ 1

1
2

L(t | D)f(t)dt =
B(Yn + α, n− Yn + β)

B(α, β)

(
1− F ′

(
1

2

))
.
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Putting these together gives,

k∗ =
1

2n+1
+

1

2
× B(Yn + α, n− Yn + β)

B(α, β)
×

1− F ′
(
1
2

)
1− F

(
1
2

) .
The upset probability is,

a∗ =
1

2n+1

k∗
.

These quantities will be straightforward to calculate as long we have efficient
ways to calculate:

1. The beta function
2. The cdf of a beta distribution

Both have fast implementations in R.21

21https://www.r-project.org/

https://www.r-project.org/
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