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Abstract

We introduce a new way to conduct post-election audits us-
ing untrusted scanners. Audits perform statistical hypothesis
testing to confirm election outcomes. However, existing ap-
proaches are costly and laborious for close elections—often
the most important cases to audit—requiring extensive hand
inspection of ballots. We instead employ automated consis-
tency checks, augmented by manual checks of only a small
number of ballots. Our protocols scan each ballot twice, shuf-
fling the ballots between the scans. This gives strong statistical
guarantees even for close elections, as long as (1) the permu-
tation accomplished by the shuffle is unknown to the scanners
and (2) the scanners cannot reliably identify a particular ballot
among others cast for the same candidate. In practice, ballots
often have distinguishing features, of course; but we argue
that reasonable measures can limit their detection by scanners
under controlled conditions. Our techniques drastically reduce
the time, expense, and labor of auditing close elections, which
we hope will facilitate wider deployment.

We present three rescan audit protocols and analyze their
statistical guarantees. We first present a simple scheme illus-
trating our basic idea in a simplified two-candidate setting.
We then extend this scheme to allow (1) more than two candi-
dates; (2) processing of ballots in batches; and (3) tolerating
imperfect scanners, as long as scanning errors are too infre-
quent to affect the election outcome. Finally, we propose and
discuss an alternate scheme that reduces the trust assumptions
placed on the shuffling mechanism at the expense of adding
an additional scan. Our proposals require manual handling or
inspection of 10–100 ballots per batch in a variety of settings,
in contrast to existing techniques that require hand inspecting
many more ballots in close elections. Unlike prior techniques
that depend on the relative margin of victory, our protocols
are to our knowledge the first to depend on the absolute mar-
gin, and give meaningful guarantees even for extremely close
elections: e.g., absolute margins of tens or hundreds of votes.

Keywords: elections, auditing, post-election audits, risk-
limiting audit, rescan audits.

1 Introduction and motivation

Election outcomes are determined by tabulating the votes
cast in the election and identifying the winner: for plurality
elections, the winner is the candidate who received the most
votes. In the United States, the electorate is relatively large and
ballots are often complex, and (unusually) ballot processing
and tabulation are typically performed by machine [28].

Machines provide efficiency, but do not guarantee accu-
racy. Individuals, corporations, and nation-state actors all have
strong incentives to influence the results of political elections.
Even absent deliberate tampering, election machinery—for
scanning, tabulation, or otherwise—may have software bugs
or be misconfigured for a particular election. Such factors can
cause incorrect election outcomes that may be hard to detect.

Post-election audits [6, 25] provide safeguards to assure
election officials and the public that the ballots cast were
tabulated and reported accurately—or alert them if not. The
standard way to conduct a post-election audit is to (1) inspect
a random sample of ballots by hand, and (2) assess the likeli-
hood of such a sample supposing the reported outcome was
incorrect. This can give a rigorous statistical guarantee about
the election outcome’s likely correctness based on the sample,
without the need to hand-count every ballot. But such statisti-
cal guarantees come at a cost that can be significant to often
underresourced local election officials [28]. In close elections,
statistical audits require laborious manual inspection of many
ballots, and in very close elections a full hand recount may be
needed to get a meaningful statistical guarantee (such as in
Georgia’s 2020 election in the U.S. [18]).

Recognizing the importance of verifying election results
and detecting errors, some states now require post-election
audits by law for at least some contests, and all states allow
recounts for close elections [28, 38]. Recent U.S. elections
and political discourse (e.g., [24, 29, 41]) further underscore
the need for transparency and public confidence in electoral
systems. Such confidence is as much a sociopolitical as a
technical phenomenon: as such, technical transparency and
verifiability are needed, but not sufficient.
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In this paper, we ask: can partial automation improve post-
election audit efficiency for close elections, by reducing the
costly manual labor required? In answer, we propose a new
kind of post-election audit, called a rescan audit, with the
potential to reduce labor in close elections to handling just
tens of ballots for a range of realistic parameters—at the cost of
2–3 times overhead in mechanical ballot processing, and two
assumptions on communication and ballots (Section 3.1). The
overhead and assumptions are more appropriate and plausible
in certain election contexts than others, and the assumptions
are not plausible for all election contexts, as we detail later.

Our rescan audits compare the ballot-by-ballot results from
two separate scans of all ballots. The second scan provides
consistency checks that can be used to obtain statistical guar-
antees for the correctness of the election outcome reported by
the first scan, without trusting either scanner to behave cor-
rectly. In practice, an additional scan of the ballots is already
sometimes performed, for auditing or other purposes [7,8,19].

However, a second scan alone is insufficient to guarantee
election integrity in the presence of colluding adversarial scan-
ners. For example, the scanners may agree in advance on a
set of positions and misreport the votes on ballots in those
positions. If both scanners operate on the same sequence of
ballots, their outputs would appear consistent. Similarly, if the
scanners are misconfigured the same way—e.g., if they ignore
the first batch of ballots, or are preloaded with the results of a
prior election—they will produce consistent incorrect outputs.

Thus, an additional scan only offers a useful guarantee if
the scanners cannot coordinate their misreporting. To pre-
vent coordination, we shuffle the ballots between scans so the
scanners do not observe the ballots in the same order. Thus,
adversarial scanners will be unable to consistently misreport
the same set of ballots—unless they misreport all ballots cast
for some candidate. We can detect such extreme misbehavior
by manually inspecting just a few ballots. Our audits are built
from this basic sequence: scan, shuffle, rescan, supplemented
with manual handling or inspection of only a few ballots.

Figure 1 gives an overview of our rescan audit workflow.
The set of ballots x is scanned on scanner S1, to give a sequence
of cast-vote records (CVRs) y indicating how the scanner in-
terpreted each ballot. A labeler L then applies random-looking
unique identifiers (labels) to the ballots, after which the bal-
lots are permuted by shuffler Π. The ballots are then scanned
on a second scanner S2 (possibly the same as S1), yielding a
second list z of CVRs. Because each scan processed the same
ballots, every CVR in y should also appear in z, but the two
scanners see the ballots in seemingly unrelated orders (so the
order of CVRs in y differs from that in z). Hence, erroneous
or adversarial scanners would have an extremely low chance
of misreporting exactly the same ballots in y and z.

The comparison logic does ballot-level comparison, finding
corresponding CVRs in y and z. To do this, it must know how
the collection of ballots was permuted. This is achieved using

S1 L Π S2

y z

π

y≈ π(z)

Full recount
Correct reported outcome
with probability > 1−α

Scanner 2Ballots (x) Scanner 1 Labeler Shuffler Scanner 2

no yesComparison logic

Figure 1: Flow diagram of an election with a rescan audit.
Pink (hatched) components are untrusted (i.e., may have been
corrupted by an adversary); yellow (solid) components are
trusted, and unable to examine the votes on the ballots. See
Section 3.1 for more detail on the threat model.

the labels applied before the shuffle, which can be read by S2
and included in the CVRs in z. The labels can be generated
using a secret key shared by the labeler and the comparison
logic, but unknown to S2. This allows the comparison logic to
reconstruct the order of ballots seen by S1, while ensuring that
S2 cannot do so.1

In addition to comparing the CVRs in y and z, our protocols
require manual inspection of a small number of ballots. For
single-batch two-candidate elections, a hand inspection of a
few ballots sampled at random is sufficient. In more general
settings, we introduce test ballots for each candidate that are
distinguishable from real ballots by humans but not by the
scanners (e.g. by edge markings). Test ballots allow us to
ensure that all candidates, including those who received only
a few votes, were correctly allocated their votes in each batch.

Labeling of ballots is not new. It is well established practice
in ballot-comparison audits to add labels to voted ballots so
that the electronic records scanned from those ballots can be
matched to the original paper ballots [27].

Evaluation We conduct an evaluation based on timing and
cost data from the Rhode Island pilot study of risk-limiting au-
dits [19]: while audit costs are likely to vary significantly, the
RI report provides the best documentation currently publicly
available on the costs and timings of risk-limiting audits under
realistic conditions. Our analysis shows that for elections with
margins under roughly 1%, rescan audits are competitive with
or better than the best known statistical risk-limiting audits.
The metrics we use for evaluation are: (1) number of ballots
that must be handled manually, based on our security proofs;
(2) estimated timings, based on the timings of key audit op-
erations as documented in the Rhode Island pilot study and
subsequent research; and (3) labor costs (excluding training
and equipment), again based on Rhode Island data.

1Alternatively, in place of the labeler, one could use a keyed shuffle to
reorder the ballots in a way known to the comparison logic but unknown to
S2. Keyed shuffles pose more practical difficulty than unkeyed shuffles, as
further discussed in Section 7.
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Risk-limiting auditing systems [25] typically require hand
inspection of a number of ballots dependent on the propor-
tional margin. To our knowledge, our protocols are the first
where the efficiency of the manual audit depends instead on
the absolute (reported) margin. We achieve this due to the
fact that our rescan procedure already induces consistency
checks on all ballots without any manual examination whatso-
ever, whereas the size of the sample of ballots inspected by a
traditional hand audit must depend on the relative margin.

Since manual labor in rescan audits depends only weakly on
the margin, the workload is identical for a wide range of mar-
gins.2 This means rescan audit workload is highly predictable
in advance. In contrast, traditional risk-limiting audit work-
load varies much more, depending on the initial sample of
ballots: particularly for close elections, unlucky samples may
lead to workload escalation even to a full recount. The greater
predictability of rescan audits is desirable for real-world audits
subject to budgetary constraints and statutory deadlines.

Conventional risk-limiting audits can be more efficient for
elections with wide margins, so in practice, a rescan audit
could be invoked only when an election is close. Alternatively,
rescan audits may be a desirable alternative when a conven-
tional risk-limiting audit requires a full hand recount.

Summary of contributions We present three rescan audit pro-
tocols, as summarized in Table 1. We provide security proofs
and an evaluation for two protocols, and give a preliminary
analysis and security conjecture for the third.

• We introduce a new paradigm, rescan audits, which uti-
lizes additional ballot scans to substantially reduce manual
labor in statistical post-election audits, subject to clearly
specified assumptions.

• BASICAUDIT (§4) is the simplest and most stylized proto-
col, adequate for a single two-candidate contest where all
ballots are perfectly readable by the scanners and have no
distinguishing features (beyond the vote itself).

• 2SCANAUDIT (§5) accounts for multiple-candidate con-
tests, where auditing may be done in batches (e.g., by
precinct), and supports imperfect scanners that may make
errors. 2SCANAUDIT, unlike BASICAUDIT, involves min-
gling clearly marked test ballots with the voted ballots.

• 3SCANAUDIT (§6) explores an approach to reducing the
trust assumptions of the first two protocols, at the ex-
pense of a third scan. While the other protocols require
trust in both the programmable labeler and the shuffler,
3SCANAUDIT relies only on a purely mechanical shuffler.
Unlike the other protocols, 3SCANAUDIT lacks a formal
security proof: as such, it is a more exploratory direction.

• Our rigorous security proofs for BASICAUDIT and
2SCANAUDIT (§§B–C) allow precise specification of pa-
rameter tradeoffs for different risk limits.

• Our evaluation (§8) indicates that for close elections, res-
can audits are competitive with or better than the best

2E.g., for absolute margins of at least 100 votes, with risk limit α = 0.05.

BASIC 2SCAN 3SCAN

# candidates 2 ✓ ✓ ✓
> 2 ✓ ✓

Batch audits ✓ ✓
Robust to scanner errors ✓ ✓
No trusted shuffle ✓
Provable security ✓ ✓ ?

Table 1: Summary of rescan audit protocols

known statistical risk-limiting audits, in terms of number
of ballots handled manually, timing, and labor cost.

Prior work Introductions to post-election audits can be found
in Stark [32] (which introduces the notion of risk-limiting
tabulation audits), Stark and Wagner [31], Lindeman and
Stark [25], Bretschneider et al. [6], and Verified Voting [39].

Calandrino et al. suggested using scanners to assist in ballot-
level audits, in 2007 [8]. They used an auditing tabulator that
labels ballots with identifying numbers so that high assurance
could be achieved by hand checking the scans of a few ran-
domly selected ballots. We improve on this with a second scan
of all ballots instead of manual checking of a few. Rescanning
itself is not new: e.g., “transitive audits” [25] use a rescan to
process ballot labels. Rescanning was pioneered in Humbolt
County, California [15], and the Clear Ballot Group’s Clear-
Audit was certified in Florida in 2014 [17]. These audits rely
on independently developed scanners and tabulation software
to impede collusion between the scans. Our proposal is the
first to suggest rescanning for comparison between scanned
ballot values.

The developers of the Rijnland Internet Election System
found that mingling test ballots with real ballots provides a
useful test of voting system integrity [23]. Our use of test
ballots is different, but we also mix them with real ballots.

Finally, our ideas are inspired by multi-prover proofs in cryp-
tography [3], but our techniques differ because of the concrete
statistical guarantees we seek and the practical constraints of
physical ballot processing. Moreover, two-prover proofs re-
quire that the provers be unable to communicate, while our
non-communication assumption is weaker, allowing the two
scanners to communicate.

2 Background and terminology

An election has one or many contests. A general election may
have many contests, each between a number of candidates.
We focus initially on auditing a single two-candidate contest.
We assume that all contests are plurality contests.

A voter submits (casts) a paper ballot that indicates the
voter’s selections (or votes) for each contest. We assume that
each ballot is a single piece of paper, ignoring elections with
multi-page ballots. A paper ballot is voter-verifiable: a voter
can confirm before casting that it correctly records his/her

3



votes. A human examining the voter’s cast paper ballot will
see the voter’s correct or true selection for each contest.

Ballots may be scanned individually when cast, or may be
collected into batches for later scanning—say, one per precinct.
Ballots may be labeled with a unique ballot label by a labeler.3

The ballot label, if visible at the time of scanning, is included
in the CVR for the ballot.

Test ballots are ballots that the humans, but not scanners,
can distinguish from cast ballots, those from real voters. Test
ballots are mingled with the cast ballots before the first scan
to create a stream of test-or-cast ballots. They remain mixed
with the ballots until the end, when they can be separated by
hand from the cast ballots. Because the votes on the test ballots
are known in advance, the votes can be subtracted from the
totals regardless of the disposition of the test ballots.4

The reported contest tally says how many votes are re-
ported for each candidate in the contest. The reported contest
outcome or reported winner is the candidate with the most
reported votes. The true winner is defined similarly, based on
the true votes cast in that contest. The reported margin of vic-
tory is the difference between the numbers of votes reported
for the reported winner and the reported runner-up.

2.1 Scanners

An optical scanner (or scanner for short) reads a sequence of
cast paper ballots to produce a cast vote record (or CVR) for
each ballot scanned. The CVR is an electronic record giving
the scanner’s interpretation of the voter’s selection for each
contest, known as the reported selection. If a ballot has been
labeled, we ask the scanner to include the ballot label in the
CVR. Scanners may also provide digital images of each ballot
scanned. We allow scanners to examine all ballots in a batch
before producing the file of CVRs for those ballots.

Scanners are much faster than hand counting. While
precinct-count scanners are relatively slow, central-count scan-
ners able to scan 800 to 1000 ballots per minute have been
made [35] and speeds of 300 ballots per minute are now com-
mon [2, 30]. Many high-speed scanners can be programmed
to deliver ballots into 2 or 3 output hoppers to help separate
ballots requiring human interpretation from others (required
by the 1990 FEC Voting System Standards [13, §3.2.5.1.1]).

For a perfect scanner, reported votes equal true votes except
when it deliberately cheats. Real scanners are not perfect;
errors may occur for many reasons. The Help America Vote

3We assume throughout that ballot labels are unique. This is without loss
of generality: while an adversarial labeler could print non-unique labels, this
would cause a detectable discrepancy and so would only harm the adversary.

4As a further fail-safe mode — in case of extensive controversy over an
election such that such subtraction is insufficient to restore public confidence
— removing all the test ballots can be achieved with comparable work to a full
recount. The human-visible distinguishability of test ballots means that public
observation of the recount-and-remove-test-ballots process would provide
credible public assurance of the test ballots’ removal.

Act [20, §301(a)(5)] refers to the FEC 2002 Voting System
Standards to require that voting systems have an error rate
of “no more than one in 10,000,000 ballot positions;” this
excludes human factor issues such as how voters respond to
voting instructions [14, §3.2.1]. A re-scan audit of 60,000
voting target images from a 2008 California primary showed
that 0.25% were marginal [15]. In the 2008 Minnesota Senate
recount, 0.01% of the ballots were marked in a way that even
humans could not interpret, and 0.09% of the ballots were
classified differently by people than by machine [1].

The ability to sort out ballots requiring interpretation was
introduced for handling overvotes and write-in votes. Early
scanners had one threshold, so marks in each voting position
were classified as either present or absent. A marginal mark
(one near the scanner threshold) might be classified as a vote
on one scanning pass and not as a vote on another pass. More
recently, EAC Voluntary Voting System Guidelines required
two thresholds, where marks between them are classified as
marginal and flagged for human attention [12, §1.1.6]. Some
scanners do this by diverting such ballots into a separate output
stack [30] while others use online adjudication, displaying
the problematic mark to human adjudicators and recording
their decision in the CVR [22].

The ES&S patent for the DS850 scanner discusses the pos-
sible uses of a printer on the scanner’s paper path (referred to
as an ink cartridge) [2, 30]. One of the authors has observed
the use of this scanner to label ballots in a risk-limiting audit.

2.2 Audits

A manual post-election audit may be used to assure that re-
ported contest outcomes are correct when imperfect scanners
are used. In these, cast ballots are selected for hand examina-
tion. A manual recount examines and tallies all cast ballots
by hand, while a statistical audit examines only a random
sample. When ballots are tabulated in batches, a batch-level
audit may be used, recounting randomly selected batches to
check batch tallies. All manual audits require auditors able to
hand-interpret ballots.

Statistical audits are very efficient when the fractional mar-
gin in an election is large. These come in two main types:
In ballot-comparison audits, humans examine ballots in the
sample to compare each with the corresponding CVR, while
in ballot-polling audits, humans count the votes in the sample
to see if the manual count provides statistical support for the
reported election outcome. A risk-limiting audit examines
an increasingly larger sample of cast ballots in such a way
that the total chance of stopping the audit and accepting an
incorrect reported outcome is bounded by a given risk limit.
Risk limits used by U.S. jurisdictions in practice range be-
tween 1–10% [11, 19]. All statistical audits require a process
for drawing random samples [33].
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3 Model

Basic notation We use boldface (e.g., v) to denote vectors,
and subscripts to denote elements of a vector (e.g., vi is the ith
element of v). For N ∈ N, [N] = {1, . . . ,N}. We write SymN
to denote the set of all permutations of N elements. If v is
an N-element vector and π ∈ SymN , we write π(v) to denote
the result of applying permutation π to the positions of the
elements of v (i.e., “shuffling” the elements of v). For i ∈ [N],
we write π(i) to denote the index to which π maps its ith input
element. For sets X ,Y , f : X → Y means f is a function that
maps each element of X to an element of Y . For any vector x,
the number of nonzero elements of x is denoted by ∥x∥0 . For
c ∈ [C], let c(t) denote the t-tuple (c, . . . ,c).

Ballots and ballot types Let N denote the number of ballots
cast in an election; we assume N is known to all parties and
devices. We assume that the election is for a single contest,
unless stated otherwise. For a given contest, let C denote the
number of candidates in the contest, and let the list of ballots
cast for that contest be denoted by a vector x in [C]N . We use
M to denote an absolute margin of victory and m = M/N to
denote a relative margin.

The type of a ballot is defined by the candidate preference
indicated on the ballot: in a C-candidate contest, there are C
ballot types (for simplicity of modeling, we do not consider
undervotes as a separate type). For c ∈ [C], if a ballot indicates
a preference for candidate c, we call it a ballot of type c.

Manual ballot inspection RECOUNT(x) denotes a full man-
ual recount of the ballots x; it outputs a vector of results y
(and thus, implicitly, the true election outcome as well; the
manual recount is correct by definition). HANDINSPECTh(x)
denotes a hand inspection of the first h randomly sampled
ballots among x; we will apply it to shuffled piles of ballots so
that it represents a manual (“spot” or “hand”) check of random
ballots. It outputs a vote vector v = (v1, . . . ,vh) consisting of
the results of the hand inspection of these ballots. Discrepan-
cies found in such a manual check (with respect to reported
values for those ballots) are called manual discrepancies.

Hardware components Our audit procedures use three types
of hardware components that handle paper ballots: scanners,
labelers, and shufflers (as shown in Figure 1). Scanners are
extensively discussed in Section 2.1. A labeler is a machine
that takes a set of ballots and prints numbers or strings onto a
specified part of each ballot (e.g., the left edge).

A shuffler is a machine or procedure that takes a set of bal-
lots in a certain order and permutes them into a different order.
The permutation may or may not be known to the shuffler but
is assumed to be random.5 An unknown-shuffle procedure
x̃← Π(x) scrambles the order of ballots in a pile without
knowing or revealing the permutation (consider strewing the
pile of ballots on the floor and picking them up again, although

5Assuming a uniformly random shuffle simplifies the analysis but is not
strictly necessary; a sufficiently entropic shuffle would suffice.

that would not be appropriate in practice). A known-shuffle
procedure (x̃,π)←Π(x) outputs the permutation π alongside
the shuffled ballots x̃ (such that x̃= π(x)).6 Section 7 discusses
practical ways to achieve a known shuffle.

A shuffle procedure Π is hiding if no efficient adversary
given x̃ can learn any information about π. We require this
property. Both known and unknown shuffles can be hiding,
since the term (un)known refers to whether the shuffler itself
knows the permutation, whereas the hiding property refers to
whether the permutation can be learned just by looking at the
output ballot stack.

A scanner function is a function S that maps a sequence x
of cast votes to a same-length sequence y of cast vote records.
We refer to a scanner as misreporting the ith ballot for input x
if xi ̸= yi, i.e., if its output differs from its input at index i.

Audit terminology A risk limit α ∈ [0,1] is an upper bound
on the conditional probability that if there is an error in the
reported election outcome that the audit will fail to detect it. In
other words, an audit with risk limit α will detect an error in
the reported election outcome with probability at least 1−α

(subject to any trust assumptions or cryptographic assumptions
on which the statistical guarantees of the audit are based).

Our terminology is consistent with the usual definition of a
risk limit for a risk-limiting audit: whenever our audit detects
an error in the reported outcome, it proceeds to a full recount
to determine the correct election outcome, just as a standard
risk-limiting audit escalates to a full manual recount.

A rescan audit procedure AUDIT for a single contest takes
as input a sequence of N ballots x, a risk limit α, and (op-
tionally) some additional parameters, and outputs (τ,y) where
τ ∈ {hand,auto} and y is a vector of length N giving the
results of scanning or manually inspecting the ballots in x. We
say AUDIT outputs the correct winner if the winning candi-
date cy based on the results y outputted by AUDIT is equal to
the true winner cx of the contest. If τ = auto, the accompany-
ing y represents the results of an optical scan. If τ = hand, the
accompanying y represents the results of a full manual recount
(which are correct by definition). The rescan audit procedure
should be accompanied by provable guarantees that the output
y reflects the correct election outcome (i.e., the correct winner
for each contest)7 with probability at least 1−α (subject to
any explicitly stated conditions or assumptions). We say that
an audit procedure accepts if it outputs (auto, ·), denoting
that it accepts the optical scan results.

3.1 Threat models and assumptions

Our protocols are designed for two different threat models.

6A chosen-shuffle procedure taking the permutation to be implemented
as an input is more demanding, but a known-shuffle suffices for our purposes.

7Our election audits serve to check the outcome or winner, not the specific
tallies for each candidate. In particular, y may reflect the correct election
outcome even if some of its reported ballot types are incorrect.
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Threat Model 1 BASICAUDIT and 2SCANAUDIT rely on
the following set of trust assumptions (also expressed graphi-
cally in Figure 1 in Section 1):

• The scanners are untrusted (indicated in pink).
• The comparison logic—that is, the software used to com-

pare the scanners’ results—is untrusted (again pink), since
its output can be independently verified.

• The labeler and shuffler used to implement a known shuffle
are trusted not to communicate with each other (indicated
in yellow). They need not be trusted to correctly implement
a particular known shuffle.8

Threat Model 2 3SCANAUDIT is designed for the following
stronger, and thus preferable, threat model (also expressed
graphically in Figure 2 in Section 6):

• The scanners and comparison logic are untrusted (pink).
• The shuffler is purely mechanical; its reliable mechanical

operation is trusted but it requires no trusted software
(indicated in blue).9 Again, the shuffler need not implement
a particular known shuffle.

• The printer, a new component not present in the other
protocols, is untrusted (pink).

We treat untrusted components as behaving arbitrarily, and
possibly colluding with one another. Our protocols guarantee
correction or detection of any errors due to adversarial (or
otherwise erroneous) behavior of untrusted components. Our
formal model and theorems assume that trusted components
behave correctly. Section 7 discusses mitigating measures
that could significantly improve our assumptions on trusted
components in practice.

In order to avoid the necessity of trusting the comparison
logic, we assume that both scanners’ outputs (CVRs and la-
bels) are publicly released. This allows the comparison logic
to be verified independently by any observer.

Assumptions We rely on three key assumptions, discussed
below. The suitability of our protocols depends on the realism
of these assumptions in specific application contexts, as well as
the costs and benefits of a rescan audit approach in context. We
discuss, here and in Section 7, a number of concrete mitigating
measures (in system design, setup, and election administration)
to bolster these assumptions’ plausibility.

Our approach is not suitable for all election contexts, but we
believe that our proposals provide real benefits compared to
prior election auditing models when the margin is close, and
that the mitigating measures we propose make our protocols
useful in a range of realistic settings.

• Non-communication assumption. We rely on the assump-

8The shuffler’s intended operation is to mechanically perform a sufficiently
entropic, unknown shuffle. Other parts of the protocol ensure we can figure
out the permutation that occurred, after this shuffle is performed.

9Limiting the trusted hardware to simple, purely mechanical, non-
programmable components is desirable because it allows the same hardware
to be used without modification for each election, reducing the attack surface.

tion (implicit in our threat models) that during the audit,
the labeler and shuffler do not communicate with the sec-
ond scanner. Our protocols are secure against arbitrary
communication between the two scanners, and against ar-
bitrary collusion between the labeler, shuffler, and scanners
before the audit (e.g., they could be preprogrammed with a
coordinated malicious strategy and shared secrets, whether
by hardware/software developers or upstream supply chain
links). Our non-communication assumption is needed be-
cause an adversarial labeler could otherwise transmit the
permutation to the second scanner: e.g., by a covert wire-
less channel or by steganographic encoding in ballot labels.
The 2021 EAC Guidelines [12, §14.2.E] strictly
limit network connectivity in voting equipment. Non-
communication between system components conforming
to these guidelines can be enforced by physically separat-
ing machines, removing wireless ports, sealing wired ports,
and limiting physical access. Note that close observation
by officials and outside observers is a standard requirement
for elections [9, 16, 36].

• Ballot indistinguishability assumption. Our results re-
quire that the scanners cannot identify a particular ballot
among others cast for the same candidate. That is, we as-
sume the ballots do not contain identifying marks that the
scanners could use to coordinate which ballots to misreport.
Without this — e.g., if ballots were uniquely identifiable by
scanners — it would be straightforward for two scanners
to collude to produce incorrect but consistent outputs.
The ballot indistinguishability assumption is unrealistic for
high-resolution scanners that can precisely observe paper
fiber patterns or distinctive markings made by voters [10].
However, scanners with in effect one pixel per voting target
work well, were once common, and should be compatable
with our assumption [35].
When multiple contests are on the same ballot, malicious
scanners could use votes in other contests to distinguish
between ballots to coordinate their cheating. This can be
entirely prevented by use of a separate paper ballot for each
race [4, 40]. Alternatively, we could mask the scanners so
that they only observe one one ballot column or ideally
just one race, as discussed further in the next bullet and in
Section 7. Masking would also limit the ability scanners
to use stray marks to trigger cheating.
That said, the assumption of ballot indistinguishability is
perhaps the most problematic assumption we make, and
we would recommend further empirical and system design
research before any reliance upon it in practice.

• Scanner masking assumption for 3SCANAUDIT. Our
third protocol, 3SCANAUDIT, requires scanners that can
be limited to scanning only selected areas of the ballot. In
one case, the label but not the vote must be scanned, and
in another case, the vote but not the label must be scanned.
We further discuss and justify this assumption in Section 7.
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Algorithm 1 Scan-shuffle-rescan (for C candidates)

1: procedure SSR S1,S2,Π
C (x)

2: y← S1(x). // scanner 1’s output (on unshuffled ballots)
3: (x̃,π)←Π(x). // shuffle ballots
4: z← S2(x̃). // scanner 2’s output (on shuffled ballots)
5: d←∥π(y)− z∥0. // # scan discrepancies
6: ∀c ∈ [C], let qc← |{k ∈ [N] : yk = c}|. // tallies from y
7: c1← argmaxc∈[C] qc. // winner
8: c2← argmaxc∈[C]\{c1} qc. // runner-up
9: M← qc1 −qc2 . // absolute margin

10: return (x̃,y,z,π,d,M,(qc)c∈[C]).
11: end procedure

4 BASICAUDIT

Our simplest model assumes a single two-candidate contest
with perfect scanning equipment. Our protocol BASICAUDIT
(Algorithm 2) uses two scanners S1,S2 and compares the re-
sults of the scans. First, S1 scans the entire set of ballots. Then,
the ballots are shuffled randomly before S2 scans the ballots
in shuffled order. These steps make up BASICAUDIT’s “scan-
shuffle-rescan” or SSR subroutine (Algorithm 1). Our proto-
cols depend on the scan discrepancy d, the number of ballots
that the two scans report differently. BASICAUDIT concludes
with manual inspection of a small number h of ballots, and
accepts only if the scan discrepancy is zero and hand inspec-
tion finds no other discrepancies. Otherwise, BASICAUDIT
triggers a full manual recount.

Intuitively, the shuffling step serves to detect adversarial
scanner behavior that incorrectly reports only some (but not
all) ballots for any given candidate. If the first scanner mis-
reports a subset of the ballots cast for a candidate, it is very
unlikely that the second scanner will be able to choose exactly
the same subset to misreport if the ballots are presented to the
second scanner in random order, unless they both lie on almost
all or almost none of the ballots cast for that candidate. Mis-
reporting almost all ballots for a given candidate is behavior
easily detectable by the hand inspection step, and misreporting
almost none of the ballots cannot change the outcome unless
the margin is very small. Thus, we can conclude in Theorem 1
that BASICAUDIT detects any error in the reported winner
with probability 1−α for risk limit α. Table 2 gives examples
of concrete parameters and the corresponding probabilities of
detecting a wrong outcome implied by Theorem 1.

Theorem 1 (BASICAUDIT) Let S1,S2 be scanner functions
and let Π be a hiding known-shuffle procedure. Let x be the
ballots cast in a contest. Then BASICAUDITS1,S2,Π(x,α) out-
puts the correct winner with probability at least 1−α.

In contrast to cryptographic security guarantees, the risk
limit α in risk-limiting audits is typically set to be a small
constant such as 1% or 10% [25]. However, unlike existing
risk-limiting audits, our scheme can also realize cryptographi-

Algorithm 2 Basic audit

1: procedure BASICAUDIT S1,S2,Π(x,α)
2: (x̃,y,z,π,d,M,q)← SSRS1,S2,Π

2 (x).
3: h←

⌈
log(α)

log(1−α2/M/2)

⌉
. // # ballots to hand check

4: if d = 0 then // no discrepancies between two scans
5: v← HANDINSPECTh(x̃). // check h shuffled ballots
6: if ∀ j ∈ [h],v j = z j then // hand check matches scans
7: return (auto,y).
8: end if
9: else // one or more discrepancies between scans

10: y← RECOUNT(x̃). // full recount
11: return (hand,y).
12: end if
13: end procedure

cally small risk limits while still requiring hand inspection of
only a small number of ballots, as discussed below.

To prove Theorem 1, we establish two important properties
of BASICAUDIT. Informally:

• If an adversarial scanner behaves inconsistently on bal-
lot types—i.e., if it assigns some ballots of type a to one
reported value and other ballots of type a to another re-
ported value—then SSR will detect this behavior with
high probability.

• If a scanner is misreporting a fraction of the true winner’s
votes, then hand inspecting a small number of ballots will
detect this with high probability.

The full proof of the theorem is in Appendix B, where these
two properties are formalized as Lemmas 4 and 5.

Table 2 shows the number of ballots that must be hand
inspected by BASICAUDIT, for different risk limits α and ab-
solute margins M. As long as the reported margin is larger
than 100, it suffices to hand inspect only five ballots to achieve
a risk limit of 5%. Even with a reported margin as small as 10,
it is sufficient to hand inspect only 10 ballots. These numbers
demonstrate the potential power of our approach: with an ad-
ditional scan, it suffices to hand-inspect an extremely small
number of ballots even for very small margins.

Parameter choice The number h of hand-inspected ballots
on line 3 of BASICAUDIT is chosen by balancing parameters
to guarantee that if at least a α2/M fraction of ballots was
misreported by the first scanner, then with probability 1−α,
one of the hand-inspected ballots must have been misreported.

Implementing a known shuffle We propose implementing
a known-shuffle procedure using a labeler and an unknown-
shuffle (i.e., a mechanical shuffler) as follows. (1) label the bal-
lots x1, . . . ,xN with labels ℓi = EncK(i) where EncK denotes
encryption with a secret key K; (2) apply an unknown shuffle
to the ballots to obtain the ballots in a new order x̃1, . . . , x̃N ;
and (3) read and decrypt the labels on the permuted ballots
to recover the original index of each permuted ballot, thus
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α
Reported absolute margin M ≥
10 100 1000 104 105

0.09 7 4 4 4 4
0.05 10 5 5 5 5
0.01 21 8 7 7 7

10−21 ∗ 230 80 71 70

Table 2: BASICAUDIT number of ballots h =⌈
log(α)/ log(1−α2/M/2)

⌉
to be hand-counted for risk

limit α and reported margin M. Starred entries are larger than
1000 and are not recommended for use.

reconstructing the permutation implemented by the shuffle.
The use of encryption achieves the hiding property required
by our protocols (see Section 3); otherwise, simply printing
the original indices on the ballots would suffice.

5 2SCANAUDIT

In this section we present a rescan audit for more compli-
cated scenarios that arise in real-world settings with many
candidates, ballots audited in separate batches, and imperfect
scanners so long as the number of scanner errors does not
change the outcome. Since a single election may be admin-
istered in many precincts across multiple jurisdictions, it is
impractical and possibly illegal to move the ballots to a central
location for auditing. Auditing in batches allows the audit
to proceed in parallel, allows different ballot designs to be
used in different batches, and makes shuffling logistics much
simpler by applying the shuffle to smaller sets of ballots.

Unlike in the setting of the previous section, two scans com-
bined and a hand inspection of a small sample of ballots does
not suffice to audit the outcome with C > 2 candidates or with
B > 1 batches. This is because the adversary may consistently
misreport the votes cast for a candidate who received only a
few votes in that batch, which would not be detected in a small
sample. To address this problem, we introduce a fixed number
t of test ballots for each candidate in each batch. We define the
test discrepancy δ as the number of test ballots misreported
by the second scanner. The test ballots serve to ensure that
the stack of ballots contains at least a few ballots belonging
to each candidate.10 By checking that the test ballots for each
candidate are reported correctly by the second scanner, we
can also ensure that the true votes cast for each candidate are
reported correctly. This allows us to determine the plurality
winner in elections with many candidates and to audit in sep-
arate batches. The use of these test ballots obviates the need
for a hand inspection after the two scans.

If too many test ballots in any batch are misreported, that
batch is manually recounted. Moreover, if reported margin
is too small as a function of the risk limit or the discrepancy

10It may be possible to avoid the use of test ballots if each batch that is not
hand-counted can be verified to contain votes cast for every candidate.

Algorithm 3 Two-scan audit (single batch)

1: procedure BATCH
S1,S2,Π
C,B (x,α, t)

2: t← 1(t)|| . . . ||C(t). // test ballots
3: x+← t||x.
4: (x̃+,y+,z+,π+,d+,M+,q+)← SSRS1,S2,Π

C (x+).
5: ∀c ∈ [C],δi← |{i ∈ [ct]\ [(c−1)t] : z+i ̸= c}|.
6: δ = maxc δc // # test discrepancies
7: if δ≥ t/10 then // too many test discrepancies
8: T ←{π+( j)} j∈[Ct]. // test ballots’ shuffled indices
9: x← (x̃+i )i∈[Ct+N\T ]. // remove test ballots

10: y← RECOUNT(x). // recount this batch
11: ∀c ∈ [C],qc← |{k ∈ [N] : yk = c}|. // tallies
12: return (hand,0,(qc)c∈[C],y,y).
13: else // discrepancy small enough: return results w/o recount
14: return (auto,d,q,y,z).
15: end if
16: end procedure

Algorithm 4 Two-scan audit (main)

1: procedure 2SCANAUDIT
S1,S2,ΠΠΠ
C ((x1, . . . ,xB),α)

2: Let t← ⌈ 25
8 log

( 2BC
α

)
⌉. // # test ballots / cand.

3: for b ∈ [B] do // batch-level audits

4: (τb,db,qb,yb,zb)← BATCH
S1,b,S2,b,Πb
C,B (xb, t).

5: end for
6: c1← argmaxc∈[C]

{
∑b∈[B](qb)c

}
. // winner

7: c2← argmaxc∈[C]\{c1}
{

∑b∈[B](qb)c
}

. // runner-up
8: d← ∑b∈[B] db.
9: M← qc1 −qc2 . // margin

10: if M ≤max{27 · log(2/α),8d} then
11: // margin too small: recount
12: ∀b ∈ [B] with τb = auto, let yb← RECOUNT(xb)
13: ∀b ∈ [B], let τb = hand

14: end if
15: return ((τ1, . . . ,τB),y1, . . . ,yB).
16: end procedure

between the two scans across all batches is large compared to
the margin, then all batches are manually recounted.

Theorem 2 (2SCANAUDIT) Let S1,S2 be scanner functions,
let Π be a hiding known-shuffle procedure, and let x1, . . . ,xB
be the ballots cast in batches 1, . . . ,B respectively. Then
2SCANAUDIT

S1,S2,Π
C ((x1, . . . ,xB),α) will output the correct

winner with probability at least 1−α.

The proof of Theorem 2 is in Appendix C. While its high-
level outline is similar to the proof for BASICAUDIT, the anal-
ysis becomes significantly more complex due to the multiple
candidates, batching, and imperfect scanners.

Efficiency In addition to satisfying the risk-limit property, it is
desirable that the audit procedure only invokes a recount when
this is necessary to guarantee the correctness of the outcome.
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t
α τM B = 1 B = 20 B = 200 B = 2000

C
=

2

0.09 83 12 22 29 36
0.05 99 14 24 31 38
0.01 143 19 29 36 43

10−21 1324 156 165 172 180

C
=

10

0.09 83 17 27 34 41
0.05 99 19 29 36 43
0.01 143 24 34 41 48

10−21 1324 161 170 178 185

Table 3: 2SCANAUDIT recount threshold τM = ⌊27log(2/α)⌋
on the margin and number t = ⌈(25/8) log(2BC/α)⌉ of test
ballots per candidate per batch with risk limit α, B batches, and
C candidates. A full hand recount will be invoked if M ≤ τM
or M ≤ 8d.

In 2SCANAUDIT, a single batch is recounted if at least 1/10
of the test ballots for any candidate are misreported by the
second scanner. All batches are recounted if either the overall
reported margin is smaller than a function of the risk limit
(27 log(2/α)) or the number of discrepancies between the two
scans is greater than one-eighth of the overall reported margin.
Consequently, a recount will only be invoked when there are
many misreported ballots or a small margin of victory.

Parameter choices The value of t on line 2 of 2SCANAUDIT
is chosen so that with probability 1−α/2, if the second scan-
ner misreports a majority of the ballots for any candidate in any
batch, then at least a small fraction (1/10) of the test ballots
will be misreported, violating the test on line 6 of BATCH.11

As long as the second scanner correctly reports a majority of
the ballots for every candidate in every batch, the expected
number of discrepancies between the two scans is at least half
the number of ballots misreported by the first scanner. The
threshold for M on line 10 of 2SCANAUDIT is then chosen to
guarantee that with probability 1−α/2, the number of ballots
misreported by the first scanner is smaller than M/2.

Table 3 shows the number of test ballots t and threshold
margin τM for 2SCANAUDIT for various risk limits. We see
that the number t of test ballots per batch remains small for
a wide range of risk limits α. However, the margin threshold
at which our analysis breaks down grows fairly quickly with
the number of batches. Improving this dependence for better
handling of many batches is a desirable future direction.

6 3SCANAUDIT

The protocols above rely on a known-shuffle procedure (im-
plemented by a labeler and an unknown-shuffle procedure,
as noted in Section 4). In this section, we outline a candi-

11Instead of using the fractional threshold t/10, we could instead test on
line 6 whether any test ballot was misreported. This would also yield a valid
audit, but could unnecessarily invoke a recount if a very small number of test
ballots are misreported.

P Π1 S′ S1 Π2 S2

y

z, ℓℓℓℓℓℓ′ y≈ πℓℓℓ,ℓℓℓ′ (z)

Full recount
Correct reported outcome
with probability > 1−α

Ballots (x)
Label
print Shuffle 1 Label

scan Scan 1 Shuffle 2 Scan 2

no yes
Comparison logic

Figure 2: Flow diagram of 3SCANAUDIT. Pink (hatched) com-
ponents are untrusted. Blue (solid) components are trusted,
but purely mechanical (i.e., involve no software). πℓℓℓ,ℓℓℓ′ denotes
the permutation induced by the sequences of labels ℓℓℓ,ℓℓℓ′.

y1 y2 y3

· · ·
yN

z1 z2 z3

· · ·
zN

S1(x) outputs: y =

S2(π
∗(x)) outputs: z =

S′(π∗) outputs: π = y≈ π(z)

Figure 3: Stylized bipartite graph scheme. S1,S2 respectively
output lists of scanned vote values y,z. S′ outputs a permuta-
tion π (depicted by graph edges) purporting to describe which
indices in y correspond to which indices in z.

date scheme 3SCANAUDIT that we conjecture is secure even
in a stronger (and thus preferable) threat model in which all
software components are untrusted. The trusted components
consist solely of simple, non-programmable hardware devices.

Specifically, 3SCANAUDIT would remove the need to trust
the labeler, by ensuring that labels are unrelated to the or-
der of ballots in the first scan. Moreover, in contrast to our
previous protocols, 3SCANAUDIT’s shuffler may be entirely
mechanical with no software component, as 3SCANAUDIT
requires only an unknown shuffle procedure that does not out-
put the permutation implemented. Compared to our earlier
protocols, 3SCANAUDIT involves one additional shuffle and
one additional scan.

Provable security for 3SCANAUDIT appears substantially
more complex, and to require qualitatively new techniques,
compared to the analyses of the other schemes in this paper.
Providing a complete security proof for 3SCANAUDIT is an
open question that we would be keen to see addressed in future
work. Below, we give a preliminary security analysis, conjec-
ture the scheme’s security, and briefly discuss its overhead
and some potential weaknesses. We envision this preliminary
analysis to lay useful groundwork for a future security proof;
that said, we also view 3SCANAUDIT as a launching point for
exploring other variations on the theme.
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Candidate scheme 3SCANAUDIT is illustrated in Figure 2: it
involves two (unknown) shuffles and three scan procedures.
3SCANAUDIT’s innovation is to remove trust in the ballot
labeling process and remove the need for a known shuffle,
by: (1) shuffling the ballots immediately after labeling (Π1),
before any scans take place; then (2) using scanners to read
vote values and labels both before and after the second shuf-
fle (Π2). 3SCANAUDIT uses test ballots in the same way as
2SCANAUDIT. Intuitively, the first shuffle Π1 serves to re-
move any adversarial ordering of labels. The first two scan
procedures S′,S1 occur before Π2: they respectively scan the
labels and vote values and are assumed to have physical read
access only to the portion of the ballot containing the label
or voter markings, respectively.12 Then, as before, the final
scan S2 occurs after Π2 and reads both labels and vote values.
This results in four scan outputs: ℓ′ from S′; y from S1; and
(z, ℓ) from S2. Then, these scan results y,z, ℓ′, ℓ are checked
for consistency by comparison-logic software. Based on ℓ′ and
ℓ, the comparison logic can compute the permutation π of the
ballots between the first and second scan (if the scanners be-
have honestly), and thus check whether each ballot value in y
is equal to the corresponding value in z. If the scanners behave
dishonestly, the inferred permutation π will be incorrect, and
this is very likely to cause discrepancies in the comparison
logic, as further argued below.

Crucially, this design means that each ballot scan is inde-
pendent of the ballot permutation π and the ballot labels are
independent of the associated vote values. From an entropy
perspective, the design is equivalent to the simple “bipartite
graph scheme” illustrated in Figure 3 — in which there are
no labels, there is one single trusted unknown shuffle, and: S1,
given true ballot values x, outputs scanned values y; S2, given
true shuffled ballot values π∗(x), outputs scanned values z; and
S′, given true permutation π∗, outputs an alleged permutation
π. The comparison logic then takes the three outputs y,z,π and
checks whether y≈ π(z), like in 3SCANAUDIT (Figure 2).

Preliminary analysis We now give some intuition behind the
conjectured soundness of 3SCANAUDIT. For ease of exposi-
tion, the analysis below considers the simpler “bipartite graph
scheme” (Figure 3). Let us consider the scans S′,S1,S2 in turn.

If S′ behaves honestly (and the labels are distinct), the
inferred permutation π will be correct, so the ballot shuf-
fle amounts to a known-shuffle procedure, and the analysis
of 2SCANAUDIT holds. Consequently, any successful attack
must have S′ output an incorrect label scan.

Now, if S1 and S2 behave honestly but S′ behaves dishon-
estly, S′ has no information about the outputs of S1 and S2.
Then, the chance that any incorrect edge that S′ produces will
pass the comparison logic’s consistency check is close to the
probability that two randomly sampled ballots have the same
value. In close elections, this probability will be close to 1/2,

12See Section 7 and “Scanner masking assumption” under Section 3.1 for
more discussion on scanner masking.

so the probability that S′ can output n incorrect edges and still
pass the comparison logic’s checks shrinks with 1/2n.

The most subtle case to analyze is when S′ is dishonest
and S1,S2 are also dishonest. Then, in the locations where
S1,S2 output incorrect ballot values that are independent of
the true ballot values, S′ may be able to compute the outputs of
S1,S2. However, if any such location is inspected by the hand
audit, the hand audit will immediately detect a discrepancy. If
the fraction of such locations is φ, the probability of evading
detection by the hand audit shrinks with (1−φ)h. Hence, a
successful attack must have a relatively small φ≪ 1/2, i.e.,
not many locations where S1,S2 output incorrect values that
are independent of the true values.

Finally, if φ≪ 1/2, the ballots on which S1 output incorrect
ballot values that are independent of the true ballot values
are very unlikely to be the same physical ballots on which
S2 outputs such incorrect values. That is, there will be many
physical ballots for which S1 outputted an incorrect value but
S2 did not, and vice versa. If S′ outputs the correct edge at any
one of these locations, then the comparison logic will detect a
discrepancy. But if S′ outputs an incorrect edge at every such
location, then a significant fraction (around 1−φ2) of these
incorrect edges must connect to output values on which S1 or
S2 were honest. Since S′ has no information about the output
values at these locations, the likelihood that each such edge
passes the consistency checks is low (close to 1/2 in a close
election). Therefore, such an attack should be very likely to
be detected by the comparison logic whenever S′ outputs a
significant number of incorrect edges.

Additional considerations for a full analysis It may seem
intuitive that the adversary cannot obtain an advantage by
outputting an incorrect mapping, since matching up many
ballots cast for different candidates makes it likely for discrep-
ancies to be detected. However, this turns out not to be the
case: there are nontrivial attacks that involve misreporting in
the label scan S′, as described in the next paragraph. These
attacks are not fatal, but they complicate the rigorous analy-
sis of 3SCANAUDIT and rule out a range of intuitive proof
approaches. In particular, bounds on error probabilities for
3SCANAUDIT must be slightly worse than error probabilities
for our schemes based on a trusted shuffle, though we expect
them still to be exponentially small.

As an illustration, consider a very close election and an
adversary wishing to change the outcome by flipping a sin-
gle vote. If S′ is honest, then the probability of both scanners
flipping the same vote from the winner to the loser is roughly
1/(n/2) = 2/n. But if S′ observes a sequence of labels begin-
ning with label “k” and misreports by swapping the positions
of labels “1” and “k”, then S1 can misreport its first ballot
and S2 can misreport the ballot with label “1”. Due to the
misreport of S′, these ballots are associated in the comparison
logic. As long as the ballots labeled “1” and “k” have the same
cast vote, no discrepancy will be detected, so this adversary
successfully flips a single vote from the winner to the loser in
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a close election with probability roughly 1/4.

Although this attack improves the adversary’s chance of
flipping a single vote undetected, the probability of flipping t
votes undetected decreases exponentially in t. Hence, it fails to
provide a meaningful break to the security of the scheme: even
in elections with small reported margins, the probability of
this attack flipping the outcome undetected is well below any
standard risk limit. Yet the existence of such attacks appears
to add substantial complexity to the security analysis.

Conjecture 1 There exist a number of test ballots t and
thresholds on the number of misreported test ballots and on
the size of the reported margin (independent of the total num-
ber of ballots N) such that 3SCANAUDIT outputs the correct
winner with probability at least 1−α.

Challenges of label handling A natural alternative approach
for implementing 3SCANAUDIT is to print adhesive labels,
shuffle them, and then scan them before affixing them to the
edges or margins of ballots — thus more conclusively elimi-
nating the possibility of the label scanner observing the vote
values. However, working with loose adhesive labels creates
a serious risk of accidental shuffling between the scanning
and affixing of the labels. Furthermore, existing label affixing
machines peel labels from continuous spools, preventing the
labels from being shuffled and requiring us to trust that the or-
der in which they were printed is unknown by the scanners. By
printing labels directly on ballots and relying on masking to
ensure that the cast votes are hidden during the label scan and
labels are hidden during the first vote scan, the implementation
discussed above avoids these pitfalls.

Overhead and other considerations While 3SCANAUDIT is
designed to remove a significant trust assumption required by
2SCANAUDIT, it does incur some additional costs and draw-
backs compared to 2SCANAUDIT (even putting aside the issue
of security proofs). The additional scan and shuffle procedures
add significant overhead, on the order of hours (see Table 4).
Moreover, for any given parameter regime, 3SCANAUDIT will
require slightly worse thresholds on the number of misreported
test ballots and the size of the reported margin, in order to get
the same probability of a correct outcome. Finally, the trust as-
sumptions could be considered incomparable between the two
audit schemes, since different kinds of hardware are involved.

7 Practical shuffling

How to shuffle with existing election hardware As discussed
in Section 2.1, many scanners include two and sometimes
three output hoppers and mechanisms to divert ballots into one
or the other. These mechanisms, if controlled by alternative
control software, could easily be used for shuffling. A batch
of N ballots can be shuffled into an arbitrary permutation
with O(logN) passes through a scanner if each pass randomly
diverts ballots into one or the other output hopper before the

contents of the hoppers are appended into one stack. This is
the reverse of the operation of cutting and shuffling a deck of
cards: a “reverse riffle shuffle.” Using a pseudorandom number
generator to control the diverter, the seed for that generator
serves as the key for a known shuffle.

The software controlling the shuffle must not be able to
respond to the content of the ballots. If it could, it could create
patterns in the output stacks to communicate to the second
scan step. To this end, we have explored using peelable ad-
hesive paper (3M Post-itTM notes) as opaque masks to block
part of the document glass of a general-purpose high-speed
scanner’s (Toshiba ES5008A). So long as the mask is placed
so the leading edge of the ballot cannot catch the edge of the
label, our paper masks worked to block a stripe of any width
along the long axis of the ballot without interfering with the
paper transport mechanism. While we are confident that scan-
ners could be designed to accomodate better masks, perhaps
made of metal shim stock, our experiment demonstrates that
our masking assumption is realistic.

An arbitrary shuffle of 1000 ballots using 2 output hoppers
requires 10 passes. Most ballot scanners are designed under
the assumption that ballots will be counted once and perhaps
recounted a very few times. This raises potential concerns
about how much wear ballots may suffer if passed through a
machine tens of times — concerns augmented by an author’s
past experience of passing stacks of ballots through a scanner
(Optech 4C) up to 24 times, by the end of which the paper-feed
rollers of the scanners had left distinct but faint “tire tracks”
on the ballots.13 Other issues raised by multiple passes include
the time taken and the likelihood of clerical errors each time
the ballots are handled.

To reduce the potential for wear on the ballots and also
the time taken to perform a shuffle, we speculate that just
one shuffling pass, followed by a “cut,” would be sufficient
for practical rescan audits. With 3 output hoppers, this gives
1.58 bits of entropy per ballot. For an unknown shuffle, each
election observer could be invited to cut the stack.

Labeling Ballot scanners that incorporate a labeler are avail-
able. If these are not available, stand-alone labelers are made.
For example, one printer designed to add Bates numbers to
documents can handle 150 pages per minute at a cost under
$5000 [37]. Such machines are designed to print sequential
serial numbers; printing an encrypted sequence would need
only a small software change.

The labels must be printed on ballots before they are per-
muted, and must be read by the second scan. Bar codes are
not a good fit as they are not human readable—a drawback for
transparency in the elections context—so we prefer labeling
with human readable numbers in a machine readable font.

13More thorough experimentation would, of course, be required to de-
termine how different scanners fare. However, the experience is a useful
preliminary indication of the limits of multiple scanning passes, which may
impose practical constraints on the design of rescan audits.
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A notable advantage of labeling over having the shuffling
machine output the permutation directly is that labels are
resilient to clerical errors in ballot handling that might unin-
tentionally permute a stack of ballots. A Rhode Island pilot of
post-election audits found that unintended rearrangement of
ballots was a common problem [19].

Generating randomness To generate pseudorandomness for
labeling or a shuffle, it suffices to use a pseudorandom gen-
erator based on a key generated with a public dice-rolling
ceremony, a common feature of risk-limiting audits in practice
(e.g., [19]). Keys must be unknown to the scanners.14

Test ballots Test ballots need to be easy for human observers
to identify, yet invisible to scanners during an audit. One
way to ensure this is to mark the edge of the ballot with a
bright color, on an edge that will be masked from view by
the scanners, shufflers and other apparatus. Such marking is
critical because it makes test ballots readily visible to human
observers when they are mingled in a stack of ballots.

8 Evaluation of BASICAUDIT & 2SCANAUDIT

We conduct an evaluation based on cost and timing data from
the Rhode Island pilot study of risk-limiting audits [19]. While
audit costs are likely to vary significantly, the RI report cur-
rently provides the best publicly available documentation on
the costs and timings of risk-limiting audits under realistic
conditions. The Rhode Island data is likely to provide a better
estimate of realistic costs and timings than could experiments
run in a research environment.

Our analysis shows that for elections with margins under
roughly 1%, rescan audits are competitive with or better than
the best known statistical risk-limiting audits in terms of both
time and monetary cost (provided that the assumptions re-
quired for rescan audits are satisfied), as illustrated in Figure 4.
An additional advantage of rescan audits is their more pre-
dictable workload, since the workload of rescanning does
not depend on the margin, and escalation to a full recount
is less likely16 in a rescan audit than ballot-polling or ballot-
comparison audits. Election officials have indicated that a
more predictable workload may be preferred even if it is likely
to involve more work than a less predictable alternative [19].

Manual ballot inspection We compare the number of bal-
lots that must be handled manually for each audit. For
BASICAUDIT and ballot comparison or ballot polling audits,
this refers to the number of ballots that are hand-inspected;

14Key management is as always a challenging task, but may be slightly
mitigated by short-lived keys (for the duration of the election).

16I.e., a recount is required for a smaller range of margin values.
17Estimate from [19, footnote 59].
18This timing scales sublinearly for multiple-contest ballots: the average

time to examine a ten-contest ballot was 62s. The table omits this figure since
our protocols and thus our evaluation focus on the single-contest setting.

19As estimated in [5, equation 5.2].

Tr Random seed/key generation 14m (one-off)
Rs Scan or label ballots17 4,000 ballots/h
Rbc Rescan & prepare ballots

(for ballot-comparison audit)
3,240 ballots/h

Rbp Rescan & prepare ballots
(for ballot-polling audit)

4,770 ballots/h

Trbc Retrieve a specified ballot
(for ballot-comparison audit)

45s average

Trbp Retrieve a specified ballot
(for ballot-polling audit)

35s fastest method
230s slowest method

Tex Examine a retrieved ballot 25s for one contest18

Topn Open a box of ballots19 15s

Table 4: Operation timings based on Rhode Island data [19]

for 2SCANAUDIT it refers to the number of test ballots. The
number of ballots hand examined by a ballot-polling audit
(e.g., BRAVO [26]) is an estimated 2ln(1/α)/m2 ballots for
a relative margin of m = M/N. The number of ballots hand
examined by a ballot-comparison audit (e.g., Shangrila [34]) is
approximately 1/m times fewer, or 2 ln(1/α)/m ballots [25].

Timings We estimate timings for Figure 4 based on the tim-
ings of key audit operations as documented in the Rhode
Island pilot study [19] (Table 4) and research systematizing
the Rhode Island pilot data [5].20 The Rhode Island study used
two ES&S DS850 scanners, whose specifications indicate a
processing speed of 300 ballots per minute; however, the pilot
study found that “the DS850 tends to jam frequently” and
“most of the scanner operator’s time was not spent actually
scanning the ballots, but handling them before and after the
scan,” resulting in a 4–5 times slower throughput [19].

The scanning and hand inspection steps in our protocols
have direct equivalents in the Rhode Island ballot-comparison
pilot, from which timings can be drawn. We estimate test
ballot preparation time to be 25s, conservatively bounding
it by the time to examine a retrieved ballot: if test ballots
are machine-produced, then a human will need to examine
them; if they are hand-produced, 25s should suffice to fill
in a prescribed bubble; and no retrieval is required. We esti-
mate labeling and shuffling time by a single pass of all the
ballots through a modern ballot scanner such as the DS850.
As discussed in Section 7, we envision a “reverse riffle shuf-
fle” followed by cuts, using just a single pass to avoid the
prohibitive cost of a fully random shuffle.

Labor costs We estimate labor costs for Figure 4 using a rough
estimate of $20 per person-hour and supposing, consistently
with the Rhode Island pilot data, that: a scanner operator can
operate two scanners at once, teams of two retrieve ballots
for inspection, and teams of five examine retrieved ballots.21

These labor costs do not account for training and equipment.
20Where applicable, we interpret the RI data favorably for the ballot-polling

and ballot-comparison audits (e.g., using 35s, not 230s, for ballot-polling
retrieval time)—conservatively evaluating our own protocols in comparison.

21We omit the labor cost of the randomness generation step as it is unclear
how many paid personnel would be required and the cost is both relatively
small and the same for all schemes we consider.
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Figure 4: Estimated manual handling (left), total time (center), and labor cost (right) for different election sizes and margins.15 Work-
loads are for the case that the audit accepts (i.e., honest scanners). If too many discrepancies are found (or any, in BASICAUDIT),
the audit will escalate to a full hand recount. Although 2SCANAUDIT provides better guarantees for B = 1 than for B = 20, auditing
in batches may be desirable due to practical considerations. The formulae used to generate these figures are in Appendix D.

The Rhode Island figures suggest that initial equipment setup
may cost roughly $4,235 per audit location; however, person-
nel costs are expected to dominate future audit costs, after
equipment setup [19].

Comparative worked example. Consider a two-candidate
election with N = 10,000 ballots cast, relative margin m = 1%
(i.e., absolute margin M = 100), and risk limit α = 5%.

• A ballot-polling audit (e.g., BRAVO [26]) requires hand
examining around 2ln(1/α)/m2 = 60,000 ballots. That is,
a ballot-polling audit would require a full hand recount in
this setting and does not provide any statistical advantage.

• A ballot-comparison audit (e.g., Shangrila [34]) requires
approximately 1/m times fewer hand comparisons, leading
to a rough estimate of 600 ballots being inspected [25]. We
estimate the workload of a ballot-comparison audit to be
just short of 15 hours using the formulae in Appendix D.
The seed generation takes roughly 14 minutes, the scan and
preparation for manual inspection takes about 3.1 hours,
and retrieving and manually inspecting the 600 ballots
would take about 12.5 hours, for a total of 15.8 hours.

• We estimate the workload of 2SCANAUDIT to be less than
8 hours in total time, using the formulae in Appendix D.
The number of test ballots t for each candidate is 14. The
seed generation takes roughly 14 minutes, generating the
28 test ballots takes roughly 12 minutes, and the first scan,
the label-shuffle step and the second scan each require
about 2.5 hours, for a total of less than 8 hours. Conse-

quently, in this setting our audit requires less than 51%
of the time of a ballot comparison audit.

9 Conclusion

We present and analyze new methods for auditing elections,
that use untrusted scanners and a very small amount of hand
examination of ballots. These methods can handle contests
with multiple candidates, ballots that are batched, and error-
prone scanners. Our methods are very efficient in the most
critical cases, where margins are small. While the schemes
proposed here are not ready for near-term deployment, we
expect that further theoretical and practical refinements will
lead to schemes with an increased domain of practicality.

We recognize that there remain considerable challenges,
both theoretical and practical, to our goal of enabling more
automation to be used securely in election audits. We hope that
the initial steps taken in this paper will guide future research
towards making post-election audits both faster and cheaper,
while keeping them secure.

21The plots depict small margin ranges to illustrate our schemes’ perfor-
mance in the regime where they are competitive. Ballot-polling and ballot-
comparison audits perform better for larger margins (not our target regime).
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A Tail bounds

Lemma 1 (Hoeffding bound) Let X1, . . . ,Xn be independent
[0,1]-valued random variables, and let X = 1

n ∑i Xi. Then for
any t ≥ 0, we have that

Pr[X−E[X ]≥ t]≤ e−2nt2
.

Lemma 2 (Multiplicative Chernoff bound) Let X1, . . . ,Xn
be independent {0,1}-valued random variables, let X =
1
n ∑i Xi and µ = E[X ]. Then for any δ ∈ (0,1), we have

Pr
[
X ≥ (1−δ)µ

]
≤

(
e−δ

(1−δ)1−δ

)µ

.

Lemma 3 (Hoeffding [21]) Let X ∼ Hypergeom(N,K,n) be
distributed according to the hypergeometric distribution with
n samples on a population of size N containing K successes,
and let p = K/N. Then for any ζ > 0 we have

Pr[X ≤ (p−ζ)n]≤ e−2ζ2n and Pr[X ≥ (p+ζ)n]≤ e−2ζ2n .

B Proofs for BASICAUDIT

Lemma 4 Suppose there are k ballots of type (true value)
a, and scanner S1 assigns i of them to one reported value
x̂∈ {1,2} and k− i to the other reported value for 0 < i≤ k/2.
Then SSR will output a discrepancy d that is nonzero with
probability at least 1− (i/k)i.

Proof: For j ∈ {1,2}, let E j be the event that S j assigns i
type-a ballots to reported value x̂ and k− i ballots of type a
to reported value 1− x̂. Suppose (as in the lemma statement)
that E1 occurs. Then if E2 does not occur, SSR will output a
nonzero discrepancy with probability 1.

Now suppose that E1∧E2 occurs. Consider the set of per-
mutations that agree with π on all ballots not of type a, where
π is the permutation sampled by the routine SSR. There are
k! such permutations. The input to the second scanner S2 is
identical for each of these permutations. SSR will output a
nonzero discrepancy unless S2 correctly guesses which ballots
of type a S1 assigned to each reported value. Hence, the prob-
ability that S2 agrees with S1 on each of the ballots of type a
is at most i!(k− i)!/k! = 1/

(k
i

)
< (i/k)i.

Lemma 4 immediately yields the following corollary, which
implies that SSR will identify a discrepancy with very high
probability except in two cases: when almost all ballots cast
for the winner are reported correctly (in which case there may
be no discrepancy) and when almost all ballots cast for the
winner are reported incorrectly.

Corollary 1 Suppose scanner S1 reports the wrong vote on
at least an ε fraction of the W ballots cast for the true winner,

where ε ∈ [0,1]. Then an incorrect report will be detected —
by SSR outputting a nonzero discrepancy — with probability
at least 1− ε̂W ε̂ where ε̂ = min{ε,1− ε}.

Lemma 5 Suppose scanner S1 reports the wrong vote on at
least an ε fraction of the ballots cast for the true winner, where
ε ∈ [0,1]. Then an incorrect report will be detected with prob-
ability at least 1− (1− ε/2)h from a hand inspection of h
distinct random ballots.

Proof: The true winner received at least N/2 votes, so our
assumption implies that S1 reports the wrong vote on at least
εN/2 ballots. Call these ballots “bad ballots,” and call all the
others “good ballots.” Then the fraction of bad ballots among
all ballots is at least ε/2. Consider the sequential selection of
h random ballots (with replacement). For each ballot selected,
the probability that the selected ballot is good is 1− ε/2. It
follows that the probability pmiss that all of the h ballots se-
lected for hand inspection are good is (1− ε/2)h. Finally, the
probability that at least one of the hand-inspected ballots is
bad is 1− pmiss.

Theorem 1 (Correctness of BASICAUDIT) Let S1,S2 be
scanner functions and let Π be a hiding known-shuffle
procedure. Let x be the ballots cast in a contest. Then
BASICAUDITS1,S2,Π(x,α) outputs the correct winner with
probability at least 1−α.

Proof: Suppose the reported winner is incorrect and the re-
ported margin is M. Then at least M/2 votes for the true winner
must have been erroneously reported by scanner S1 as votes
for the true loser. For any δ ∈ [0,1/2], consider two cases as
follows.

CASE I: LESS THAN A δ FRACTION OF THE TRUE WINNER’S
VOTES WERE MISALLOCATED BY S1. As noted above, the
fraction ε< δ of misreported votes is at least (M/2)/W , where
W is the true number of votes for the true winner. By Corol-
lary 1, the execution of SSR within BASICAUDIT outputs a
zero discrepancy with probability at most

ε
Wε ≤ ε

M/2 (since ε≥ (M/2)/W )

≤ δ
M/2 . (since ε < δ)

CASE II: AT LEAST A δ FRACTION OF THE TRUE WINNER’S
VOTES WERE MISALLOCATED BY S1 . In this case, Lemma 5
implies that hand-inspecting h random ballots will detect an
error with probability at least 1− (1−δ/2)h.

It follows that BASICAUDIT outputs the correct winner with
probability at least

1− min
η∈[0, 1

2 ]
max

{
η

M/2,(1−η/2)h
}

. (1)

Taking η = α2/M , since h = ⌈log(α)/ log(1− α2/M/2)⌉ in
BASICAUDIT (Algorithm 2, line 3), the theorem follows.
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C Proofs for 2SCANAUDIT

Theorem 2 (Correctness of 2SCANAUDIT) Let S1,S2 be
scanner functions, let Π be a hiding known-shuffle procedure,
and let x1, . . . ,xB be the ballots cast in batches 1, . . . ,B respec-
tively. Then 2SCANAUDIT

S1,S2,Π
C ((x1, . . . ,xB),α) will output

the correct winner with probability at least 1−α.

Proof: Follows from Lemmata 6 and 8.

Lemma 6 Take any batch b ∈ [B] and any candidate c ∈ [C].
Let kb,c be the true number of votes cast for c in batch b, and
let vb,c ≤ t + kb,c be the number of the t + kb,c ballots for c in
batch b (including test ballots) that that the second scanner in
batch b incorrectly reports as being for a candidate other than
c. Let E be the event that for every batch b where ∃c ∈ [C]
such that vb,c ≥ (t + kb,c)/2, are manually recounted in the
algorithm. Then

Pr[E]≥ 1−B ·C · exp(−8t/25) .

Proof: Let Eb,c be the event that vb,c < (t + kb,c)/2, i.e., the
event that less than half of all ballots (including test ballots)
of type c in batch b are misreported by the second scanner.
Let Eb be the event that either Eb,c occurs for all c ∈ [C], or
batch b is manually recounted in the algorithm. Note that
E = E1∧·· ·∧EB.

Take any batch b ∈ [B] and candidate c ∈ [C] such that
vb,c ≥ (t+kb,c)/2. Let Rb be the event that batch b is manually
recounted in the algorithm. Let Qb,c be the event that δ < t/10
of the second scanner’s misattributed ballots for candidate c
in batch b are test ballots. Note that ¬Qb,c⇒ Rb.

Conditioned on ¬Eb,c, we bound the probability of Qb,c.
Let X be the number of test ballots of type c that the second
scanner misreports. Then X ∼Hypergeom(t+kb,c,vb,c, t) and
δ≥ X . Using Lemma 3 with p = vb,c/(t + kb,c) and ζ = 2/5:

Pr[Qb,c|¬Eb,c] = Pr[δ < t/10]≤ Pr[X < t/10]
= Pr [X < (p− (p−1/10)) t]
≤ Pr [X < (p−2/5) t] (∵ p≥ 1/2)
= Pr [X ≤ (p−ζ) t]

≤ exp
(
−2ζ

2t
)

(by Lemma 3)
= exp(−8t/25) = exp(−0.32t)

Now returning to analyze Eb, we have

Eb = (Eb,1∧·· ·∧Eb,C)∨Rb (by definition)
= (Eb,1∨Rb)∧·· ·∧ (Eb,C ∨Rb)

⊃ (Eb,1∨¬Qb,1)∧·· ·∧ (Eb,C ∨¬Qb,C) (∵ ¬Qb,c⇒ Rb)

Using the final expression above to bound Pr[Eb], we have

Pr[Eb]> Pr [(Eb,1∨¬Qb,1)∧·· ·∧ (Eb,C ∨¬Qb,C)]

= 1−Pr [(¬Eb,1∧Qb,1)∨·· ·∨ (¬Eb,C ∨Qb,C)]

≥ 1− ∑
c∈[C]

Pr [¬Eb,c∧Qb,c] (union bound)

≥ 1− ∑
c∈[C]

Pr [Qb,c|¬Eb,c]

≥ 1−C · exp(−8t/25)

Finally, we apply another union bound to get

Pr[E] = Pr[E1∧·· ·∧EB] = 1−Pr[¬E1∨·· ·∨¬EB]

≥ 1−B ·C · exp(−8t/25) .

Lemma 7 (Concentration of sums of hypergeometrics)
For i ∈ [k], let Xi ∼ Hypergeom(Ni,Ki,ni) be independently
hypergeometrically distributed. Let X = ∑i Xi, n = ∑i ni, and
µ = E[X ]. Then for any δ ∈ (0,1)

Pr[X < (1−δ)µ]≤

(
e−δ

(1−δ)1−δ

)µ

.

Proof: Let N = ∑i Ni and K = ∑i Ki. By construction, µ =
E[X ] = ∑i E[Xi] = ∑i niKi/Ni.

Hoeffding [21, Theorem 4] proved that there is a con-
vex order between samples with and without replacement,
and that therefore exponential concentration bounds derived
via the Cramér-Chernoff method for samples without re-
placement also apply to samples with replacement. Since
Hypergeom(N′,K′,n′) and Binom(n′,K′/N′) differ only in
whether the sampling is performed with replacement, in our
setting, this means that we can bound X by a sum of bino-
mial distributions with corresponding parameters. That is,
Pr[X < (1−δ)µ]< Pr[Y < (1−δ)µ] where Y =∑i∈[k]Yi where
Yi ∼ Binom(ni,Ki/Ni). Since Y is the sum of n independent
Bernoulli variables (with different parameters), we can apply
a Chernoff bound (Lemma 2) to obtain that

Pr[Y < (1−δ)µ]<

(
e−δ

(1−δ)1−δ

)µ

.

The lemma follows.

Lemma 8 Suppose t ≥ 25
8 · log

( 2BC
α

)
, and let ℓ be the number

of ballots misreported by S1 across all candidates and batches.
Then we have that with probability at least 1−α, either ℓ <
13.04log(2/α) or d > ℓ/4.

Proof: For each batch b∈ [B] and candidate c∈ [C], let Nb,c be
the number of ballots in batch b for candidate c (including the t
test ballots), and let Kb,c and nb,c be the number of these ballots
that are misreported by scanners S1 and S2, respectively, where
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we take the convention that Kb,c = nb,c = 0 for all batches
b that were recounted in the algorithm. Then the number
of these ballots that are misreported by S1 and not by S2 is
distributed according to Xb,c ∼ Hypergeom(Nb,c,Kb,c,Nb,c−
nb,c). Let µ = ∑b,c E[Xb,c] = ∑b,c

Kb,c(Nb,c−nb,c)

Nb,c
..

By Lemma 6, we have that with probability at least 1−B ·
C · exp(−8t/25)≥ 1−α/2 that each batch for which S2 mis-
reports at least half of the ballots for any candidate is manually
recounted. Condition on the event that this holds. Then we
have that nb,c ≤

Nb,c
2 and consequently µ≥ 1

2 ∑b,c Kb,c = ℓ/2.

Then by Lemma 7 we can bound the total number of dis-
crepancies by

Pr[d < ℓ/4]≤ Pr[∑
b,c

Xb,c < µ/2]≤ (2/e)µ/2

which is at most α/2 as long as µ≥ 2log(2/α)/ log(e/2), i.e.
whenever µ≥ 6.52log(2/α). For the case µ < 6.52log(2/α),
observe that ℓ ≤ 2µ < 13.04log(2/α). Since we have con-
ditioned on an event of probability 1−α/2, the conclusion
follows by a union bound.

D Workload evaluation formulae

N, h, t, C, and B are as defined in BASICAUDIT and
2SCANAUDIT and Rs, Rbp, Trbp, Rbc, Trbc, Tex, and Topn are
as defined in Table 4. BP stands for ballot-polling and BC
stands for ballot-comparison.

Here are the formulae we use for Figure 4 timing estimates:

• BP: Tr +
N

Rbp
+(Trbp +Tex) ·2ln(1/α)/m2.

• BC: Tr +
N

Rbc
+(Trbc +Tex) ·2ln(1/α)/m.

• BASICAUDIT: Tr +2 · N
Rs
+ N

Rbc
+Topn +h ·Tex.

• 2SCANAUDIT: Tr +3 · N
Rs
+C ·B · t ·Tex.

Let RL be the cost of labor per person-hour. Here are the
formulae we use for Figure 4 cost estimates:

• BP: RL(2Tr +
1
2 ·

N
Rbp

+(2Trbp +5Tex) ·2ln(1/α)/m2).

• BC: RL(2Tr +
1
2 ·

N
Rbc

+(2tTrbc +5Tex) ·2ln(1/α)/m).

• BASICAUDIT: RL(2Tr+
1
2

(
2 · N

Rs
+ N

Rbc

)
+Topn+h ·5Tex).

• 2SCANAUDIT: RL(2Tr +
3
2 ·

N
Rs
+C ·B · t ·5Tex).
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