
Scan, Shuffle, Rescan:
Two-Prover Election Audits
With Untrusted Scanners

Douglas W. Jones1, Sunoo Park2, Ronald L. Rivest3, and Adam Sealfon4

1 University of Iowa
2 New York University

3 MIT CSAIL
4 UC Berkeley⋆⋆

Abstract. We introduce a new way to conduct election audits using
untrusted scanners. Post-election audits perform statistical hypothesis
testing to confirm election outcomes. However, existing approaches are
costly and laborious for close elections—often the most important cases
to audit—requiring extensive hand inspection of ballots. We instead pro-
pose automated consistency checks, augmented by manual checks of only
a small number of ballots. Our protocols scan each ballot twice, shuffling
the ballots between scans: a “two-scan” approach inspired by two-prover
proof systems. We show that this gives strong statistical guarantees even
for close elections, provided that (1) the permutation accomplished by
the shuffle is unknown to the scanners and (2) the scanners cannot reli-
ably identify a particular ballot among others cast for the same candi-
date. Our techniques drastically reduce the time, expense, and labor of
auditing close elections, which we hope will promote wider deployment.

1 Introduction and motivation
Election outcomes are determined by tabulating the votes cast in the election and
identifying the winner: for plurality elections, the winner is the candidate who
received the most votes. In the United States, the electorate is relatively large
and ballots are often complex, and (unusually) ballot processing and tabulation
are typically performed by machine [33].5

Machines provide efficiency, but do not guarantee accuracy. Individuals, cor-
porations, and nation-state actors all have strong incentives to influence the re-
sults of political elections. Even absent deliberate tampering, election machinery—
for scanning, tabulation, or otherwise—may have software bugs or be misconfig-
ured for a particular election. Such factors can cause incorrect election outcomes
that may be hard to detect.

(Statistical) post-election audits [8,30] (aka “risk-limiting audits”) provide
safeguards to assure election officials and the public that the ballots cast were
tabulated and reported accurately—or alert them if not. The standard way to
conduct a post-election audit is to (1) inspect a random sample of ballots by
⋆⋆ Work done while at UC Berkeley and MIT. The author is now at Google Research.
5 See Jones [28] and Bajcsy et al. [1] for more on U.S. ballot processing technology.

2 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

hand, and (2) assess the likelihood of such a sample supposing the reported
outcome was incorrect. This can give a rigorous statistical guarantee about the
election outcome’s likely correctness based on the sample, without the need to
hand-count every ballot. But such statistical guarantees come at a cost that can
be significant to often underresourced local election officials [33]. In close elec-
tions, statistical audits require laborious manual inspection of many ballots, and
in very close elections a full hand recount may be needed to get a meaningful
statistical guarantee (such as in Georgia’s 2020 election in the U.S. [22]).

Recognizing the importance of verifying election results and detecting errors,
some states now require post-election audits by law for at least some contests,
and all U.S. states allow recounts for close elections [33,45,34]. The EAC sur-
veys post-election audits [16]. Verified Voting and Citizen for Election Integrity
Minnesota have produced an excellent report on post-election audits and re-
counts [47], which notes that many recounts are actually performed by “rescans”
(the topic of this paper). Recent U.S. elections and political discourse (e.g.,
[29,35,49]) further underscore the need for transparency and public confidence
in electoral systems. Such confidence is as much a sociopolitical as a technical
phenomenon: as such, technical transparency and verifiability are needed, but
are not sufficient by themselves.

In this paper, we ask: can partial automation improve post-election audit
efficiency for close elections, by reducing the costly manual labor required? In-
spired in part by multiprover interactive proof systems [3], we propose a new
kind of post-election audit, called a rescan audit, with the potential to reduce
labor in close elections to handling just tens of ballots for a range of realistic
parameters—at the cost of 2–3 times overhead in mechanical ballot processing,
and two assumptions on communication and ballots (Section 3.1). The overhead
and assumptions are more suitable in certain election contexts than others, and
the assumptions are not plausible for all election contexts, as we detail later.

We formalize a threat model and security guarantees for rescan audits, then
propose two rescan protocols for election auditing, and prove statistical concrete
soundness guarantees for them.
Our approach Our rescan audits compare the ballot-by-ballot results from two
separate scans of all ballots. The second scan provides consistency checks that
can be used to obtain statistical guarantees for the correctness of the election
outcome reported by the first scan, without trusting either scanner to behave
correctly. In practice, an additional scan of the ballots is already sometimes
performed, for auditing or other purposes [10,23,9].

However, a second scan alone is insufficient to guarantee election integrity in
the presence of colluding adversarial scanners. For example, the scanners may
agree in advance on a set of indices and misreport the votes on ballots in those
positions. If both scanners operate on the same sequence of ballots, their outputs
would appear consistent. Similarly, if the scanners are misconfigured the same
way—e.g., if they ignore the first batch of ballots, or are preloaded with the
results of a prior election—they will produce consistent incorrect outputs. See
Bernhard [6] for further discussion of adversarial attacks.

Thus, an additional scan only offers a useful guarantee if the scanners cannot
coordinate their misreporting. To prevent coordination, we shuffle the ballots

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 3

between scans so the scanners do not observe the ballots in the same order.
Thus, adversarial scanners will be unable to consistently misreport the same set
of ballots—unless they misreport all ballots cast for some candidate. We can
detect such extreme misbehavior by manually inspecting just a few ballots. Our
audits are built from this basic sequence: scan, shuffle, rescan, supplemented
with manual handling or inspection of only a few ballots.

In order to prevent malicious scanners from coordinating their misreporting,
our security proofs additionally assume that ballots cast for the same candidate
are indistiguishable from one another. This assumption is not realistic in certain
settings: e.g., high-resolution scanners that can identify paper fiber patterns.
However, it is more plausible with some existing lower-resolution equipment,
and we believe future study of scanning hardware and ballot design could further
improve its plausibility, as discussed more in Section 3.1 and Appendix H. Future
work weakening the indistinguishability assumption would also be of interest.

Figure 1 gives an overview of our rescan audit workflow. The set of ballots
x is scanned on scanner S1, to give a sequence of cast-vote records (CVRs) y
indicating how the scanner interpreted each ballot. A labeler L then applies
random-looking unique identifiers (labels) to the ballots (e.g., by printing), after
which the ballots are permuted by shuffler Π. The ballots are then scanned
on a second scanner S2 (possibly the same as S1), yielding a second list z of
CVRs. Because each scan processed the same ballots, every CVR in y should
also appear in z, but the two scanners see the ballots in seemingly unrelated
orders (so the order of CVRs in y differs from that in z). Hence, erroneous or
adversarial scanners would have an extremely low chance of misreporting exactly
the same ballots in y and z.6

The comparison logic does ballot-level comparison, finding corresponding
CVRs in y and z. To do this, it must know how the collection of ballots was
permuted. This is achieved using the labels applied before the shuffle, which can
be read by S2 and included in the CVRs in z. The labels can be generated using
a secret key shared by the labeler and the comparison logic, but unknown to S2.
This allows the comparison logic to reconstruct the order of ballots seen by S1,
while ensuring that S2 cannot do so.7

In addition to comparing the CVRs in y and z, our protocols require manual
inspection of a small number of ballots. For single-batch two-candidate elections,
a hand inspection of a few ballots sampled at random is sufficient. In more general
settings, we introduce test ballots for each candidate that are distinguishable
from real ballots by humans but not by the scanners (e.g. by edge markings).
Test ballots allow us to ensure that all candidates, including those who received
only a few votes, were correctly allocated their votes in each batch. Test ballots
are unnecessary in many realistic settings, as when every candidate is likely to

6 For simplicity, this discussion assumes a ballot contains a single contest. We discuss
ballots with multiple contests later in the paper.

7 Alternatively, in place of the labeler, one could use a keyed shuffle to reorder the bal-
lots in a way known to the comparison logic but unknown to S2. Keyed shuffles pose
more practical difficulty than unkeyed shuffles, as further discussed in Appendix H.

4 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

have received several votes in each batch of ballots.8 For ease of exposition and
greater generality, the presentation in this work uses test ballots.

Labeling of ballots is not new. It is well established practice in ballot-comparison
audits to add labels to voted ballots so that the electronic records scanned from
those ballots can be matched to the original paper ballots [32].

S1 L Π S2

y z

π

y ≈ π(z)

Full recount
Correct reported outcome
with probability > 1− α

Scanner 2Ballots (x) Scanner 1 Labeler Shuffler Scanner 2

no yes
Comparison logic

Fig. 1: Flow diagram of an election with a rescan audit. Pink (hatched) com-
ponents are untrusted (i.e., may have been corrupted by an adversary); yellow
(solid) components are trusted, and unable to examine the votes on the ballots.
See Section 3.1 for more detail on the threat model.

Evaluation We conduct an evaluation based on timing and cost data from the
Rhode Island pilot study of risk-limiting audits [23]: while audit costs are likely
to vary significantly, the RI report provides the best documentation currently
publicly available on the costs and timings of risk-limiting audits under realistic
conditions. Our analysis shows that for elections with margins under roughly 1%,
rescan audits are competitive with or better than the best known statistical risk-
limiting audits. The metrics we use for evaluation are: (1) number of ballots that
must be handled manually, based on our security proofs; (2) estimated timings,
based on the timings of key audit operations as documented in the Rhode Island
pilot study and subsequent research; and (3) labor costs (excluding training and
equipment), again based on Rhode Island data.

Risk-limiting auditing systems [30] typically require hand inspection of a
number of ballots dependent on the proportional margin. To our knowledge, our
protocols are the first where the efficiency of the manual audit depends instead
on the absolute (reported) margin. We achieve this due to the fact that our rescan
procedure already induces consistency checks on all ballots without any manual
examination whatsoever, whereas the size of the sample of ballots inspected by
a traditional hand audit must depend on the relative margin.

Since manual labor in rescan audits depends only weakly on the margin,
the workload is identical for a wide range of margins.9 This means rescan audit
workload is highly predictable in advance. In contrast, traditional risk-limiting

8 If test ballots are not used, batches that lack reported votes for any candidate must be
hand-recounted; the overhead of doing so depends on the per-batch vote distribution.

9 E.g., for absolute margins of at least 100 votes, with risk limit α = 0.05.

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 5

audit workload varies much more, depending on the initial sample of ballots:
particularly for close elections, unlucky samples may lead to workload escalation
even to a full recount. The greater predictability of rescan audits is desirable for
real-world audits subject to budgetary constraints and statutory deadlines.

Conventional risk-limiting audits can be more efficient for elections with wide
margins, so in practice, a rescan audit could be invoked only when an election
is close. Alternatively, rescan audits may be a desirable alternative when a con-
ventional risk-limiting audit requires a full hand recount.
Summary of contributions
– We introduce a new paradigm, rescan audits, which utilizes additional ballot

scans to substantially reduce manual labor in statistical post-election audits,
subject to clearly specified assumptions.

– BasicAudit (§4) is a simple protocol designed for a single two-candidate
contest where all ballots are perfectly readable by the scanners and have no
distinguishing features (beyond the vote itself).

– 2ScanAudit (§5) accounts for multiple-candidate contests, where auditing
may be done in batches (e.g., by precinct), and supports imperfect scanners
that may make errors. 2ScanAudit, unlike BasicAudit, involves mingling
clearly marked test ballots with the voted ballots.

– Our concrete security guarantees for BasicAudit and 2ScanAudit (§§B–D)
allow precise specification of parameter tradeoffs for different risk limits.

– Our evaluation (§6) indicates that for close elections, rescan audits are com-
petitive with or better than the best known statistical risk-limiting audits,
in terms of number of ballots handled manually, timing, and labor cost.

Prior work Mathematical and cryptographic methods have long been studied
as ways to protect elections from abuse and to increase confidence in election
outcomes (for some examples, see [12,11,21,37]).

Introductions to post-election audits can be found in Stark [40] (which in-
troduces the notion of risk-limiting tabulation audits), Stark and Wagner [39],
Lindeman and Stark [30], Bretschneider et al. [8], Verified Voting [46], and
NCSL [34]. Harrison et al. [24] discuss the challenges of printing labels on ballots.

Calandrino et al. suggested using scanners to assist in ballot-level audits, in
2007 [10]. They used an auditing tabulator that labels ballots with identifying
numbers so that high assurance could be achieved by hand checking the scans
of a few randomly selected ballots. We improve on this with a second scan of
all ballots instead of manual checking of a few. Rescanning itself is not new:
e.g., “transitive audits” [30] use a rescan to process ballot labels. Rescanning
was pioneered in Humbolt County, California [18], and the Clear Ballot Group’s
ClearAudit was certified in Florida in 2014 [20]. These audits rely on indepen-
dently developed scanners and tabulation software to impede collusion between
the scans. Our proposal is the first to suggest rescanning for comparison between
scanned ballot values.

The developers of the Rijnland Internet Election System found that mingling
test ballots with real ballots provides a useful test of voting system integrity [27].
Our use of test ballots is different, but we also mix them with real ballots.

Finally, our ideas are inspired by multi-prover proofs in cryptography [3],
but our techniques differ because of the concrete statistical guarantees we seek

6 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

and the practical constraints of physical ballot processing. Moreover, two-prover
proofs require that the provers be unable to communicate, while our non-communication
assumption is weaker, allowing the two scanners to communicate.

2 Background and terminology
An election has one or many contests. A general election may have many
contests, each between a number of candidates. We focus initially on auditing a
single two-candidate contest. We assume that all contests are plurality contests.

A voter submits (casts) a paper ballot that indicates the voter’s selections
(or votes) for each contest. We assume that each ballot is a single piece of paper,
ignoring elections with multi-page ballots. A paper ballot is voter-verifiable :
a voter can confirm before casting that it correctly records his/her votes. A
human examining the voter’s cast paper ballot will see the voter’s correct or
true selection for each contest. Ballots may be scanned individually when cast, or
may be collected into batches for later scanning—say, one per precinct. Ballots
may be labeled with a unique ballot label by a labeler .10 The ballot label,
if visible at the time of scanning, is included in the CVR for the ballot. Test
ballots are ballots that the humans, but not scanners, can distinguish from cast
ballots, those from real voters. Test ballots are mingled with the cast ballots
before the first scan to create a stream of test-or-cast ballots. They remain
mixed with the ballots until the end, when they can be separated by hand from
the cast ballots. The votes on the test ballots are known in advance, so they can
be subtracted from the totals regardless of the disposition of the test ballots.11

The reported contest tally says how many votes are reported for each
candidate in the contest. The reported contest outcome or reported winner
is the candidate with the most reported votes. The true winner is defined
similarly, based on the true votes cast in that contest. The reported margin of
victory is the difference between the numbers of votes reported for the reported
winner and the reported runner-up.

2.1 Scanners

An optical scanner (or scanner for short) reads a sequence of cast paper
ballots to produce a cast vote record (or CVR) for each ballot scanned. The
CVR is an electronic record giving the scanner’s interpretation of the voter’s
selection for each contest, known as the reported selection. If a ballot has been
labeled, we ask the scanner to include the ballot label in the CVR. Scanners may
also provide digital images of each ballot scanned. We allow scanners to examine
all ballots in a batch before producing the file of CVRs for those ballots.

Scanners are much faster than hand counting. While precinct-count scanners
are relatively slow, central-count scanners able to scan 800 to 1000 ballots per

10 We assume throughout that ballot labels are unique. This is without loss of gener-
ality: while an adversarial labeler could print non-unique labels, this would cause a
detectable discrepancy and so would only harm the adversary.

11 As a further fail-safe mode — in case of extensive controversy over an election such
that such subtraction is insufficient to restore public confidence — removing all the
test ballots can be verifiably achieved with comparable work to a full recount.

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 7

minute have been made [43] and speeds of 300 ballots per minute are now com-
mon [2,38]. Many high-speed scanners can be programmed to deliver ballots into
2 or 3 output hoppers to help separate ballots into 2 or 3 categories.

We define a perfect scanner as one that scans perfectly accurately: that is, its
interpretation of scanned votes is always equal to the true votes. Real scanners
are not perfect; errors may occur for many reasons.12

2.2 Audits
A manual post-election audit may be used to assure that reported contest
outcomes are correct when imperfect scanners are used. In these, cast ballots
are selected for hand examination. A manual recount examines and tallies
all cast ballots by hand, while a statistical audit examines only a random
sample. When ballots are tabulated in batches, a batch-level audit may be
used, recounting randomly selected batches to check batch tallies. All manual
audits require auditors able to hand-interpret ballots.

Statistical audits are very efficient when the fractional margin in an election is
large. These come in two main types. In ballot-polling audits, the sampled bal-
lots are manually counted and tallied, while in ballot-comparison audits, each
sampled ballot additionally is manually compared to the corresponding CVR. In
each case a statistical test is performed to determine whether the manual count
provides statistical support for the reported election outcome. A risk-limiting
audit examines an increasingly larger sample of cast ballots in such a way that
the total chance of stopping the audit and accepting an incorrect reported out-
come is bounded by a given risk limit . Risk limits used by U.S. jurisdictions
in practice range between 1–10% [23,15]. All statistical audits require a process
for drawing random samples [41].

3 Model
Basic notation We use boldface (e.g., v) to denote vectors, and subscripts
to denote elements of a vector (e.g., vi is the ith element of v). For N ∈ N,
[N] = {1, . . . , N}. We write SymN to denote the set of all permutations of N
elements. If v is an N -element vector and π ∈ SymN , we write π(v) to denote
the result of applying permutation π to the positions of the elements of v (i.e.,
“shuffling” the elements of v). For i ∈ [N], we write π(i) to denote the index to
which π maps its ith input element. For sets X,Y , f : X → Y means f is a
function that maps each element of X to an element of Y . For any vector x, the
number of nonzero elements of x is denoted by ∥x∥0 . For c ∈ [C], let c(t) denote
the t-tuple (c, . . . , c).
Ballots and ballot types Let N denote the number of ballots cast in an
election; we assume N is known to all parties and devices. We assume that the
election is for a single contest, unless stated otherwise. For a given contest, let C
denote the number of candidates in the contest, and let the list of ballots cast for
that contest be denoted by a vector x in [C]N . We use M to denote an absolute
margin of victory and m = M/N to denote a relative margin.

The type of a ballot is defined by the candidate preference indicated on
the ballot: in a C-candidate contest, there are C ballot types (for simplicity of
12 The full version provides more data and discussion on scanner error in practice.

8 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

modeling, we do not consider undervotes as a separate type). For c ∈ [C], if a
ballot indicates a preference for candidate c, we call it a ballot of type c.
Manual ballot inspection Recount(x) denotes a full manual recount of the
ballots x; it outputs a vector of results y (and thus, implicitly, the true election
outcome as well; the manual recount is correct by definition). HandInspecth(x)
denotes a hand inspection of the first h randomly sampled ballots among x; we
will apply it to shuffled piles of ballots so that it represents a manual (“spot”
or “hand”) check of random ballots. It outputs a vote vector v = (v1, . . . , vh)
consisting of the results of the hand inspection of these ballots. Discrepancies
found in such a manual check (with respect to reported values for those ballots)
are called manual discrepancies.
Hardware components Our audit procedures use three types of hardware
components that handle paper ballots: scanners, labelers, and shufflers (as shown
in Figure 1). Scanners are extensively discussed in Section 2.1. A labeler is a
machine that takes a set of ballots and prints numbers or strings onto a specified
part of each ballot (e.g., the left edge). A shuffler is a machine or procedure
that takes a set of ballots in a certain order and permutes them into a different
order. The permutation may or may not be known to the shuffler but is assumed
to be random.13 An unknown-shuffle procedure x̃ ← Π(x) scrambles the
order of ballots in a pile without knowing or revealing the permutation (consider
strewing the pile of ballots on the floor and picking them up again, although that
would not be appropriate in practice). A known-shuffle procedure (x̃, π) ←
Π(x) outputs the permutation π alongside the shuffled ballots x̃ (such that
x̃ = π(x)).14 Section H discusses practical ways to achieve a known shuffle.

A shuffle procedure Π is hiding if no efficient adversary given x̃ can learn
any information about π. We require this property. Both known and unknown
shuffles can be hiding, since the term (un)known refers to whether the shuffler
itself knows the permutation, whereas the hiding property refers to whether the
permutation can be learned just by looking at the output ballot stack. A scanner
function is a function S that maps a sequence x of cast votes to a same-length
sequence y of cast vote records. We refer to a scanner as misreporting the ith
ballot for input x if xi ̸= yi, i.e., if its output differs from its input at index i.
Audit terminology A risk limit α ∈ [0, 1] is an upper bound on the con-
ditional probability that if there is an error in the reported election outcome
that the audit will fail to detect it. In other words, an audit with risk limit α
will detect an error in the reported election outcome with probability at least
1−α (subject to any trust assumptions or cryptographic assumptions on which
the statistical guarantees of the audit are based). Our terminology is consistent
with the usual definition of a risk limit for a risk-limiting audit: whenever our
audit detects an error in the reported outcome, it proceeds to a full recount to
determine the correct election outcome, just as a standard risk-limiting audit
escalates to a full manual recount.
13 Assuming a uniformly random shuffle simplifies the analysis but is not strictly nec-

essary; a sufficiently entropic shuffle would suffice.
14 A chosen-shuffle procedure taking the permutation to be implemented as an input

is more demanding, but a known-shuffle suffices for our purposes.

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 9

A rescan audit procedure Audit for a single contest takes as input a
sequence of N ballots x, a risk limit α, and (optionally) some additional param-
eters, and outputs (τ,y) where τ ∈ {hand, auto} and y is a vector of length N
giving the results of scanning or manually inspecting the ballots in x. We say
Audit outputs the correct winner if the winning candidate cy based on
the results y output by Audit is equal to the true winner cx of the contest.
If τ = auto, the accompanying y represents the results of an optical scan. If
τ = hand, the accompanying y represents the results of a full manual recount
(which are correct by definition). The rescan audit procedure should be accom-
panied by provable guarantees that the output y reflects the correct election
outcome (i.e., the correct winner for each contest)15 with probability at least
1− α (subject to any explicitly stated conditions or assumptions). We say that
an audit procedure accepts if it outputs (auto, ·).
3.1 Threat model and assumptions

Threat Model 1 BasicAudit and 2ScanAudit rely on the following set of
trust assumptions (also expressed graphically in Figure 1 in Section 1):
– The scanners are untrusted (indicated in pink).
– The comparison logic—that is, the software that compares the scanners’

results—is untrusted (again pink), as its output can be independently verified.
– The labeler and shuffler used to implement a known shuffle are trusted

not to communicate with each other (indicated in yellow). They need not be
trusted to correctly implement a particular known shuffle.16

We treat untrusted components as behaving arbitrarily, and possibly collud-
ing with one another. Our protocols guarantee correction or detection of any
errors due to adversarial (or otherwise erroneous) behavior of untrusted compo-
nents. Our formal model and theorems assume that trusted components behave
correctly. Section H discusses mitigating measures that could significantly im-
prove our assumptions on trusted components in practice.

In order to avoid the necessity of trusting the comparison logic, we assume
that both scanners’ outputs (CVRs and labels) are publicly released. This allows
the comparison logic to be verified independently by any observer.
Assumptions Our protocols rely on two key assumptions. Their suitability in
specific applications depends on these assumptions’ plausibility in those contexts.
– Non-communication assumption. We rely on the assumption (implicit in

our threat models) that during the audit, the labeler and shuffler do not com-
municate with the second scanner. Our protocols are secure against arbitrary
communication between the two scanners, and against arbitrary collusion be-
tween the labeler, shuffler, and scanners before the audit (e.g., they could be
preprogrammed with a coordinated malicious strategy and shared secrets,

15 Our election audits serve to check the outcome or winner, not the specific tallies
for each candidate. In particular, y may reflect the correct election outcome even if
some of its reported ballot types are incorrect.

16 The shuffler’s intended operation is to mechanically perform a sufficiently entropic,
unknown shuffle. Other parts of the protocol ensure we can figure out the permuta-
tion that occurred, after this shuffle is performed.

10 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

whether by hardware/software developers or upstream supply chain links).
Our non-communication assumption is needed because an adversarial labeler
could otherwise transmit the permutation to the second scanner: e.g., by a
covert wireless channel or by steganographic encoding in ballot labels.
The 2021 EAC Guidelines [17, §14.2.E] strictly limit network connectivity in
voting equipment. Non-communication between system components conform-
ing to these guidelines can be enforced by physically separating machines,
removing wireless ports, sealing wired ports, and limiting physical access.
Note that close observation by officials and outside observers is a standard
requirement for elections [19,44,13].

– Ballot indistinguishability assumption. Our security proofs rely on the
assumption that scanners cannot identify a particular ballot among others
cast for the same candidate. Without this — e.g., if ballots were uniquely
identifiable by scanners — it would be straightforward for two scanners to
collude to produce incorrect but consistent outputs.
Unfortunately, the ballot indistinguishability assumption does not hold for
high-resolution scanners that can precisely observe paper fiber patterns or
distinctive markings made by voters [14]. It may be more compatible with
lower-resolution scanners: an area on which we would be keen to see further
research (see Section H). We do not believe that the indistinguishability as-
sumption holds in modern ballot scanning systems and recommend against
real-world reliance on it in the near term. That said, we believe that our
new audit paradigm is of theoretical interest and has the potential for future
practicality. In that spirit, our results provide motivation for future work to
weaken the indistinguishability assumption, as well as empirical and system
design research on scanning hardware and ballot designs that are compatible
with ballot indistinguishability.

Remark 1. When multiple contests are on the same ballot, malicious scanners
could also use votes in other contests to distinguish between ballots to coordinate
their cheating. This can be entirely prevented by use of a separate paper ballot
for each race [4,48]. Alternatively, we could mask the scanners so that they only
observe one one ballot column or ideally just one race, as discussed further in the
next bullet and in Appendix H. Masking would also limit the ability of scanners
to use stray marks to trigger cheating.

Remark 2. Appendix E offers a conjectural approach to improving these trust as-
sumptions, at the expense of a third scan. We describe a protocol 3ScanAudit,
conjecture its security, and discuss the challenges of proving its security.

4 BasicAudit
Our simplest model assumes a single two-candidate contest with perfect scan-
ning equipment. Our protocol BasicAudit (Algorithm 2) uses two scanners
S1, S2 and compares the results of the scans. First, S1 scans the entire set of
ballots. Then, the ballots are shuffled randomly before S2 scans the ballots in
shuffled order. These steps make up BasicAudit’s “scan-shuffle-rescan” or SSR
subroutine (Algorithm 1). Our protocols depend on the scan discrepancy d,

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 11

Algorithm 1 Scan-shuffle-rescan (for C candidates)

1: procedure SSR S1,S2,Π
C (x)

2: y← S1(x). // scanner 1’s output (on unshuffled ballots)
3: (x̃, π)← Π(x). // shuffle ballots
4: z← S2(x̃). // scanner 2’s output (on shuffled ballots)
5: d← ∥π(y)− z∥0. // # scan discrepancies
6: ∀c ∈ [C], let qc ← |{k ∈ [N] : yk = c}|. // tallies from y
7: c1 ← argmaxc∈[C] qc. // winner
8: c2 ← argmaxc∈[C]\{c1} qc. // runner-up
9: M ← qc1 − qc2 . // absolute margin

10: return (x̃,y, z, π, d,M, (qc)c∈[C]).
11: end procedure

Algorithm 2 Basic audit

1: procedure BasicAudit S1,S2,Π(x, α)
2: (x̃,y, z, π, d,M,q)← SSRS1,S2,Π

2 (x).
3: h←

⌈
log(α)

log(1−α2/M/2)

⌉
. // # ballots to hand check

4: if d = 0 then // no discrepancies between two scans
5: v← HandInspecth(x̃). // check h shuffled ballots
6: if ∀j ∈ [h], vj = zj then // hand check matches scans
7: return (auto,y).
8: end if
9: else // one or more discrepancies between scans

10: y← Recount(x̃). // full recount
11: return (hand,y).
12: end if
13: end procedure

the number of ballots that the two scans report differently. BasicAudit con-
cludes with manual inspection of a small number h of ballots, and accepts only
if the scan discrepancy is zero and hand inspection finds no other discrepancies.
Otherwise, BasicAudit triggers a full manual recount.

Theorem 1 (BasicAudit). Let S1, S2 be scanner functions and let Π be a
hiding known-shuffle procedure. Let x be the ballots cast in a contest. Then
BasicAuditS1,S2,Π(x, α) outputs the correct winner with probability ≥ 1− α.

In contrast to cryptographic security guarantees, the risk limit α in risk-
limiting audits is typically set to be a small constant such as 1% or 10% [30].
However, unlike existing risk-limiting audits, our scheme can also realize crypto-
graphically small risk limits while still requiring hand inspection of only a small
number of ballots, as discussed below.

Intuitively, the shuffling step serves to detect adversarial scanner behavior
that incorrectly reports only some (but not all) ballots for any given candidate.
To prove Theorem 1, we establish two important properties of BasicAudit: (1)
an adversarial scanner behaves inconsistently on ballot types—i.e., if it assigns
some ballots of type a to one reported value and other ballots of type a to

12 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

Algorithm 3 Two-scan audit (single batch)

1: procedure BatchS1,S2,Π
C,B (x, α, t)

2: t← 1(t)|| . . . ||C(t). // test ballots
3: x+ ← t||x.
4: (x̃+,y+, z+, π+, d+,M+,q+)← SSRS1,S2,Π

C (x+).
5: ∀c ∈ [C], δi ← |{i ∈ [ct] \ [(c− 1)t] : z+i ̸= c}|.
6: δ = maxc δc // # test discrepancies
7: if δ ≥ t/10 then // too many test discrepancies
8: T ← {π+(j)}j∈[Ct]. // test ballots’ shuffled indices
9: x← (x̃+

i)i∈[Ct+N\T]. // remove test ballots
10: y← Recount(x). // recount this batch
11: ∀c ∈ [C], qc ← |{k ∈ [N] : yk = c}|. // tallies
12: return (hand, 0, (qc)c∈[C],y,y).
13: else // discrepancy small enough: return results w/o recount
14: return (auto, d,q,y, z).
15: end if
16: end procedure

another reported value—then SSR will very likely detect this behavior; and (2)
if a scanner is misreporting a fraction of the true winner’s votes, then hand
inspecting a small number of ballots will very likely detect this. The full proof is
in Appendix B, where these two properties are formalized as Lemmas 4 and 5.

Table 1(a) in Appendix C shows the number of ballots that must be hand
inspected by BasicAudit, for different risk limits α and absolute margins M .
As long as the reported margin is larger than 100, it suffices to hand inspect only
five ballots to achieve a risk limit of 5%. Even with a reported margin as small
as 10, it is sufficient to hand inspect only 10 ballots. These numbers demonstrate
the potential power of our approach: with an additional scan, it suffices to hand-
inspect an extremely small number of ballots even for very small margins.

Parameter choice The number h of hand-inspected ballots on line 3 of BasicAudit
is chosen by balancing parameters to guarantee that if at least a α2/M fraction
of ballots was misreported by the first scanner, then with probability 1−α, one
of the hand-inspected ballots must have been misreported.

Implementing a known shuffle We propose implementing a known-shuffle
procedure using a labeler and an unknown-shuffle (i.e., a mechanical shuffler) as
follows. (1) label the ballots x1, . . . , xN with labels ℓi = EncK(i) where EncK
denotes encryption with a secret key K; (2) apply an unknown shuffle to the
ballots to obtain the ballots in a new order x̃1, . . . , x̃N ; and (3) read and decrypt
the labels on the permuted ballots to recover the original index of each permuted
ballot, thus reconstructing the permutation implemented by the shuffle. Using
encryption achieves the hiding property required by our protocols (see Section 3);
otherwise, simply printing the original indices on the ballots would suffice.

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 13

Algorithm 4 Two-scan audit (main)

1: procedure 2ScanAudit S1,S2,Π
C ((x1, . . . ,xB), α)

2: Let t← ⌈ 25
8
log

(
2BC
α

)
⌉. // # test ballots / cand.

3: for b ∈ [B] do // batch-level audits
4: (τb, db,qb,yb, zb)← Batch

S1,b,S2,b,Πb

C,B (xb, t).
5: end for
6: c1 ← argmaxc∈[C]

{∑
b∈[B](qb)c

}
. // winner

7: c2 ← argmaxc∈[C]\{c1}

{∑
b∈[B](qb)c

}
. // runner-up

8: d←
∑

b∈[B] db.
9: M ← qc1 − qc2 . // margin

10: if M ≤ max{27 · log(2/α), 8d} then
11: // margin too small: recount
12: ∀b ∈ [B] with τb = auto, let yb ← Recount(xb)
13: ∀b ∈ [B], let τb = hand

14: end if
15: return ((τ1, . . . , τB),y1, . . . ,yB).
16: end procedure

5 2ScanAudit

In Algorithms 3 and 4, we present a rescan audit for more complex real-world sce-
narios: with many candidates, ballots audited in batches,17and imperfect scan-
ners so long as the number of scanner errors does not change the outcome.

Unlike in the previous section, two scans combined and a hand inspection
of a small sample of ballots does not suffice to audit the outcome with C > 2
candidates or with B > 1 batches. This is because the adversary may consistently
misreport the votes cast for a candidate who received only a few votes in that
batch, which would not be detected in a small sample. To address this problem,
we introduce a fixed number t of test ballots for each candidate in each batch. We
define the test discrepancy δ as the number of test ballots misreported by the
second scanner. The test ballots serve to ensure that the stack of ballots contains
at least a few ballots belonging to each candidate.18 By checking that the test
ballots for each candidate are reported correctly by the second scanner, we can
also ensure that the true votes cast for each candidate are reported correctly. This
allows us to determine the plurality winner in elections with many candidates
and to audit in separate batches. The use of these test ballots obviates the need
for a hand inspection after the two scans. However, if too many test ballots in
any batch are misreported, that batch is manually recounted. Moreover, if the
reported margin is too small as a function of the risk limit or the discrepancy
between the two scans across all batches is large compared to the margin, then
all batches are manually recounted.

17 Since an election may be administered in many different places, it is impractical
(and may be illegal) to move the ballots to a central location for auditing.

18 As noted in the introduction, test ballots can be avoided in many realistic situations.

14 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

Theorem 2 (2ScanAudit). Let S1, S2 be scanner functions, let Π be a hiding
known-shuffle procedure, and let x1, . . . ,xB be the ballots cast in batches 1, . . . , B
respectively. Then 2ScanAuditS1,S2,Π

C ((x1, . . . ,xB), α) will output the correct
winner with probability at least 1− α.

The proof of Theorem 2 is in Appendix D. While its high-level outline is
similar to the proof for BasicAudit, the analysis becomes significantly more
complex due to the multiple candidates, batching, and imperfect scanners.
Efficiency In addition to the risk-limit property, it is desirable that an audit
procedure only invokes recounts sparingly, when necessary to guarantee the cor-
rectness of the outcome. In 2ScanAudit, a batch is recounted if at least 1/10
of the test ballots for any candidate are misreported by the second scanner. All
batches are recounted if either the overall reported margin is smaller than a
function of the risk limit (27 log(2/α)) or the number of discrepancies between
the scans is greater than 1/8 of the overall reported margin. So, a recount is only
invoked when there are many misreported ballots or a small margin of victory.
Parameter choices The value of t on line 2 of 2ScanAudit is chosen so that
with probability 1 − α/2, if the second scanner misreports a majority of the
ballots for any candidate in any batch, then at least a small fraction (1/10) of
the test ballots will be misreported, violating the test on line 6 of Batch.19 If the
second scanner correctly reports a majority of the ballots for every candidate in
every batch, the expected number of discrepancies between the scans is at least
half the number of ballots misreported by the first scanner. The threshold for
M on line 10 of 2ScanAudit is then chosen so that with probability 1 − α/2,
the number of ballots misreported by the first scanner is smaller than M/2.

Table 1(b) in Appendix C shows the number of test ballots t and threshold
margin τM for 2ScanAudit for various risk limits. We see that the number t of
test ballots per batch remains small for a wide range of risk limits α. However,
the margin threshold at which our analysis breaks down grows fairly quickly
with the number of batches. Improving this dependence for better handling of
many batches is a desirable future direction.

6 Evaluation of BasicAudit & 2ScanAudit
We conduct an evaluation based on cost and timing data from the Rhode Island
pilot study of risk-limiting audits [23]. While audit costs are likely to vary sig-
nificantly, the RI report currently provides the best publicly available documen-
tation on the costs and timings of risk-limiting audits under realistic conditions.
The Rhode Island data is likely to provide a better estimate of realistic costs
and timings than could experiments run in a research environment.

Our analysis shows that for elections with margins under roughly 1%, rescan
audits are competitive with or better than the best known statistical risk-limiting
audits in terms of both time and monetary cost (provided that the assump-
tions required for rescan audits are satisfied), as illustrated in Figure 2. An
additional advantage of rescan audits is their more predictable workload, since
the workload of rescanning does not depend on the margin, and escalation to a
19 Instead of using the fractional threshold t/10, we could instead test on line 6 whether

any test ballot was misreported. This would also yield a valid audit, but could
unnecessarily invoke a recount if a very small number of test ballots are misreported.

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 15

2.0 1.5 1.0 0.5 0.0
Margin (% of 100K ballots)

0

5000

10000

15000

B
al

lo
ts

m
an

ua
lly

ha
nd

le
d

2.0 1.5 1.0 0.5 0.0
Margin (% of 100K ballots)

0

100

200

300

400

A
ud

it
to

ta
lt

im
e

(h
)

2.0 1.5 1.0 0.5 0.0
Margin (% of 100K ballots)

0

5000

10000

15000

La
bo

r
co

st
($

)

BasicAudit
2ScanAudit (B=1)
2ScanAudit (B=20)
Ballot comparison audit
Ballot polling audit

01234
Margin (% of 50K ballots)

0

2000

4000

6000

8000

B
al

lo
ts

m
an

ua
lly

ha
nd

le
d

01234
Margin (% of 50K ballots)

0

50

100

150

200

A
ud

it
to

ta
lt

im
e

(h
)

01234
Margin (% of 50K ballots)

0

2000

4000

6000

8000

La
bo

r
co

st
($

)

Fig. 2: Estimated manual handling (left), total time (center), and labor cost
(right) for different election sizes and margins. Workloads are for the case that
the audit accepts (i.e., honest scanners). If too many discrepancies are found (or
any, in BasicAudit), the audit will escalate to a full hand recount. Although
2ScanAudit provides better guarantees for B = 1 than for B = 20, auditing in
batches may be desirable due to practical considerations.

full recount is less likely (i.e. is required for a smaller range of margin values) in
a rescan audit than ballot-polling or ballot-comparison audits. Election officials
have indicated that a more predictable workload may be preferred even if it is
likely to involve more work than a less predictable alternative [23].
Manual ballot inspection We compare the number of ballots that must be
handled manually for each audit. For BasicAudit and ballot comparison or
ballot polling audits, this refers to the number of ballots that are hand-inspected;
for 2ScanAudit it refers to the number of test ballots.
Timings and labor costs We estimate timings for Figure 2 based on the
timings of key audit operations as documented in the Rhode Island pilot study
and subsequent systematization [23,5]. We estimate labor costs at $20 per person-
hour and calculate person-hours per task based on the RI data. Appendix F
describes the key RI data and precisely how our estimates are computed.
Worked example. Consider a two-candidate election with N = 10, 000 ballots
cast, relative margin m = 1% (i.e., absolute margin M = 100), and risk limit α =
5%. A ballot-polling audit would escalate to a full hand recount in this setting.
A ballot-comparison audit would require roughly 600 ballots to be hand-
inspected, yielding an estimated workload just short of 15 hours. We estimate our
2ScanAudit would take less than 8 hours in total: less than 51% of the time
of a ballot comparison audit. These estimates follow the same methodology
as above; Appendix G gives a step-by-step breakdown of the calculations.
19 The plots depict small margin ranges to illustrate our schemes’ performance in the

regime where they are competitive. Ballot-polling and ballot-comparison audits per-
form better for larger margins (not our target regime).

16 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

7 Conclusion
We present and analyze a new approach to post-election audits inspired by multi-
prover proofs in cryptography, continuing a long tradition of designing election
systems based on cryptographic paradigms. We formalize our new paradigm
of rescan audits and present new protocols with security proofs, which rely on
untrusted scanners and a very small amount of hand examination of ballots. Our
protocols handle contests with multiple candidates, ballots that are batched, and
error-prone scanners. Our methods are very efficient in the most critical cases
where existing techniques have high cost: i.e., when margins are small.

The schemes we propose are not ready for near-term deployment. We recog-
nize that there remain considerable challenges, both theoretical and practical,
to our goal of enabling more automation to be used securely in election audits.
However, we expect that further theoretical and practical refinements will lead
to schemes with an increased domain of practicality. We offer additional discus-
sion on open questions in Appendix H. We hope that the initial steps and new
approach in this paper will guide future research towards making post-election
audits both faster and cheaper, while keeping them secure.

Acknowledgments
We thank Philip Stark for helpful information on timings. SP’s research is sup-
ported by a Computing Innovation Fellowship, funded by the National Science
Foundation under Grant #2127309 to the Computing Research Association,
and by the Cornell Tech Digital Life Initiative. SP’s earlier work on this project
was supported in part by the MIT Digital Currency Initiative. AS is supported
by NSF Frontier Award 1804794. Additionally, AS and SP’s earlier work on
this project was supported by the following grants: NSF MACS (CNS-1413920),
DARPA IBM (W911NF-15-C-0236), Simons Investigator award agreement dated
June 5th, 2012, and the Center for Science of Information (CSoI), an NSF Science
and Technology Center, under grant agreement CCF-093937.

References
1. Andrea Bajcsy, Ya-Shian Li-Baboud, and Mary Brady. Systematic measurement

of marginal mark types on voting ballots. Technical report, NIST, 2015. https:
//doi.org/10.6028/NIST.IR.8069.

2. Dean Baumert and Mike Dvorak. Ballot processing system. U. S. Patent 8,261,984,
Sep. 11 2012.

3. Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. Multi-prover
interactive proofs: How to remove intractability assumptions. In Janos Simon,
editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing,
May 2-4, 1988, Chicago, Illinois, USA, pages 113–131. ACM, 1988.

4. J. Benaloh, D. Jones, E. Lazarus, M. Lindeman, and P.B. Stark. SOBA:
Secrecy-preserving observable ballot-level audit. In Proceedings 2011 Electronic
Voting Technology Workshop/Workshop on Trustworthy Elections (EVT/WOTE
’11), 2011. http://static.usenix.org/events/evtwote11/tech/final_files/
Benaloh.pdf.

5. Matthew Bernhard. Election Security is Harder Than You Think. PhD thesis, U.
Michigan, 2020. https://deepblue.lib.umich.edu/handle/2027.42/163272.

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 17

6. Matthew Bernhard, Kartikeya Kandula, Jeremy Wink, and J. Alex Halderman.
Unclearballot: Automated balled image manipulation. In D. Chaum, editor, Proc.
Intl. Joint Conf. on Electronic Voting, pages 14–31. Springer, 2019.

7. Jacob Bogage and Christopher Ingraham. Here’s why the postal ser-
vice wanted to remove hundreds of mail-sorting machines, aug 2020.
https://www.washingtonpost.com/business/2020/08/20/postal-service-
mail-sorters-removals [https://perma.cc/C4XU-YRFG].

8. J. Bretschneider, S. Flaherty, S. Goodman, M. Halvorson, R. Johnston, M. Lin-
deman, R.L. Rivest, P. Smith, and P.B. Stark. Risk-limiting post-election audits:
Why and how?, Oct. 2012. (ver. 1.1) http://people.csail.mit.edu/rivest/
pubs.html#RLAWG12.

9. Kate Brumback. Georgia again certifies election results showing Biden won.
AP News, Dec 2020. https://apnews.com/article/election-2020-joe-biden-
donald-trump-georgia -elections-4eeea3b24f10de886bcdeab6c26b680a.

10. Joseph Calandrino, J. Alex Halderman, and Edward W. Felten. Machine-assisted
election auditing. In Proc. 2007 USENIX/ACCURATE Electronic Voting Tech-
nology Workshop, Aug. 6 2007. https://www.usenix.org/conference/evt-07/
machine-assisted-election-auditing.

11. D. Chaum. Elections with unconditionally-secret ballots and disruption equivalent
to breaking RSA. In C. G. Guenther, editor, Proc. 1988 EUROCRYPT, volume
330 of Lecture Notes in Computer Science, pages 177–182. Springer, 1988.

12. David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

13. City and Department of Elections County of San Francisco. Observe the election
process. https://sfelections.sfgov.org/observe-election-process [https:
//perma.cc/3X5L-ETRW].

14. William Clarkson, Tim Weyrich, Adam Finkelstein, Nadia Heninger, J. Alex Hal-
derman, and Edward W. Felten. Fingerprinting blank paper using commodity
scanners. In 2009 30th IEEE Symposium on Security and Privacy, pages 301–314,
2009.

15. Colorado Secretary of State Jena Griswold. Risk-Limiting Audit (RLA)
FAQs. https://www.sos.state.co.us/pubs/elections/RLA/faqs.html [https:
//perma.cc/RUH2-W2HN].

16. Election Assistance Commission. Election audits across the united states,
2021. https://www.eac.gov/sites/default/files/bestpractices/Election_
Audits_Across_the_United_States.pdf.

17. Election Assistance Commission. Requirements for the Voluntary Voting system
Guidelines 2.0 . https://www.eac.gov/voting-equipment/voluntary-voting-
system-guidelines, February 10 2021.

18. A. Cordero, T. Ji, A. Tsai, K. Mowery, and D. Wagner. Efficient user-guided ballot
image verification. In D. Jones, J.-J. Quisquater, and E. Rescorla, editors, Pro-
ceedings 2010 EVT/WOTE Conference. USENIX/ACCURATE/IAVoSS, August
2010.

19. European Commission. Eu election missions. http://ec.europa.eu/info/
strategy/relations-non-eu-countries/types-relations-and-partnerships/
election-observation/mission-recommendations-repository/home
[https://perma.cc/KKL4-EU6N].

20. Florida Division of Elections . Voting System Qualification Test Report – Clear
Ballot Group ClearAudit 1.0.6 , 2014. https://files.floridados.gov/media/
693729/clear-audit-test-report-112014.pdf.

18 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

21. Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting
scheme for large scale elections. In Jennifer Seberry and Yuliang Zheng, editors,
Advances in Cryptology — AUSCRYPT ’92, pages 244–251, Berlin, Heidelberg,
1993. Springer Berlin Heidelberg.

22. Georgia Secretary of State. Historic first statewide audit of paper ballots
upholds result of presidential race, Nov 2020. https://sos.ga.gov/index.php/
elections/historic_first_statewide_audit_of_paper_ballots_upholds_
result_of_presidential_race [https://perma.cc/FN4F-V8LE].

23. Rhode Island RLA Working Group. Pilot implementation study of risk-limiting au-
dit methods in the state of rhode island, aug 2019. https://www.brennancenter.
org/sites/default/files/2019-09/Report-RI-Design-FINAL-WEB4.pdf.

24. Abigail Harrison, Benjamin Fuller, and Alexander Russell. Lazy risk-limiting ballot
comparison audits. https://arxiv.org/abs/2202.02607, 2022.

25. Herma. Automatic labeling machines. https://www.herma.us/machines/
products/labeling-machines [].

26. Wassily Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

27. Engelbert Hubbers, Bart Jacobs, Berry Schoenmakers, Henk van Tilborg, and
Benne de Weger. Description and Analysis of the RIES Internet Voting System.
Technical report, Eindhoven Institute for the Protection of Systems and Infor-
mation, June 24 2008. https://pure.tue.nl/ws/portalfiles/portal/2959981/
844708558571577.pdf.

28. Douglas W. Jones. On optical mark-sense scanning. In D. Chaum et al., editor,
Towards Trustworthy Elections, volume 6000 of Lecture Notes in Computer Science,
pages 175–190. Springer, 2010. See http://www.cs.uiowa.edu/~jones/voting/
OpticalMarkSenseScanning.pdf.

29. David Levine and Maurice Turner. Restore trust in our democracy through
more election transparency. The Hill, 2021. https://thehill.com/
opinion/campaign/551760-restore-trust-in-our-democracy-through-more-
election-transparency/.

30. Mark Lindeman and Philip B. Stark. A gentle introduction to risk-limiting audits.
IEEE Security and Privacy, 10:42–49, 2012.

31. Mark Lindeman, Philip B. Stark, and Vincent S. Yates. BRAVO: Ballot-polling
risk-limiting audits to verify outcomes. In Alex Halderman and Olivier Pereira,
editors, Proceedings 2012 EVT/WOTE Conference, 2012.

32. Multiple. Principles and best practices for post-election tabulation audits.
https://verifiedvoting.org/publication/principles-and-best-practices-
for-post-election-tabulation-audits, December 2018.

33. National Academies of Sciences, Engineering, and Medicine. Securing the Vote:
Protecting American Democracy. The National Academies Press, Washington,
DC, 2018. https://doi.org/10.17226/25120.

34. NCSL. Post-election audits. https://www.ncsl.org/research/elections-and-
campaigns/post-election-audits635926066.aspx#state%20reqs, 2022.

35. Kathleen O’Neil. Restoring election confidence requires transparency, in-
creased access. American Association for the Advancement of Science,
2018. https://thehill.com/opinion/campaign/551760-restore-trust-in-
our-democracy-through-more-election-transparency/.

36. Scott Roeben. A rare look inside a casino automatic card shuffler, aug
2013. https://www.casino.org/vitalvegas/a-rare-look-inside-a-casino-
automatic-card-shuffler [https://perma.cc/C6NA-GMKF].

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 19

37. Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme. In Louis C.
Guillou and Jean-Jacques Quisquater, editors, Advances in Cryptology — EURO-
CRYPT ’95, pages 393–403, Berlin, Heidelberg, 1995. Springer Berlin Heidelberg.

38. Election Systems & Software. ES&S DS850 System Operations Procedures, 15.0
edition, August 7 2012.

39. P. B. Stark and D. A. Wagner. Evidence-based elections. IEEE Security and
Privacy, 10(05):33–41, Sep-Oct 2012.

40. Philip B. Stark. Conservative statistical post-election audits. Ann. Appl. Stat.,
2:550–581, 2008.

41. Philip B. Stark. Tools for comparison risk-limiting election audits. http://www.
stat.berkeley.edu/~stark/Vote/auditTools.htm, 2015.

42. Philip B. Stark. Sets of half-average nulls generate risk-limiting audits:
SHANGRLA, 2020.

43. James D. Stewart. Device for optically reading marked ballots using infrared and
red emitters. U. S. Patent 5,248,872, Sep. 28 1993.

44. S.W.L. What do election observers do? The Economist. https://www.economist.
com/the-economist-explains/2017/06/21/what-do-election-observers-do
[https://perma.cc/XHV5-SWHG].

45. Verified Voting. Audit law database. https://verifiedvoting.org/auditlaws/.
46. Verified Voting. Post election audits. https://www.verifiedvoting.org/

resources/post-election-audits/.
47. Verified Voting and Citizens for Election Integrity Minnesota. Coordinating audits

and recounts to strengthen election verification. https://verifiedvoting.org/
publication/audits-recounts-nov-2022/, 2022.

48. Wikipedia. Elections in South Korea. https://en.wikipedia.org/wiki/
Elections_in_South_Korea.

49. Jan Wolfe. Factbox: Trump’s false claims debunked: the 2020 election and
jan. 6 riot. Reuters, 2022. https://www.reuters.com/world/us/trumps-false-
claims-debunked-2020-election-jan-6-riot-2022-01-06/.

A Tail bounds
Lemma 1 (Hoeffding bound). Let X1, . . . , Xn be independent [0, 1]-valued
random variables, and let X = 1

n

∑
i Xi. Then for any t ≥ 0, we have that

Pr[X −E[X] ≥ t] ≤ e−2nt2 .

Lemma 2 (Multiplicative Chernoff bound). Let X1, . . . , Xn be indepen-
dent {0, 1}-valued random variables, let X = 1

n

∑
i Xi and µ = E[X]. Then for

any δ ∈ (0, 1), we have Pr
[
X ≥ (1− δ)µ

]
≤

(
e−δ

(1−δ)1−δ

)µ

.

Lemma 3. (Hoeffding [26]) Let X ∼ Hypergeom(N,K, n) be distributed accord-
ing to the hypergeometric distribution with n samples on a population of size
N containing K successes, and let p = K/N . Then for any ζ > 0 we have
Pr[X ≤ (p− ζ)n] ≤ e−2ζ2n and Pr[X ≥ (p+ ζ)n] ≤ e−2ζ2n.

B Proofs for BasicAudit
Lemma 4. Suppose there are k ballots of type (true value) a, and scanner S1

assigns i of them to one reported value x̂ ∈ {1, 2} and k− i to the other reported
value for 0 < i ≤ k/2. Then SSR will output a discrepancy d that is nonzero
with probability at least 1− (i/k)i.

20 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

Proof. For j ∈ {1, 2}, let Ej be the event that Sj assigns i type-a ballots to
reported value x̂ and k− i ballots of type a to reported value 1− x̂. Suppose (as
in the lemma statement) that E1 occurs. Then if E2 does not occur, SSR will
output a nonzero discrepancy with probability 1.

Now suppose that E1 ∧ E2 occurs. Consider the set of permutations that
agree with π on all ballots not of type a, where π is the permutation sampled
by the routine SSR. There are k! such permutations. The input to the second
scanner S2 is identical for each of these permutations. SSR will output a nonzero
discrepancy unless S2 correctly guesses which ballots of type a S1 assigned to
each reported value. Hence, the probability that S2 agrees with S1 on each of
the ballots of type a is at most i!(k − i)!/k! = 1/

(
k
i

)
< (i/k)i.

Lemma 4 immediately yields the following corollary, which implies that SSR
will identify a discrepancy with very high probability except in two cases: when
almost all ballots cast for the winner are reported correctly (in which case there
may be no discrepancy) and when almost all ballots cast for the winner are
reported incorrectly.

Corollary 1. Suppose scanner S1 reports the wrong vote on at least an ϵ frac-
tion of the W ballots cast for the true winner, where ϵ ∈ [0, 1]. Then an incorrect
report will be detected — by SSR outputting a nonzero discrepancy — with prob-
ability at least 1− ϵ̂Wϵ̂ where ϵ̂ = min{ϵ, 1− ϵ}.

Lemma 5. Suppose scanner S1 reports the wrong vote on at least an ϵ fraction
of the ballots cast for the true winner, where ϵ ∈ [0, 1]. Then an incorrect report
will be detected with probability at least 1− (1− ϵ/2)h from a hand inspection of
h distinct random ballots.

Proof. The true winner received at least N/2 votes, so our assumption implies
that S1 reports the wrong vote on at least ϵN/2 ballots. Call these ballots “bad
ballots,” and call all the others “good ballots.” Then the fraction of bad ballots
among all ballots is at least ϵ/2. Consider the sequential selection of h random
ballots (with replacement). For each ballot selected, the probability that the
selected ballot is good is 1 − ϵ/2. It follows that the probability pmiss that all
of the h ballots selected for hand inspection are good is (1− ϵ/2)h. Finally, the
probability that at least one of the hand-inspected ballots is bad is 1− pmiss.

Theorem 1 (Correctness of BasicAudit) Let S1, S2 be scanner functions
and let Π be a hiding known-shuffle procedure. Let x be the ballots cast in a
contest. Then BasicAuditS1,S2,Π(x, α) outputs the correct winner with proba-
bility ≥ 1− α.

Proof. Suppose the reported winner is incorrect and the reported margin is M .
Then at least M/2 votes for the true winner must have been erroneously reported
by scanner S1 as votes for the true loser. For any δ ∈ [0, 1/2], consider two cases
as follows.
Case I: Less than a δ fraction of the true winner’s votes were
misallocated by S1. As noted above, the fraction ϵ < δ of misreported votes

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 21

is at least (M/2)/W , where W is the true number of votes for the true winner.
By Corollary 1, SSR (within BasicAudit) outputs a zero discrepancy with
probability at most ϵWϵ ≤ ϵM/2 ≤ δM/2 (since ϵ ≥ (M/2)/W and ϵ < δ).
Case II: At least a δ fraction of the true winner’s votes were mis-
allocated by S1. In this case, Lemma 5 implies that hand-inspecting h ran-
dom ballots will detect an error with probability at least 1 − (1 − δ/2)h. It fol-
lows that BasicAudit outputs the correct winner with probability at least 1−
minη∈[0, 12]

max
{
ηM/2, (1− η/2)

h
}

. Taking η = α2/M , since h = ⌈log(α)/ log(1−
α2/M/2)⌉ in BasicAudit (Algorithm 2, line 3), the theorem follows.

C Parameter tradeoff tables for BasicAudit and
2ScanAudit

(a) (b)

α
Reported margin M ≥
10 100 1000 104 105

0.09 7 4 4 4 4
0.05 10 5 5 5 5
0.01 21 8 7 7 7
10−21 ∗ 230 80 71 70

t
α τM B = 1 B = 20 B = 200 B = 2000

C
=

2

0.09 83 12 22 29 36
0.05 99 14 24 31 38
0.01 143 19 29 36 43
10−21 1324 156 165 172 180

C
=

1
0 0.09 83 17 27 34 41

0.05 99 19 29 36 43
0.01 143 24 34 41 48
10−21 1324 161 170 178 185

Table 1: (a) BasicAudit number of ballots h =
⌈
log(α)/ log(1− α2/M/2)

⌉
to be

hand-counted for risk limit α and reported margin M . Starred entries are larger
than 1000 and are not recommended for use. (b) 2ScanAudit recount threshold
τM = ⌊27 log(2/α)⌋ on the margin and number t = ⌈(25/8) log(2BC/α)⌉ of test
ballots per candidate per batch with risk limit α, B batches, and C candidates.
A full hand recount will be invoked if M ≤ τM or M ≤ 8d.

D Proofs for 2ScanAudit
Theorem 2 (Correctness of 2ScanAudit) Let S1, S2 be scanner functions,
let Π be a hiding known-shuffle procedure, and let x1, . . . ,xB be the ballots cast
in batches 1, . . . , B respectively. Then 2ScanAuditS1,S2,Π

C ((x1, . . . ,xB), α) will
output the correct winner with probability at least 1− α.

Proof. Follows from Lemmata 6 and 8.

Lemma 6. Take any batch b ∈ [B] and any candidate c ∈ [C]. Let kb,c be the
true number of votes cast for c in batch b, and let vb,c ≤ t + kb,c be the number
of the t+ kb,c ballots for c in batch b (including test ballots) that that the second
scanner in batch b incorrectly reports as being for a candidate other than c. Let
E be the event that for every batch b where ∃c ∈ [C] such that vb,c ≥ (t+kb,c)/2,
are manually recounted in the algorithm. Then Pr[E] ≥ 1−B ·C · exp (−8t/25).

22 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

Proof. Let Eb,c be the event that vb,c < (t+kb,c)/2, i.e., the event that less than
half of all ballots (including test ballots) of type c in batch b are misreported by
the second scanner. Let Eb be the event that either Eb,c occurs for all c ∈ [C],
or batch b is manually recounted in the algorithm. Note that E = E1 ∧ · · · ∧EB .

Take any batch b ∈ [B] and candidate c ∈ [C] such that vb,c ≥ (t + kb,c)/2.
Let Rb be the event that batch b is manually recounted in the algorithm. Let
Qb,c be the event that δ < t/10 of the second scanner’s misattributed ballots for
candidate c in batch b are test ballots. Note that ¬Qb,c ⇒ Rb.

Conditioned on ¬Eb,c, we bound the probability of Qb,c. Let X be the num-
ber of test ballots of type c that the second scanner misreports. Then X ∼
Hypergeom(t + kb,c, vb,c, t) and δ ≥ X. Using Lemma 3 with p = vb,c/(t + kb,c)
and ζ = 2/5:

Pr[Qb,c|¬Eb,c] = Pr[δ < t/10] ≤ Pr[X < t/10]

= Pr [X < (p− (p− 1/10)) t]

≤ Pr [X < (p− 2/5) t] (∵ p ≥ 1/2)
= Pr [X ≤ (p− ζ) t]

≤ exp
(
−2ζ2t

)
(by Lemma 3)

= exp (−8t/25) = exp(−0.32t)

Now returning to analyze Eb, we have

Eb = (Eb,1 ∧ · · · ∧ Eb,C) ∨Rb (by definition)
= (Eb,1 ∨Rb) ∧ · · · ∧ (Eb,C ∨Rb)

⊃ (Eb,1 ∨ ¬Qb,1) ∧ · · · ∧ (Eb,C ∨ ¬Qb,C) (∵ ¬Qb,c ⇒ Rb)

Using the final expression above to bound Pr[Eb], we have

Pr[Eb] > Pr [(Eb,1 ∨ ¬Qb,1) ∧ · · · ∧ (Eb,C ∨ ¬Qb,C)]

= 1− Pr [(¬Eb,1 ∧Qb,1) ∨ · · · ∨ (¬Eb,C ∨Qb,C)]

≥ 1−
∑
c∈[C]

Pr [¬Eb,c ∧Qb,c] (union bound)

≥ 1−
∑
c∈[C]

Pr [Qb,c|¬Eb,c]

≥ 1− C · exp (−8t/25)

Finally, we apply another union bound to get

Pr[E] = Pr[E1 ∧ · · · ∧ EB] = 1− Pr[¬E1 ∨ · · · ∨ ¬EB]

≥ 1−B · C · exp (−8t/25) .

Lemma 7 (Concentration of sums of hypergeometrics). For i ∈ [k], let
Xi ∼ Hypergeom(Ni,Ki, ni) be independently hypergeometrically distributed. Let
X =

∑
i Xi, n =

∑
i ni, and µ = E[X]. Then for any δ ∈ (0, 1)

Pr[X < (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

.

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 23

P Π1 S′ S1 Π2 S2

y

z, ℓℓ′ y ≈ πℓ,ℓ′(z)

Full recount
Correct reported outcome
with probability > 1− α

Ballots (x) Label
print Shuffle 1 Label

scan Scan 1 Shuffle 2 Scan 2

no yes

Comparison logic

Fig. 3: Flow diagram of 3ScanAudit. Pink (hatched) components are untrusted.
Blue (solid) components are trusted, but purely mechanical (i.e., involve no
software). πℓ,ℓ′ denotes the permutation induced by the sequences of labels ℓ, ℓ′.

The proof of Lemma 7 is in the full version.

Lemma 8. Suppose t ≥ 25
8 · log

(
2BC
α

)
, and let ℓ be the number of ballots misre-

ported by S1 across all candidates and batches. Then we have that with probability
at least 1− α, either ℓ < 13.04 log(2/α) or d > ℓ/4.

Proof. For each batch b ∈ [B] and candidate c ∈ [C], let Nb,c be the number
of ballots in batch b for candidate c (including the t test ballots), and let Kb,c

and nb,c be the number of these ballots that are misreported by scanners S1

and S2, respectively, where we take the convention that Kb,c = nb,c = 0 for all
batches b that were recounted in the algorithm. Then the number of these ballots
that are misreported by S1 and not by S2 is distributed according to Xb,c ∼
Hypergeom(Nb,c,Kb,c, Nb,c − nb,c). Let µ =

∑
b,c E[Xb,c] =

∑
b,c

Kb,c(Nb,c−nb,c)
Nb,c

..
By Lemma 6, we have that with probability at least 1−B ·C ·exp (−8t/25) ≥

1 − α/2 that each batch for which S2 misreports at least half of the ballots for
any candidate is manually recounted. Condition on the event that this holds.
Then we have that nb,c ≤ Nb,c

2 and consequently µ ≥ 1
2

∑
b,c Kb,c = ℓ/2.

Then by Lemma 7 we can bound the total number of discrepancies by

Pr[d < ℓ/4] ≤ Pr[
∑
b,c

Xb,c < µ/2] ≤ (2/e)µ/2

which is at most α/2 as long as µ ≥ 2 log(2/α)/ log(e/2), i.e. whenever µ ≥
6.52 log(2/α). For the case µ < 6.52 log(2/α), observe that ℓ ≤ 2µ < 13.04 log(2/α).
Since we have conditioned on an event of probability 1−α/2, the conclusion fol-
lows by a union bound.

E 3ScanAudit
The protocols above rely on a known-shuffle procedure (implemented by a labeler
and an unknown-shuffle procedure, as in Section 4). Next, we outline a candidate

24 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

y1 y2 y3

· · ·

yN

z1 z2 z3

· · ·
zN

S1(x) outputs: y =

S2(π
∗(x)) outputs: z =

S′(π∗) outputs: π = y ≈ π(z)

Fig. 4: Stylized bipartite graph scheme. S1, S2 respectively output lists of scanned
vote values y, z. S′ outputs a permutation π (depicted by graph edges) purport-
ing to describe which indices in y correspond to which indices in z.

scheme 3ScanAudit that we conjecture is secure even in a stronger (and thus
preferable) threat model in which all software components are untrusted : i.e.,
the only trusted components are simple, non-programmable hardware devices.

Threat Model 2 3ScanAudit is designed for the following stronger, and thus
preferable, threat model (also expressed graphically in Figure 3 in Section E):
– The scanners and comparison logic are untrusted (pink).
– The shuffler is purely mechanical; its reliable mechanical operation is trusted

but it requires no trusted software (indicated in blue).20 Again, the shuffler
need not implement a particular known shuffle.

– The printer, a new component not present in the other protocols, is un-
trusted (pink). Unlike the labeler of the previous threat model, it does not
need to produce random or pseudorandom labels, and could simply print the
values 1 through N in order.

Specifically, 3ScanAudit would remove the need to trust the labeler, by
ensuring that labels are unrelated to the order of ballots in the first scan. More-
over, in contrast to our previous protocols, 3ScanAudit’s shuffler may be en-
tirely mechanical with no software component, as 3ScanAudit requires only an
unknown shuffle procedure that does not output the permutation implemented.
Compared to our earlier protocols, 3ScanAudit involves one additional shuffle
and one additional scan.

Provable security for 3ScanAudit appears substantially more complex, and
to require qualitatively new techniques, compared to the analyses of our other
schemes. Providing a complete security proof for 3ScanAudit is an open ques-
tion that we would be keen to see addressed in future work. In the full version, we
provide a preliminary analysis with high-level proof intuitions, and briefly dis-
cuss its overhead and some potential drawbacks. Here, due to space constraints,
we simply state the scheme and security conjecture.
Candidate scheme 3ScanAudit is illustrated in Figure 3: it involves two
(unknown) shuffles and three scan procedures. 3ScanAudit’s innovation is to
remove trust in the ballot labeling process and remove the need for a known
shuffle, by: (1) shuffling the ballots immediately after labeling (Π1), before any
20 Limiting the trusted hardware to simple, purely mechanical, non-programmable com-

ponents is desirable because it allows the same hardware to be used without modi-
fication for each election, reducing the attack surface.

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 25

scans take place; then (2) using scanners to read vote values and labels both
before and after the second shuffle (Π2). 3ScanAudit uses test ballots in the
same way as 2ScanAudit. Intuitively, the first shuffle Π1 serves to remove any
adversarial ordering of labels. The first two scan procedures S′, S1 occur before
Π2: they respectively scan the labels and vote values and are assumed to have
physical read access only to the portion of the ballot containing the label or
voter markings, respectively.21 Then, as before, the final scan S2 occurs after Π2

and reads both labels and vote values. This results in four scan outputs: ℓ′ from
S′; y from S1; and (z, ℓ) from S2. Then, these scan results y, z, ℓ′, ℓ are checked
for consistency by comparison-logic software. Based on ℓ′ and ℓ, the comparison
logic can compute the permutation π of the ballots between the first and second
scan (if the scanners behave honestly), and thus check whether each ballot value
in y is equal to the corresponding value in z. If the scanners behave dishonestly,
the inferred permutation π will be incorrect, and this is very likely to cause
discrepancies in the comparison logic, as further argued below.

Crucially, this design means that each ballot scan is independent of the ballot
permutation π and the ballot labels are independent of the associated vote values.
From an entropy perspective, the design is equivalent to the simple “bipartite
graph scheme” illustrated in Figure 4 — in which there are no labels, there is
one single trusted unknown shuffle, and: S1, given true ballot values x, outputs
scanned values y; S2, given true shuffled ballot values π∗(x), outputs scanned
values z; and S′, given true permutation π∗, outputs an alleged permutation π.
The comparison logic then takes the three outputs y, z, π and checks whether
y ≈ π(z), like in 3ScanAudit (Figure 3).

Conjecture 1. There exist a number of test ballots t and thresholds on the num-
ber of misreported test ballots and on the size of the reported margin (inde-
pendent of the total number of ballots N) such that 3ScanAudit outputs the
correct winner with probability at least 1− α.

Preliminary analysis We now give some intuition behind the conjectured
soundness of 3ScanAudit. For ease of exposition, the analysis below consid-
ers the simpler “bipartite graph scheme” (Figure 4). Let us consider the scans
S′, S1, S2 in turn.

If S′ behaves honestly (and the labels are distinct), the inferred permutation
π will be correct, so the ballot shuffle amounts to a known-shuffle procedure,
and the analysis of 2ScanAudit holds. Consequently, any successful attack
must have S′ output an incorrect label scan.

Now, if S1 and S2 behave honestly but S′ behaves dishonestly, S′ has no
information about the outputs of S1 and S2. Then, the chance that any incorrect
edge that S′ produces will pass the comparison logic’s consistency check is close
to the probability that two randomly sampled ballots have the same value. In
close elections, this probability will be close to 1/2, so the probability that S′

can output n incorrect edges and still pass the comparison logic’s checks shrinks
with 1/2n.
21 See Section H and “Scanner masking assumption” under Section 3.1 for more discus-

sion on scanner masking.

26 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

The most subtle case to analyze is when S′ is dishonest and S1, S2 are also
dishonest. Then, in the locations where S1, S2 output incorrect ballot values that
are independent of the true ballot values, S′ may be able to compute the outputs
of S1, S2. However, if any such location is inspected by the hand audit, the hand
audit will immediately detect a discrepancy. If the fraction of such locations is
ϕ, the probability of evading detection by the hand audit shrinks with (1− ϕ)h.
Hence, a successful attack must have a relatively small ϕ≪ 1/2, i.e., not many
locations where S1, S2 output incorrect values that are independent of the true
values.

Finally, if ϕ ≪ 1/2, the ballots on which S1 output incorrect ballot values
that are independent of the true ballot values are very unlikely to be the same
physical ballots on which S2 outputs such incorrect values. That is, there will be
many physical ballots for which S1 outputted an incorrect value but S2 did not,
and vice versa. If S′ outputs the correct edge at any one of these locations, then
the comparison logic will detect a discrepancy. But if S′ outputs an incorrect
edge at every such location, then a significant fraction (around 1− ϕ2) of these
incorrect edges must connect to output values on which S1 or S2 were honest.
Since S′ has no information about the output values at these locations, the
likelihood that each such edge passes the consistency checks is low (close to 1/2
in a close election). Therefore, such an attack should be very likely to be detected
by the comparison logic whenever S′ outputs a significant number of incorrect
edges.
Additional considerations for a full analysis It may seem intuitive that
the adversary cannot obtain an advantage by outputting an incorrect mapping,
since matching up many ballots cast for different candidates makes it likely for
discrepancies to be detected. However, this turns out not to be the case: there are
nontrivial attacks that involve misreporting in the label scan S′, as described in
the next paragraph. These attacks are not fatal, but they complicate the rigorous
analysis of 3ScanAudit and rule out a range of intuitive proof approaches. In
particular, bounds on error probabilities for 3ScanAudit must be slightly worse
than error probabilities for our schemes based on a trusted shuffle, though we
expect them still to be exponentially small.

As an illustration, consider a very close election and an adversary wishing to
change the outcome by flipping a single vote. If S′ is honest, then the probability
of both scanners flipping the same vote from the winner to the loser is roughly
1/(n/2) = 2/n. But if S′ observes a sequence of labels beginning with label
“k” and misreports by swapping the positions of labels “1” and “k”, then S1 can
misreport its first ballot and S2 can misreport the ballot with label “1”. Due to
the misreport of S′, these ballots are associated in the comparison logic. As long
as the ballots labeled “1” and “k” have the same cast vote, no discrepancy will
be detected, so this adversary successfully flips a single vote from the winner to
the loser in a close election with probability roughly 1/4.

Although this attack improves the adversary’s chance of flipping a single vote
undetected, the probability of flipping t votes undetected decreases exponentially
in t. Hence, it fails to provide a meaningful break to the security of the scheme:
even in elections with small reported margins, the probability of this attack
flipping the outcome undetected is well below any standard risk limit. Yet the

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 27

existence of such attacks appears to add substantial complexity to the security
analysis.

F Workload evaluation
Manual ballot inspection We compare the number of ballots that must be
handled manually for each audit. For BasicAudit and ballot comparison or bal-
lot polling audits, this refers to the number of ballots that are hand-inspected;
for 2ScanAudit it refers to the number of test ballots. The number of ballots
hand examined by a ballot-polling audit (e.g., BRAVO [31]) is an estimated
2 ln(1/α)/m2 ballots for a relative margin of m = M/N . The number of ballots
hand examined by a ballot-comparison audit (e.g., Shangrila [42]) is approxi-
mately 1/m times fewer, or 2 ln(1/α)/m ballots [30].
Timings We estimate timings for Figure 2 based on the timings of key audit
operations as documented in the Rhode Island pilot study [23] (summarized in
Table 2) and research systematizing the Rhode Island pilot data [5].22

The Rhode Island study used two ES&S DS850 scanners, whose specifica-
tions indicate a processing speed of 300 ballots per minute; however, the pilot
study found that “the DS850 tends to jam frequently” and “most of the scanner
operator’s time was not spent actually scanning the ballots, but handling them
before and after the scan,” resulting in a 4–5 times slower throughput [23].

The scanning and hand inspection steps in our protocols have direct equiv-
alents in the Rhode Island ballot-comparison pilot, from which timings can be
drawn. We estimate test ballot preparation time to be 25s, conservatively bound-
ing it by the time to examine a retrieved ballot: if test ballots are machine-
produced, then a human will need to examine them; if they are hand-produced,
25s should suffice to fill in a prescribed bubble; and no retrieval is required. We
estimate labeling and shuffling time by a single pass of all the ballots through a
modern ballot scanner such as the DS850. As discussed in Section H, we envision
a “reverse riffle shuffle” followed by cuts, using just a single pass to avoid the
prohibitive cost of a fully random shuffle.
Labor costs We estimate labor costs for Figure 2 using a rough estimate of
$20 per person-hour and supposing, consistently with the Rhode Island pilot
data, that: a scanner operator can operate two scanners at once, teams of two
retrieve ballots for inspection, and teams of five examine retrieved ballots.23
These labor costs do not account for training and equipment. The Rhode Island
figures suggest that initial equipment setup may cost roughly $4,235 per audit
location; however, personnel costs are expected to dominate future audit costs,
after equipment setup [23].

N , h, t, C, and B are as defined in BasicAudit and 2ScanAudit and Rs,
Rbp, Trbp, Rbc, Trbc, Tex, and Topn are as defined in Table 2. BP stands for
ballot-polling and BC stands for ballot-comparison.
22 Where applicable, we interpret the RI data favorably for the ballot-polling and

ballot-comparison audits (e.g., using 35s, not 230s, for ballot-polling retrieval time)—
conservatively evaluating our own protocols in comparison.

23 We omit the labor cost of the randomness generation step as it is unclear how many
paid personnel would be required and the cost is both relatively small and the same
for all schemes we consider.

28 Douglas W. Jones, Sunoo Park, Ronald L. Rivest, and Adam Sealfon

Tr Random seed/key generation 14m (one-off)
Rs Scan or label ballots24 4,000 ballots/h
Rbc Rescan & prepare ballots

(for ballot-comparison audit)
3,240 ballots/h

Rbp Rescan & prepare ballots
(for ballot-polling audit)

4,770 ballots/h

Trbc Retrieve a specified ballot
(for ballot-comparison audit)

45s average

Trbp Retrieve a specified ballot
(for ballot-polling audit)

35s fastest method
230s slowest method

Tex Examine a retrieved ballot 25s for one contest25

Topn Open a box of ballots26 15s
Table 2: Operation timings based on Rhode Island data [23]

Here are the formulae we use for Figure 2 timing estimates:
– BP: Tr +

N
Rbp

+ (Trbp + Tex) · 2 ln(1/α)/m2.
– BC: Tr +

N
Rbc

+ (Trbc + Tex) · 2 ln(1/α)/m.
– BasicAudit: Tr + 2 · N

Rs
+ N

Rbc
+ Topn + h · Tex.

– 2ScanAudit: Tr + 3 · N
Rs

+ C ·B · t · Tex.
Let RL be the cost of labor per person-hour. Here are the formulae we use

for Figure 2 cost estimates:
– BP: RL(2Tr +

1
2 ·

N
Rbp

+ (2Trbp + 5Tex) · 2 ln(1/α)/m2).
– BC: RL(2Tr +

1
2 ·

N
Rbc

+ (2tTrbc + 5Tex) · 2 ln(1/α)/m).

– BasicAudit: RL(2Tr +
1
2

(
2 · N

Rs
+ N

Rbc

)
+ Topn + h · 5Tex).

– 2ScanAudit: RL(2Tr +
3
2 ·

N
Rs

+ C ·B · t · 5Tex).

G Detailed worked example
Recall that we consider a two-candidate election with N = 10, 000 ballots cast,
relative margin m = 1% (i.e., absolute margin M = 100), and risk limit α = 5%.
– A ballot-polling audit (e.g., BRAVO [31]) requires hand examining around

2 ln(1/α)/m2 = 60, 000 ballots. That is, a ballot-polling audit would require
a full hand recount in this setting.

– A ballot-comparison audit (e.g., Shangrila [42]) requires approximately
1/m times fewer hand comparisons, leading to a rough estimate of 600 ballots
being inspected [30]. We estimate the workload of a ballot-comparison audit
to be just short of 15 hours using the formulae in Appendix F. The seed
generation takes roughly 14 minutes, the scan and preparation for manual
inspection takes about 3.1 hours, and retrieving and manually inspecting the
600 ballots would take about 12.5 hours, for a total of 15.8 hours.

24 Estimate from [23, footnote 59].
25 This timing scales sublinearly for multiple-contest ballots: the average time to ex-

amine a ten-contest ballot was 62s. The table omits this figure since our protocols
and thus our evaluation focus on the single-contest setting.

26 As estimated in [5, equation 5.2].

Scan, Shuffle, Rescan: Two-Prover Election Audits With Untrusted Scanners 29

– We estimate the workload of 2ScanAudit to be less than 8 hours in total
time, using the formulae in Appendix F. The number of test ballots t for each
candidate is 14. The seed generation takes roughly 14 minutes, generating the
28 test ballots takes roughly 12 minutes, and the first scan, the label-shuffle
step and the second scan each require about 2.5 hours, for a total of less than
8 hours. Consequently, in this setting our audit requires less than
51% of the time of a ballot comparison audit.

H Discussion
This paper highlights a new approach to post-election audits with provable se-
curity, and provides initial cost and efficiency estimates based on historical data.
Significant work remains to fully assess the practicality and limitations of our
novel approach, including a detailed examination of practical shuffling and la-
beling mechanisms. A full analysis of such physical and hardware considerations
is beyond the scope of this work. We offer a number of open questions.
– Modern ballot scanners have very high resolution, to the point that individual

paper fibers can be imaged [28,14]. This contradicts our ballot indistinguisha-
bility assumption. Older scanners using analog mark detection circuitry were
far more likely to meet our assumptions. Can ballot indistinguishability be
integrated into the specifications for a new generation of ballot scanners?

– Our proofs assume a perfect random shuffle. This is hard to implement. How
much disorder is sufficient in practice? For example, would one or two cut-
and-shuffle steps suffice?

– Efficient mechanical shuffling machines are currently available (e.g., [36]),
primarily for playing cards (for which casinos create robust demand, and
stringent unpredictability requirements). Also, various types of efficient sort-
ing machines are routinely relied upon by postal services to sort mail [7], and
efficient automatic labeling and stamping machines are widely used in indus-
trial applications (e.g., [25]). Ballots are much larger than playing cards, and
need to be handled at larger scale. Can we leverage these existing technologies
to build efficient machines to shuffle ballots?

Further discussion of shuffling and labeling technologies is in the full version.

