
(12) United States Patent

US009270655B1

(10) Patent No.: US 9.270,655 B1
Juels et al. (45) Date of Patent: Feb. 23, 2016

(54) CONFIGURABLE ONE-TIME 33-33. A 658. EA O. Ris ObSSOn et al. .
AUTHENTICATION TOKENS WITH 2009.0323972 A1* 12/2009 Kohno et al. 380,284
IMPROVED RESLIENCE TO ATTACKS 2011/0060913 A1 3/2011 Hird et al. T13, 184

(71) Applicant: EMC Corporation, Hopkinton, MA OTHER PUBLICATIONS

(US) Bellare, Mihir, and Sara K. Miner. “A forward-secure digital signa
(72) Inventors: Ari Juels, Brookline, MA (US); E.stance in Cryptology-CRYPTO’99. Springer Berlin

Nikolaos Triandopoulos, Arlington, MA Awasthi, Amit K. and Sunder Lal. A remote user authentication
(US); Marten van Dijk, Somerville, MA Scheme using Smart cards with forward Secrecy.” Consumer Elec
(US); John Brainard, Sudbury, MA tronics, IEEE Transactions on 49.4 (2003): 1246-1248.*
(US); Ronald Rivest, Arlington, MA Abdalla, Michel, et al. “From identification to signatures via the

Fiat-Shamir transform: Minimizing assumptions for security and
(US); Kevin Bowers, Melrose, MA (US) forward-security.” Advances in Cryptology-Eurocrypt 2002.

(73) Assignee: EMC Corporation, Hopkinton, MA Springer Berlin Heidelberg, 2002.
(US) (Continued)

(*) Notice: Subject to any disclaimer, the term of this Primary Examiner — Syed Zaidi
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Ryan, Mason & Lewis, LLP
U.S.C. 154(b) by 82 days. (57)

57 ABSTRACT

(21) Appl. No.: 13/837,259 Configurable one-time authentication tokens are provided
with improved resilience to attacks. A one-time authentica

(22) Filed: Mar 15, 2013 tion token is configured by providing a plurality of token
features that may be selectively incorporated into the config (51) Int. Cl. urable one-time authentication token, wherein the plurality of H04L 29/06 (2006.01) (52) U.S. Cl token features comprise at least two of the features; obtaining

AV e. we a selection of at least a plurality of the token features: and
CPC - - - - - - - - - - - - - - grgr. H04L 63/08 (2013.01) configuring the one-time authentication token based on the

(58) Field of Classification Search selected token features, wherein the configuration must
CPC G06F 21/34; H04L 63/08: 'I',9. always enable forward security for the one-time authentica

tion token and at least one additional selected token feature. A
USPC 726/9 configurable one-time authentication token is provided that
See application file for complete search history. comprises a plurality of selectable token features that may be

(56) Ref Cited selectively incorporated into the configurable one-time
eerees e

U.S. PATENT DOCUMENTS

2003/0086565 A1 5/2003. Desai et al. 380/45
2003/0229788 A1* 12/2003 Jakobsson et al. 713,171

SPL SERVER
PASSCODE

WERICAON

FSPRNG

590

INTERMEDIATE-LAYER PROTECTION 330, k,

DATA-TRANSACTIO AEAR
SIGNING CHANIES

authentication token, wherein the configurable one-time
authentication token is always configured with the forward
security and at least one additional token feature.

37 Claims, 10 Drawing Sheets

HIGH-LAYER PROTECTION 310, k,

38

SLENT DRIFNG
AARS KEYS

LOW-LAYER PROTECTION 320, ks

RAMEED
STATE

TRANSIONS

38
TE

SYNCHRNATION

US 9,270,655 B1
Page 2

(56) References Cited D. M.Raihi, S. Machani, M. Pei, J. Rydell, “TOTP: Time-Based
One-Time Password Algorithm”. RFC 6238, May 2011. See

OTHER PUBLICATIONS Resynchronization, p. 7.*

D. M. Raihi, M. Bellare, F. Hoornaert, D. Naccache, O. Ranen RFC 4086 “Randomness Requirements for Security”. Jun. 2005.*
“HOTP: An HMAC-Based One-Time Password Algorithm”. RFC
4226, Dec. 2005. See 7.5., p. 11.* * cited by examiner

U.S. Patent Feb. 23, 2016 Sheet 2 of 10 US 9.270,655 B1

FIG. 2

DEVICE SERVER

DEVICE TIME SERVER TIME

TIME t'

130 PASSCODE P
TOKEN PASSCODE

GENERATION
g f g f

PASSCODE Pl PASSCODE P.

U.S. Patent Feb. 23, 2016 Sheet 3 of 10 US 9.270,655 B1

FIG. 3
300

f HIGH-LAYER PROTECTION 310, k

316

SIENT DRIFTING
ALARMS KEYS

2 LOW-LAYER PROTECTION 320, k

SPLT-SERVER
PASSCODE

WERIFICATION

524. 328
RANDOMIZED

FS-PRNG STATE
TRANSiTIONS

3 INTERMEDIATE-LAYER PROTECTION 330, k

DATA-TRANSACTION AUXILARY
SIGNING CHANNELS

538
TIME

SYNCHRONIZATION

US 9.270,655 B1 Sheet 4 of 10 Feb. 23, 2016 U.S. Patent

U.S. Patent Feb. 23, 2016 Sheet 6 of 10 US 9.270,655 B1

off = HASH(of HASH(of)

of R r HASH(of HASH(of)

US 9.270,655 B1 Sheet 7 of 10 Feb. 23, 2016 U.S. Patent

??I Z "f)I, H.

US 9.270,655 B1 U.S. Patent

US 9.270,655 B1 Sheet 9 of 10 Feb. 23, 2016

005 V6 ºff)I, H.

U.S. Patent

US 9.270,655 B1 Sheet 10 of 10 Feb. 23, 2016 U.S. Patent

;; dans •

US 9,270,655 B1
1.

CONFIGURABLE ONE-TIME
AUTHENTICATION TOKENS WITH

IMPROVED RESLIENCE TO ATTACKS

CROSS-REFERENCE TO RELATED
APPLICATIONS

The present application is related to U.S. patent application
Ser. No. 13/250.225, filed Sep. 30, 2011, entitled “Key
Update With Compromise Detection.” (now U.S. Pat. No.
8,699,713): U.S. patent application Ser. No. 13/334,709, filed
Dec. 23, 2011, entitled “Methods and/or Apparatus for Gen
erating Forward Secure Pseudorandom Numbers.” (now U.S.
Pat. No. 9,008.303); U.S. patent application Ser. No. 13/826,
924, filed Mar. 14, 2013, entitled “Event-Based Data Signing
via Time-Based One-Time Authentication Passcodes: U.S.
patent application Ser. No. 13/826,993, filed Mar. 14, 2013,
entitled “Time Synchronization Solutions for Forward-Se
cure One-Time Authentication Tokens: U.S. patent applica
tion Ser. No. 13/404,780, filed Feb. 24, 2012, entitled
“Method and Apparatus for Embedding Auxiliary Informa
tion in One-Time Passcode Authentication Tokens.” (now
U.S. Pat. No. 8,984,609; U.S. patent application Ser. No.
13/404,788, filed Feb. 24, 2012, entitled “Methods and Appa
ratus for Silent Alarm Channels Using One-Time Passcode
Authentication Tokens; U.S. patent application Ser. No.
13/728,271, filed Dec. 27, 2012, entitled “Forward Secure
Pseudorandom Number Generation Resilient to Forward
Clock Attacks.” (now U.S. Pat. No. 9,083,515); U.S. patent
application Ser. No. 13/404.737, filed Feb. 24, 2012, entitled
“Method and Apparatus for Authenticating a User Using
Multi-Server One-Time Passcode Verification.” (now U.S.
Pat. No. 9,118,661); and U.S. patent application Ser. No.
13/828,588, filed Mar. 14, 2013, entitled “Randomizing State
Transitions for One-Time Authentication Tokens, each
incorporated by reference herein.

FIELD OF THE INVENTION

The present invention relates generally to one-time authen
tication tokens and, more particularly, to techniques for
designing and configuring configurable one-time authentica
tion tokens.

BACKGROUND

One-time authentication tokens are used to realize two
factor authentication according to which a traditional pass
code-based user-authentication method (using a secret you
know) is augmented with a one-time passcode that is pro
duced by an authentication token (i.e., a secret produced by
Something you possess). The two factors collectively provide
a stronger authentication method.

One-time authentication tokens typically produce a series
of unpredictable one-time passcodes on a regular time basis,
i.e., in specified time intervals often called epochs. Passcodes
are unpredictable as they get produced in a pseudorandom
manner using a secret state, often referred to as a seed, that is
stored at the token and also shared with the server. Tokens can
either be software or hardware based. Software tokens pro
duce passcodes on-demand, whenever the token’s application
is launched in the host device, where a series of passcodes is
generated for the epochs following the launching of the appli
cation. Hardware tokens typically produce passcodes on a
permanent basis, one passcode per epoch, for the entire life
time of their battery. Overall, such tokens produce a time

10

15

25

30

35

40

45

50

55

60

65

2
based series of unpredictable one-time passcodes by employ
ing their seed to generate pseudorandom bits that are
converted to passcodes.
The Security of any one-time authentication token col

lapses if an attacker obtains access to the secret seed of the
token. Using the seed, the attacker can clone the token and
reconstruct the series of passcodes that the token will pro
duce. Indeed, the attacker can use the token’s seed to repro
duce the pseudorandom numbers used for passcode genera
tion, effectively breaking the unpredictability of the
passcodes. In turn, the attacker can increase its chances for
impersonating the corresponding user, by either performing a
brute-force attack on the user's PIN or by launching a more
Sophisticated man-in-the-middle attack for harvesting the
user's PIN.

Since the security of the token is based on a secret seed, the
attacker will attempt to obtain this secret seed. There are three
forms of attack that an attacker can employ to obtain access to
the secret seed of the token of a target victim user. Under a
server compromise attack, the attacker compromises the
authentication server and obtains the secret seed of the tokens
of one or more users. With a token tampering attack, the
attacker compromises the token and obtains the secret seed of
the token. Finally, with a seed capturing attack, the attacker
obtains the secret seed of the token indirectly by attacking a
storage or communication unit used to store or transfer the
token’s seed, or through side-channel attacks performed
against the token or the server.
A need therefore exists for one-time authentication tokens

that protect against the above types of attacks that attempt to
obtain the secret seed of one or more tokens. A further need
exists for configurable one-time authentication tokens.

SUMMARY OF THE INVENTION

The present invention in the illustrative embodiments
described herein provides configurable one-time authentica
tion tokens with improved resilience to Such attacks. Accord
ing to one aspect of the invention, a one-time authentication
token is configured by providing a plurality of token features
that may be selectively incorporated into the configurable
one-time authentication token, wherein the plurality of token
features comprise at least two of the features: split-server
passcode verification, silent alarms, drifting keys, forward
secure pseudorandom number generation, token randomness
generation, randomized State transitions, data-transaction
signing, auxiliary channels and time synchronization; obtain
ing a selection of at least a plurality of the token features; and
configuring the one-time authentication token based on the
selected token features, wherein the configuration must
always enable forward security for the one-time authentica
tion token and at least one additional selected token feature.

According to a further aspect of the invention, the configu
ration must satisfy one or more dependency rules. For
example, the dependency rules may comprise requiring (i)
that each of the split-server passcode verification with proac
tivization feature and the silent alarms feature each require
the forward-secure pseudorandom generator feature; (ii) the
randomized state transitions feature requires at least one of a
forward-secure pseudorandom generator feature and a ran
domness Source feature; (iii) the drifting keys feature and the
silent alarms feature require the auxiliary channel feature;
and (iv) the drifting keys feature requires a randomness
Source feature.

In one exemplary implementation, the split-server pass
code verification feature, the silent alarms feature and the
drifting keys feature comprise high-layer protection that pro

US 9,270,655 B1
3

vide intrusion-detection and intrusion-resilience. The for
ward-secure pseudorandom number generation feature, the
token randomness generation feature and the randomized
state transitions feature comprise low-layer protection that
provide tamper-resistance. The data-transaction signing fea
ture, the auxiliary channels feature and the time synchroni
Zation feature comprise intermediate-layer protection that
provide token-visibility.
The one-time authentication token may be configured, for

example, at a time of manufacture, system initialization and/
or software update time. The features may be selectively
activated.

According to another aspect of the invention, a config
urable one-time authentication token is provided that com
prises a plurality of selectable token features that may be
selectively incorporated into the configurable one-time
authentication token, wherein the plurality of token features
comprise at least two of the features: Split-server passcode
Verification, silent alarms, drifting keys, forward-secure
pseudorandom number generation, token randomness gen
eration, randomized State transitions, data-transaction sign
ing, auxiliary channels and time synchronization, wherein the
configurable one-time authentication token is always config
ured with the forward security and at least one additional
token feature.

The disclosed exemplary configurable one-time authenti
cation tokens overcome one or more of the problems associ
ated with the conventional techniques described previously.
These and other features and advantages of the present inven
tion will become more readily apparent from the accompa
nying drawings and the following detailed description.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates an exemplary network environment in
which the present invention can operate;

FIG. 2 illustrates a user device attempting to authenticate to
a server using a passcode generated by a token;

FIG.3 illustrates an exemplary design framework incorpo
rating aspects of the present invention;

FIG. 4 illustrates exemplary pseudo code for designing a
one-time passcode token in accordance with the framework
of FIG.3:

FIG. 5 illustrates a configurable breach-resilient, tamper
resistant and cloning-resistant one-time authentication token
in accordance with aspects of the invention;

FIG. 6 illustrates the exchange of a cryptographic hash of
partial states at regular predetermined time intervals by two
forward secure random number generators;

FIG. 7 illustrates exemplary pseudo code for token opera
tion for an exemplary hardware implementation of a token;

FIG. 8 illustrates exemplary pseudo code for token opera
tion for an exemplary Software implementation of a token;
and

FIGS. 9A and 9B, collectively, illustrate exemplary pseudo
code for server operation for an exemplary split server imple
mentation.

DETAILED DESCRIPTION

Aspects of the present invention provide one-time authen
tication tokens with improved resilience to attacks that
attempt to obtain the Secret seed of one or more tokens.

FIG. 1 illustrates an exemplary network environment in
which aspects of the present invention can operate. As shown
in FIG. 1, an exemplary client-side computing device
(CSCD) 110 communicates with a protected resource 170

10

15

25

30

35

40

45

50

55

60

65

4
over a network 160. In an exemplary implementation, the user
must authenticate with an authentication authority 150 using
a passcode generated by a security passcode-generator appli
cation 130 (hereinafter, referred to as security passcode app
130) before obtaining access to the protected resource 170. In
alternate variations, a user can employ a hardware one-time
authentication token, such as the RSA SecurDR user authen
tication token commercially available from RSA Security
Inc. of Bedford, Mass. U.S.A. The network 160, may com
prise, for example, a global computer network Such as the
Internet, a wide area network (WAN), a local area network
(LAN), a satellite network, a telephone or cable network, or
various portions or combinations of these and other types of
networks.
The user of the CSCD 110 is authenticated with the pro

tected resource 170 using a one-time variable key that may be
generated in accordance with the present invention. It is to be
appreciated that a given embodiment of the disclosed system
may include multiple instances of CSCD 110, security pass
code app 130, authentication authority server 150 and pro
tected resource 170, and possibly other system components,
although only single instances of such components are shown
in the simplified system diagram of FIG. 1 for clarity of
illustration.
The security passcode app 130 is shown in FIG. 1 as being

implemented by the CSCD 110. The security passcode app
130 may be implemented, for example, using the RSA Secu
rID(R) user authentication token commercially available from
RSA Security Inc. of Bedford, Mass., U.S.A. The security
passcode app 130 may be a server or other type of module that
is accessible over the network 160, or it may be a software
component resident on the CSCD 110. As another alternative,
security passcode app 130 may be distributed over multiple
devices, one of which may be the CSCD 110. Thus, while the
present invention is illustrated herein using a security pass
code app 130 executing on the CSCD 110, such that the
CSCD 110 can read a given passcode (or another authentica
tion value) directly from the security passcode app 130, other
implementations are within the scope of the present inven
tion, as would be apparent to a person of ordinary skill in the
art. For example, for othersecurity passcode apps 130 that are
not connectable to a computer or other user device in this
manner, the user may manually enter a password or another
value displayed by the security passcode app 130 at the time
of the attempted access. In addition, for a detailed discussion
of a modular and/or component implementation of a token
based authentication technique, see, for example, U.S. Pat.
No. 7.562.221 to Nyström et al., assigned to the assignee of
the present invention and incorporated by reference herein.
The CSCD 110 may represent a portable device, such as a

mobile telephone, personal digital assistant (PDA), wireless
email device, game console, etc. The CSCD 110 may alter
natively represent a desktop or laptop personal computer
(PC), a microcomputer, a workstation, a mainframe com
puter, a wired telephone, a television set top box, or any other
information processing device which can benefit from the use
of authentication techniques in accordance with the inven
tion. The CSCD 110 may also be referred to herein as simply
a “user. The term “user' should be understood to encompass,
by way of example and without limitation, a user device, a
person utilizing or otherwise associated with the device, or a
combination of both. A password or other authentication
information described as being associated with a user may,
for example, be associated with a CSCD device 110, a person
utilizing or otherwise associated with the device, or a combi
nation of both the person and the device.

US 9,270,655 B1
5

The authentication authority 150 is typically a third party
entity that processes authentication requests on behalf of web
servers and other resources, and Verifies the authentication
information that is presented by a CSCD 110.
The protected resource 170 may be, for example, an

access-controlled application, web site or hardware device. In
other words, a protected resource 170 is a resource that grants
user access responsive to an authentication process, as will be
described in greater detail below. The protected resource 170
may be, for example, a remote application server Such as a
web site or other software program or hardware device that is
accessed by the CSCD 110 over a network 160.

One-Time Authentication Tokens
Authentication tokens, such as the RSA SecurDR user

authentication token commercially available from RSA
Security Inc. of Bedford, Mass., U.S.A., are typically time
based, meaning that they produce new passcodes in fixed
predetermined time intervals T. called epochs. For instance,
SecurDR produces a new passcode every one minute epoch.

FIG. 2 illustrates a user device 110 attempting to authen
ticate to a server 150. The user device 110 authenticates to the
server 150 by providing the passcode P, that corresponds to
the current time t' (at the epoch level, e.g., minute) that the
device 110 knows. Then, as shown in FIG. 2, the server 150
must authenticate a user who provides a candidate passcode
P" by first recomputing the passcode P, using a passcode
generation block 250 that corresponds to the current time t (at
the epoch level) that the server 150 knows, and then accepting
the submitted passcode if and only if P'=P. It is clear that if
t'zt, that is, if the token 130 and server 150 are not synchro
nized with each other, even a legitimate user cannot be
authenticated.
A passcode P, that is produced in time epocht' is typically

generated by the token 130 by applying a one-way crypto
graphic function f on the current time epocht', specified by
the token’s current time and the seed O of the token 130.
Software tokens 130 specify their current time based on the
host’s device current time, whereas hardware tokens 130
specify their time implicitly through the use of a time-based
COunter.

A produced passcode P, may then be transmitted to the
authentication server 150 in order to authenticate a corre
sponding user to the server 150 for accessing a protected
resource 170 through a high-level application. The transmis
sion of the passcode P, to the server 150 may happen either in
a user-based manner, typically by typing performed by the
user to an API provided by the high-level application, or in a
user-agnostic manner, typically by an automatic way where a
software token 130 is directly communicating to the server
150 through a communication channel offered by the host
device, referred to as a connected token 130.

In turn, on receiving the received candidate passcode P.
the server 150 verifies this passcode by contrasting it against
the passcode P, that is locally computed by the server 150,
accepting the passcode if and only if PP. If the passcode is
not accepted, the user is not authenticated to access the pro
tected resource 170; otherwise, the user is authenticated if and
only if the user's PIN is correct. Passcode P, is computed by
the server 150 by applying the same function f on the current
time epocht' specified by the server's current time and the
seed O of the token 130 that is stored by the server 150. Often,
in order to tolerate small discrepancies between the current
time of the software (or hardware) token 130 and the current
time of the server, P, is also contrasted against another 2s
passcodes within a slack window that are defined by epochs
that are neighboring epochs to the server's epocht, that is, to
passcodes {P,, P1, P. P.,..., P}. That is, one or

10

15

25

30

35

40

45

50

55

60

65

6
more passcodes are computed locally by the server 150 based
on a slack window of epochs of size2s and on the knowledge
of the underlying seed of the token 130.

Produced passcodes are pseudorandom based on the use of
the one way function f. Thus, as long as the seed remains
secret, protected against leakage to an attacker, future pass
codes remain unpredictable even if an attacker has observed
an arbitrarily long history of passcodes produced in the past.

Threats Related to Seed Leakage

As indicated above, there are three forms of attack that an
attacker can employ to obtain access to the Secret seed of the
token of a target victim user. Under a server compromise
attack, the attacker compromises the authentication server
150 and obtains the secret seed of the tokens 130 of one or
more users. With a token tampering attack, the attacker com
promises the token 130 and obtains the secret seed of the
token 130. Finally, with a seed-record capture attack, the
attacker obtains the secret seed of the token 130 indirectly by
attacking a storage or communication unit used to store or
transfer the token’s seed or through side-channel attacks per
formed against the token 130 or the server 150.

Considering a worst-case scenario, it is assumed that the
attacker has access to the PIN of the user, and therefore is
actively operating towards getting access to the secret seed in
order to clone the token 130.

Server Compromise
The attacker may compromise the authentication server

150 and get the secret seed of the tokens 130 of one or more
users. In the best case, the attacker will compromise the server
150 ephemerally, i.e., by instantly stealing the seed(s) and
then terminating the attack. Although this is enough for clon
ing one or more of the tokens 130, there is a stronger type of
attack where the attacker compromises the server perma
nently, i.e., the attacker may remain in control of the server for
a long or unlimited in the future period of time, thus directly
being able to impersonate one or more users. Therefore, any
type of Solution guarding against server compromise must
also consider this stronger attack version. Server compromise
may itselfbe part of, or the target of a Sophisticated advanced
persistent threat against an organization or an enterprise.

Token Tampering or Compromise
The attacker may compromise the token 130 and obtain the

secret seed of the token 130. For software tokens 130, this
corresponds to performing a direct attack against the host
device 110, where the host device 110 gets compromised
using some malware, trojan, or virus installed on the device or
through some network-based attack; once the device 110 is
compromised and the attacker has full control of the device
110, the attacker can bypass any protection mechanisms
being in place by the token application 130 for restricting
access to the token’s seed. For hardware tokens 130, this
corresponds to physically tampering with the token 130 to get
access to its internal memory or processor where the seed is
stored or lied, e.g., by opening the case of the token and
reading the full internal state of the token at the time of
compromise.

Seed Capturing
The attacker may get the secret seed of the token 130

indirectly by attacking a storage or communication unit used
to store or transfer the token’s seed or through side-channel
attacks performed against the token 130 or the server 150. In
particular, often records of the seeds of the users tokens must
be kept for usability, back-up, legal or compliance purposes.
Or, software tokens 130 must be provisioned at the beginning
of their operation using some protocol that relies on some

US 9,270,655 B1
7

type of communication between the host device 110 and the
server 150, e.g., using a web service or an email message.
Accordingly, an attacker may get access to one or more seeds
by directly attacking these storage or communication media,
i.e., by getting access to the seeds while the seed are in rest or
in transit. Moreover, an attacker may perform Sophisticated
side-channel attacks against the token 130 or the server 150 in
order to harvest the secret seed. For instance, power analysis
attacks can be used for this purpose. Note that these types of
attacks are particularly hard to detect or prevent as the token
130 or the server 150 are not involved in, or directly affected
by, the attack.

Design Framework for One-Time Authentication Tokens
A general design framework is provided that results in

concrete architectural designs for one-time authentication
tokens 130 that enjoy one or more intrusion-detection and
intrusion-resilience technologies which help mitigate the
harm inflicted by the attack vectors described above.

FIG. 3 illustrates an exemplary design framework 300
incorporating aspects of the present invention. As discussed
hereinafter, the exemplary design framework 300 applies at
least one of three protection layers: high-layer protection 310,
low-layer protection 320, and intermediate-layer protection
330, to the basic design of cone-time authentication tokens
130.
The high-layer protection 310 optionally employs one or

more of the following intrusion-detection and intrusion-resil
ience technologies: split-server passcode Verification 312,
silent alarms 314 and drifting keys 316, each discussed fur
ther below in a corresponding section. The technologies in the
high-layer protection 310 detect and tolerate attacks based on
the leakage of seeds in general and typically involve both the
token and the server. Thus, the high protection layer 310
establishes token-server mechanisms guarding against at
least one of the three possible threat settings described above,
namely, server compromise, token tampering/compromise
and seed-record capturing. When at least one of these tech
nologies is employed, enabling these technologies in the
same design entails some challenges as these technologies
need to be properly integrated into a fully functional one-time
authentication token 130. The disclosed framework 300 pre
sents a novel way to seamlessly integrate these technologies,
as discussed hereinafter.
The low-layer protection 320 optionally employs one or

more of the following tamper-resistance technologies: for
ward-secure pseudorandom number generators 324, use of a
Source of randomness at the token, and randomized State
transitions 328, each discussed further below in a correspond
ing section. The technologies in the low-layer protection320
tolerate attacks based on the leakage of the seed at the token
130 and typically involve only the token 130. Thus, the low
protection layer 320 establishes token-side mechanisms
guarding against full or partial secret-state leakage. Again,
the exemplary framework 300 presents a novel way to inte
grate these technologies with the technologies offered by the
high protection layer 310.

The intermediate-layer protection 330 optionally employs
one or more of the following token-visibility technologies:
data-transaction signing 332, auxiliary channels 334 and time
synchronization 338, each discussed further below in a cor
responding section. The technologies in the intermediate
layer protection 330 achieve better coordination between the
token 130 and the server 150 and typically involve the com
munication of some side information from the token 130 to
the server 150. Thus, the intermediate protection layer estab
lishes communication mechanisms enabling and enhancing
the token-side visibility. Once again, the exemplary frame

10

15

25

30

35

40

45

50

55

60

65

8
work 300 presents a novel way to seamlessly integrate these
technologies with the technologies offered by the high and
low protection layers.

High-Layer Protection Technologies 310
The exemplary framework 300 employs any set of the

following three solution concepts for the design of one-time
authentication tokens 130 so that intrusion-detection and
intrusion-resilience is achieved.

1. Split-Server Passcode Verification 312: As described in
U.S. patent application Ser. No. 13/404.737, filed Feb. 24,
2012, entitled “Method and Apparatus for Authenticating a
User Using Multi-Server One-Time Passcode Verification.”
(now U.S. Pat. No. 9,118,661), split-server passcode verifi
cation is a solution concept for tolerating compromise(s) of
the server 150 in systems that employ one-time authentication
tokens 130. Generally, this solution employs distributed cryp
tographic techniques for dispersing the task of Verifying a
candidate passcode (provided by a user or token 130) among
two or more verification servers 150 so that each such par
ticipating server S, stores only a partial secret state O, Tokens
seed O is split or shared into two or more pieces each managed
by a separate server 150. One security property offered by a
split-server passcode verification protocol 312 is that verifi
cation is securely implemented in a distributed manner, yet
leakage of one or more, but up to a specified threshold, partial
secret states does not compromise the security of the token
130.

In a typical case, the seed is split into two pieces, often
called the red and the blue partial seeds, and two verification
servers 150 are employed: the red server (150-red) stores the
red seed and the blue server (150-blue) stores the blue seed.
Upon receiving a candidate passcode P, the two servers
150-red and 150-blue interact through a secure protocol to
jointly compute the passcode P, against which the candidate
passcode is contrasted, and accordingly P, is rejected if any of
the two servers 150-red or 150-blue outputs “reject.” This
decision is typically made by a so-called relying server that is
stateless and responsible for the final decision about the
acceptance of P. based on the individual outputs of the red
and the blue servers 150-red and 150-blue.
The additional feature of proactivization can be used

according to which the partial states of the (e.g., two) servers
150 evolve over time and where the servers periodically
exchange secure descriptions (e.g., hashes) of their partial
secret states, which are then used to create their new partial
Secret States.

2. Silent Alarms 314: As described in U.S. patent applica
tion Ser. No. 13/404,788, filed Feb. 24, 2012, entitled “Meth
ods and Apparatus for Silent Alarm Channels Using One
Time Passcode Authentication Tokens, silent alarms detect
token tampering or compromise and eventually prevent cer
tain impersonation attempts by an attacker. Generally, the
silent alarm solution employs a secret silent alarm state that
instantly changes once the token 130 (software or hardware)
senses or detects a suspicious activity that indicated possible
token compromise.

This state change corresponds to, for example, the raising
of one or more special alert flags but the change itself is
performed in a forward-secure and stealthy manner so that,
even after the complete compromise of a token 130 by an
attacker, the silent alarm state alone is not indicative of
whether or not any alert flag has been raised—thus, the alert
flags serve as a silent alarm. One security property offered by
a silent alarm 314 of a token 130 is that the silent alarm state
and, therefore, the alert flags, remain secure with respect to
their integrity and confidentiality, i.e., an attacker that learns

US 9,270,655 B1
9

the complete state of the token 130 after the compromise does
not learn if any alert flag was ever raised and cannot tamper
with any alert flag.

Using an appropriate auxiliary channel, discussed further
below, these alert flags can be embedded into the passcodes
that are produced by the token 130, and thus transmitted to the
authentication server 150. Using an appropriate decoding of
these alert flags, the authentication server 150, in turn, can
eventually learn about the one or more raised alert flags and
appropriately handle the verification and acceptance of the
received candidate passcode. In particular, Suchalert flags can
be used to encode alert messages related to a possible com
promise of the token 130; thus receipt of such messages by the
server 150 corresponds to detection of a possible compromise
of the token 130.
When such compromise is detected, the server 150 may

appropriately change its verification procedure according to
Some passcode acceptance policy. For instance, if a low-risk
alert message is received, the server 150 (and the high-level
application) may restrict the access that the user gets into the
protected resource 170, or if a high-risk alert message is
received, the server 150 may immediately reject the authen
tication or fake an authentication Success only to identify the
origin on the impersonation attack. Successful decoding of an
embedded alert flag into a passcode is a probabilistic event
that happens with some positive probability: the alert flag will
be eventually received in one of the next few transmitted
passcodes, i.e., false negatives exist. However, false positive
do not exist: A received alert flag will always indicate a
Suspicious (according to some token-side alert-generation
policy) event happening at the token 130.

3. Drifting Keys 316: As described in U.S. patent applica
tion Ser. No. 13/250.225, filed Sep. 30, 2011, entitled “Key
Update With Compromise Detection.” (now U.S. Pat. No.
8,699.713), drifting keys detect token cloning and eventually
preventing certain impersonation attempts by an attacker.
Generally, the drifting keys Solution employs a drifting key
state that changes over time randomly. This random state
change corresponds to a dynamically evolving and unique
fingerprint (i.e., characteristic key) of the (Software or hard
ware) token 130 that is being randomly updated at some low
rate (e.g., a few new random bits are added to the state every
week, i.e., bits are randomly drifted over time).
As these Small changes in the token’s fingerprint are

embedded into the produced passcodes and as these pass
codes are received and accepted by the server 150, the server
gradually learns the partial or complete state of the token’s
fingerprint (depending on how often passcodes are received
by the server, thus, on how often the user makes use of the
token 130). One security property offered by a drifting key
316 of a token 130 is that the drifting key state and, therefore,
the token’s randomized fingerprint, remain unique overtime;
therefore if a cloned token 130 starts reporting corresponding
cloned drifting key updates to the server 150, these updates
will not match the drifting key updates reported by the origi
nal, cloned, token 130. Therefore, as long as the original
token 130 and the cloned one are being used simultaneously
by the legitimate user and the attacker, respectively, with
overwhelming probability the server 150 will notice a diver
gence or inconsistency in the learned fingerprint of the token
130.

That is, the drifting key states of the original and the cloned
tokens will necessarily eventually be forked away from each
other which is a detectable event. Even if the server 150 will
not be able to distinguish the cloned token 130 from the
original one, the server 150 will be alerted that a possible

10

15

25

30

35

40

45

50

55

60

65

10
cloning attack has been performed and will react according to
a certain policy being in place.
As with the silent-alarm messages, drifting key updates are

being embedded in the passcodes using an appropriate aux
iliary channel, discussed further below. Using an appropriate
decoding of these updates, the authentication server 150, in
turn, can eventually learn about the one or more inconsisten
cies in the tokens unique fingerprint, even if the server 150
has only a partial view of the original token’s fingerprint.
Again, Successful decoding of an embedded drifting key
update into a passcode is a probabilistic event that happens
with some positive probability: the update will be eventually
received in one of the next few transmitted passcodes, i.e.,
false negatives exist. However, false positive do not exist: A
received inconsistent drifting key update will always indicate
a cloning attack against the token 130.
By employing any combination of these intrusion-detec

tion and intrusion-resilience technologies, the exemplary
design framework 300 achieves a unique property of protect
ing against one or more vectors of attacks that are related to
the cloning of one-time authentication tokens. In particular,
the exemplary framework 300 ensures that tokens 130 are
protected against leakage of seeds in settings where:

only server compromise or token tampering/compromise
or seed-record capturing occurs;

or both server compromise and token tampering/compro
mise occurs;

or both server compromise and seed-record capturing
occurs;

or both token tampering/compromise and seed-record cap
turing occurs.

Low-Layer Protection Technologies 320
The exemplary framework 300 also employs any set of the

following two solution concepts that enhance the security of
one-time authentication tokens 130 with respect to token-side
leakage of the secret state (i.e., the seed).

1. Forward-Secure Pseudorandom Number Generator 324:
As described in U.S. patent application Ser. No. 13/334,709,
filed Dec. 23, 2011, entitled “Methods and/or Apparatus for
Generating Forward Secure Pseudorandom Numbers.” (now
U.S. Pat. No. 9,008.303), forward security can be applied to
management of the internal state of one-time authentication
tokens 130. Instead of using a fixed global Secret state, e.g., a
seed, for the entire lifetime of the token 130, thus risking
leakage of this global state that results in perfect cloning of
the token 130, forward security involves requiring that the
secret state of the token evolves over time in a one-way
cryptographic manner so that olderstates cannot be computed
(by a polynomial bounded attacker) from newer states. In the
simplest case, for instance, the seed may evolve over time,
e.g., every elementary time epoch in which a new passcode
must be produced, through the use of a one-way hash chain.
That is, the new secret state is the hash of the current secret
state, which gets immediately deleted by the token after the
new state is produced. The security property offered by such
a forward-secure approach is that if an attacker compromises
the token 130 and captures its current secret state, although all
future states can be perfectly simulated, no older state can be
computed by the attacker. One advantage of this approach is
that it is possible to protect, even post-compromise, some
important past state of the token 130, which in turn can be
used to communicate to the server 150 important information
about the token’s posture.
A hash chain, however, introduces some computational

overhead proportional to d (both at software tokens and at the
server) when a current state, corresponding to current time,
must be computed from an old state, corresponding to a time

US 9,270,655 B1
11

in some distanced in the past. It is possible to employ hier
archical hash chains that reduce this "catch up' computation
cost to approximately logd, at the slight cost of increasing the
state size by a factor of d.

2. Randomness Source: A Source of (true) randomness at
the token 130 is used to produce a series of random bits at
Some desired rate.

3. Randomized-State Transitions 328: As described in U.S.
patent application Ser. No. 13/828,588, filed Mar. 14, 2013,
entitled “Randomizing State Transitions for One-Time
Authentication Tokens' certain portions of the state of a
token 130 are more likely to leak to an attacker compromising
a token 130, if the attacker schedules the compromise at the
beginning of the predetermined elementary time epoch dur
ing which new passcodes are generated (e.g., close to the
passcode generation, at the beginning of the periods that last
one minute). By then randomizing the exact time windows
(e.g., duration and placement in time of these windows) dur
ing which passcodes are generated, it is possible to mitigate
these special type of inference attacks. A random or a pseu
dorandom source can be used at the token 130 for randomiz
ing state transitions.
By employing any combination of these tamper-resistance

technologies 324, 328, the exemplary design framework 300
achieves the property of protecting against token-side leakage
of the secret state of the token 130.

Intermediate-Layer Protection Technologies 330
The exemplary framework 300 employs any set of the

following three solutions that enhance the security of one
time authentication tokens 130 with respect to token-side
visibility.

1. Data-Transaction Signing 332: As described in U.S.
patent application Ser. No. 13/826,924, filed Mar. 14, 2013,
entitled “Event-Based Data Signing via Time-Based One
Time Authentication Passcodes, it is possible to extend the
basic functionality of the tokens 130 so that the passcodes
produced by the token 130 can authenticate not only the user
but also some data produced by the high-level application. In
particular, the token 130 may be extended to receive from the
high-level application Some data which participates in the
generation of the next passcode produced by the token 130.
This passcode then serves as a signature of this data and, when
received by the server 150, this passcode can be used to verify
the validity of the corresponding data transaction that took
place at the high-level application. In particular, the high
level application provides the server 150 with the data that is
to be verified, and this data transaction is accepted only if the
locally produced passcode on this provided data matches the
passcode that was received by the token 130.

2. Auxiliary Channel 334: As described in U.S. patent
application Ser. No. 13/404,780, filed Feb. 24, 2012, entitled
“Method and Apparatus for Embedding Auxiliary Informa
tion in One-Time Passcode Authentication Tokens.” (now
U.S. Pat. No. 8,984.609), it is possible to embed a small
number of auxiliary information bits into the produced pass
codes of a token 130. These embedded bits can then be recon
structed by the server 150, thus implementing an auxiliary
channel between the token 130 and the server 150. This
channel is typically a channel of low bandwidth and a small
number of bits, for instance, 4 bits are embedded. Such chan
nels are designed so that they are resilient to Small-digit
typographical errors performed by the user transcribing a
passcode. Typically, an error correction code is used to
encode the auxiliary word that is to be embedded into the
passcode, and this embedding corresponds to adding the
resulted codeword to the initial passcode.

10

15

25

30

35

40

45

50

55

60

65

12
3. Time Synchronization 338: As described in U.S. patent

application Ser. No. 13/826,993, filed Mar. 14, 2013, entitled
“Time Synchronization Solutions for Forward-Secure One
Time Authentication Tokens,” and in U.S. patent application
Ser. No. 13/728,271, filed Dec. 27, 2012, entitled “Forward
Secure Pseudorandom Number Generation Resilient to For
ward Clock Attacks.” (now U.S. Pat. No. 9,083,515), it is
possible that software tokens 130 get out of synchronization
with the server 150, which in turn can lead to usability prob
lems. For instance, a user may not be able to Successfully
log-in if the token’s device time is put forward in the future.
Or worse, the token 130 may not be able to even produce a
passcode if the time is later corrected but forward security is
used.

In fact, the lack of synchronization may even lead to a
special type of security attack called a forward clock attack,
where the attacker makes use of future times of the host
device 110 to harvest a series of passcodes that are valid in the
future and then correct the device time at the end. It is possible
to employ certain time-synchronization solutions so that the
token 130 manages to communicate to the server 150, directly
or indirectly, with or without user intervention, that such an
attack has occurred and so that the token 130 additionally is
re-synchronized with the server 150.
By employing any combination of these token-visibility

technologies, the exemplary design framework 300 achieves
the property of communicating to the server 150 the tokens
posture assessment, thus enabling better coordination
between the token 130 and the server 150 and more timely
detection of certain types of attacks.

FIG. 4 illustrates exemplary pseudo code for designing a
one-time passcode token 130 in accordance with the frame
work 300 of FIG. 3. As shown in FIG. 4, a one-time passcode
token 130 can be designed as follows:

1. Select high-layer protections 310. Select k>0 features
(technologies) for high-layer protection 310;

2. Select intermediate-layer protections 330. Select k-0
features (technologies) for intermediate-layer protection330;
and

3. Select low-layer protections 320. Select k-0 features
(technologies) for low-layer protection 320:
where it holds that k+k+k->2. Overall, the general design
framework 300 can lead the design of a rich set of architec
tures for security-enhanced implementations of one-time
authentication tokens 130.
The following dependency rules are optionally enforced

when using the general design framework 300 for one-time
authentication tokens 130:

1. Split-server passcode verification (312) with proactiv
ization and silent alarms (314) each require a forward-secure
pseudorandom generator (324).

2. Randomized state transitions (328) require one of a
forward-secure pseudorandom generator (324) and a ran
domness Source (not shown in Figures). The forward security
aspect of the pseudorandom generator is not critical, however.

3. Drifting keys (316) and silent alarms (314) require an
auxiliary channel (334).

4. Drifting keys (316) require a randomness source (not
shown in Figures).
As used herein, the term “configurable' refers to the

design, configuration and/or reconfiguration of a config
urable one-time authentication token.

Design & Configuration: By employing the exemplary
general design framework 300 to select among one or more of
security and functionality features, a concrete architecture for
one-time authentication tokens is designed and adopted that
defines (1) the number and type of individual core modules of

US 9,270,655 B1
13

the architecture, (2) the exact mode of operation of these core
modules, and (3) the exact interconnection of these core mod
ules. This main design can Successively be configured accord
ing to several specification, parameterization and tuning cri
teria. These criteria involve, for instance, (1) the structure,
format and sizes of internal token state, (2) the format and
sizes of produced pseudorandom information, (3) the exact
instantiation and implementation of the underlying crypto
graphic operations, and (4) the exact instantiation and imple
mentation of the underlying coding schemes. These type of
token configuration occurs at manufacture and/or at System
initialization by the system administrator and before the
usage of the token by the user.

Reconfiguration: For software tokens, and with the excep
tion of the forward security aspect of a token, any of the above
features are tunable, and therefore the token operation is
reconfigurable. In particular, even after the start of the usage
of the token by the user, one or more design features can be
activated or deactivated as desired or needed by the use case,
or some initial configuration parameters can be tuned as
desired by the system administrator of the one-time authen
tication token. For instance, during a software update cycle,
the token application may be reconfigured to employ one or
more different features or use one or more different param
eters. This reconfiguration may or may not require the user
notification or training. Overall, every technical feature of the
system is autonomous and for software tokens every Such
feature can be effectively dynamically enabled or dis-acti
vated.

Breach-, Tamper- and Cloning-Resistant Tokens

FIG. 5 illustrates a breach-resilient, tamper-resistant and
cloning-resistant one-time authentication token 500 in accor
dance with aspects of the invention. Among other benefits, the
authentication token 500 of FIG. 5 adheres to the general
design framework 300 of FIG. 3. As used herein, the terms
“breach-resilient, tamper-resistant and cloning-resistant are
collectively referred to as “security-enhanced. Thus, a secu
rity-enhanced one-time authentication token 500 is provided
with several important security and functional properties.

Security Features
(a) Tamper-Resistant Technologies
i. Forward Security: The internal secret state of the exem

plary token 500 evolves over time in a forward-secure manner
so that if the token 500 is compromised, all past transmis
sions/operations of the token 500 remain secure, and certain
states related to the detection of cloning attacks remain
SCU.

ii. Randomized State-Update Timing: The internal state of
the exemplary token 500 changes in unpredictable time units
further limiting the attack window during which the compro
mise of the token reveals information to the attacker about
whether its attack was detected by the token 500.

(b) Anti-Cloning Technologies
i. Silent Alarms: Assuming certain tampering events are

detectable by the token 500, the exemplary token 500 can
securely and privately transmit an alert to the authentication
server 150 notifying the server 150 about this tampering
event. This holds true even after the complete compromise of
the token 500 by an attacker.

ii. Drifting Keys: The secret state of the exemplary token
500 evolves over time in a random, and therefore unpredict
able manner, so that any cloning of the state is guaranteed to
be eventually detected by the authentication server by observ
ing diverging or forking states at the serverthrough detectable
inconsistencies.

10

15

25

30

35

40

45

50

55

60

65

14
(c) Anti-Breach Technologies
i. Split Secret State: The secret state of the exemplary token

500 is split into two parts so that the authentication server 150
can itself be split into two servers: Then, the system guaran
tees that as long as these two servers 150 do not simulta
neously get ephemerally compromised within one certain
period of time (e.g., one week), the security of the token’s
functionality is preserved. Additional but slightly weaker
security properties hold if a server 150 gets permanently
compromised.

(d) Side-Channel Tolerant Technologies
i. Secret-State Updates: The internal secret states of the

exemplary token 500 and the server(s) 150 evolve over time
(in a forward-secure manner) at a high update rate; therefore
the secret states are hard to leak to an attacker through side
channel attacks.

Functional Features
(a) Modes of Operations
i. User-Based OTP: This is the standard use case where a

user transcribes a one-time 6 or 8 digit one-time (authentica
tion) passcode or one-time passcode (OTP).

ii. User-Based Transaction Signature: The user can also
transcribe a one-time 6 or 8 digit transactional data signature
through a special passcode that serves as a signature of some
data related to a transaction between a client and the server
performed over a high-level application.

iii. Connection-Based OTP: This case is as in the user
based OTP mode of operation, but now the OTP is transmitted
automatically by the token 500 and through the high-level
application, without the user's help, referred to as “long
OTP as this passcode can be of an arbitrarily long size.

iv. Connection-Based Transaction Signature: As in the
user-based transaction signature mode of operation, but now
the signature is transmitted automatically by the exemplary
token 500 and through the high-level application, without the
user's help, referred to as “long OTP signature.” as this pass
code can be of an arbitrarily long size.

(b) Auxiliary Channels
i. Auxiliary-Information Channel 334: This auxiliary chan

nel is designed to secretly embed a small number of bits (e.g.,
1 to 4 bits) into the transmitted passcode in a manner that is
resilient to user-introduced transcription errors.

ii. Time-Synchronization Channel 338: The channel is
designed to allow to transmit time-related information to the
SeVe.

(c) Tunable Operation
i. Reconfiguration: For software tokens, and with the

exception of the forward security aspect of the token 500, any
of the above features are tunable, and therefore the token
operation is reconfigurable. In particular, even after the start
of the usage of the token by the user, one or more design
features can be activated or deactivated as desired or needed
by the use case, or some initial configuration parameters can
be tuned as desired by the system administrator of the one
time authentication token. For instance, during a Software
update cycle, the token application may be reconfigured to
employ one or more different features or use one or more
different parameters. This reconfiguration may or may not
require the user notification or training. Overall, every tech
nical feature of the system is autonomous, and for Software
tokens, every such feature can be effectively dynamically
enabled or dis-activated.
As demonstrated next, the exemplary design of the token

500 involves several novel ideas related to a fully multi
operational end-to-end one-time authentication token 500
that achieves the properties discussed above. Additionally,
the exemplary design is unique especially with respect to how

US 9,270,655 B1
15

different existing Solutions concepts and technologies are
combined in a novel way to provide a Sophisticated, yet
flexible, design for one-time authentication tokens. The
exemplary design also includes an elaborate server-side split
state verification protocol that extends the basic accept.re
ject output range of the server 150 to a richer set of outputs
that are related to assessing the security posture of the token
and taking appropriate action when certain events are
detected.
Main Architecture
As shown in FIG. 5, the architecture of the exemplary token

500 comprises three main portions:
1. The blue protocode-generation portion 510-1:
2. The red protocode-generation portion 510-2; and
3. The auxiliary-information portion 530.
Protocode-Generation Portions 510-1 and 510-2
The protocode-generation portions 510-1 and 510-2,

referred to as the blue and red protocode-generation parts, are
almost identical in their functionality with one another,
described as follows:

1. As shown in FIG. 5, an FS-PRNG module 512 in each
portion 510 implements a forward-secure pseudorandom
generator where, given an initial seed, seeds (or so respec
tively) and the current time epoch T as input, the blue (or the
red respectively) FS-PRNG module 512 produces a forward
secure pseudorandom key Kar (or Krz respectively). This
key Kaz (or Krz respectively) is produced in regular prede
termined time intervals, every elementary time epoch T, e.g.,
every minute. The initial seed S (or S respectively) is used
to produce some initial corresponding FS-PRNG state o (or
O respectively), where the seed gets deleted immediately
after producing this initial state. At every time epoch T. given
the current FS-PRNG state or (or of respectively), the
blue (or red respectively) FS-PRNG updates its state to new
FS-PRNG state O., (or o'errespectively) and output key
Kaz (or Krz respectively) where state Oar (or Orr respec
tively) is immediately deleted after this.

The only difference between the blue and red FS-PRNGs
512-1 and 512-2 is that at each time epoch T the blue FS
PRNG 512-1 additionally outputs some forward-secure pseu
dorandom values Ryz Roz and R to the auxiliary-infor
mation portion 530.

All pseudorandom keys and values are binary strings of
Some certain appropriate length, namely of lengths IK.
T=|Krzl, Rs.7), Rozl and Razl specified by the exact
parameterization of the one-time authentication token 500.

Additionally, each FS-PRNG module 512 employs the fol
lowing four features:

Pre-Computation of Pseudorandom Keys. Values: For effi
ciency reasons, the set of pseudorandom keys and values that
correspond to epoch T which is a small multiple of epoch T
are precomputed and stored in the token. For instance T may
be an epoch of length 4 times longer than epoch T (e.g.,
pre-computation occurs every 4 minutes). Each of these keys
or values are immediately deleted as soon as they are being
used by the token 500.

Hierarchical State Transitions: The FS-PRNG state is com
posed into partial FS-PRNG states so that a hierarchy is
induced among them, according to a structure that has the
form of a tree of chains, so that state transitions can be
implemented fast both sequentially and in (bigger) steps: That
is, the new state may either correspond to the next time epoch
of the current epoch or to an epoch that is further away in the
future from the current (most recently used) epoch. Partial
FS-PRNG states correspond to time epochs of different
lengths and State transition in steps can occur by employing
the appropriate Subset of these partial states to compute new

10

15

25

30

35

40

45

50

55

60

65

16
(intermediate) partial states that are immediately deleted as
Soon as they used by the token.

For instance, the FS-PRNG state may consist of partial
states corresponding to months, weeks, days, hours and min
utes. Then, to transition to the new FS-PRNG state that cor
responds to a step of 3 months and 6 days, the partial month
state is used to generate in a hash chain 3 new partial month
states, and the one-but-last Such month state is used to gen
erate inahashtree a new partial day state corresponding to the
first day in this month. Then, this new partial day state is used
to generate in a hash chain 6 new partial day states, and the
one-but-last Such state is iteratively used in a hash tree or a
hash chain to produce the final pseudorandom key and values
corresponding to the new epoch T. The total number of partial
state transitions are much smaller than the transitions
required to sequentially generate the new FS-PRNG state.

Finally, partial state transitions are performed by employ
ing a cryptographic hash function, where a different Such
function, or the same function on different control inputs, is
used for each hash chain or hash tree transition in different
levels of the hierarchy of partial states.

Randomized State Transitions: The above partial state tran
sitions may occur in a time window that starts in a random
point in time. However, the new randomized scheduling of
these partial state transitions is such that the total ordering of
these transitions remains the same.

Pro-Activation of Secret States: As shown in FIG. 6, at
regular predetermined time intervalsT, defined by the partial
states O, of the FS-PRNG states, the blue and red FS-PRNG
modules 512 exchange a cryptographic hash of their partial
states 6,7, and O, tr. Here, partial states Ozz and O,ti
correspond to the time epoch T that is of the longest duration
(e.g., one month) and that is associated to level L of the
hierarchy of partial states. That is, the blue and red FS-PRNG
modules exchange a cryptographic hash of their partial states
corresponding to the current month. The blue (resp. red)
FS-PRNG uses this received red (resp. blue) hash value as an
additional input for the next transition of its partial state O,
(resp. Ofr).

2. As shown in FIG. 5, a protocode-generator module 515
in each portion 510 implements the generation of a prelimi
nary passcode called protocode. The blue and red such mod
ules 515-1 and 515-2 operate identically. The blue module
515-1, for instance, operates as follows. Each time epoch T
(e.g., one minute) that a new passcode must be produced, the
module 515-1 uses the pseudorandom key Kaz, the current
time epoch T and optionally an additional data input D to
produce a protocode Paz. This protocode comes from the
same range of values as a regular passcode, typically, a 6- or
8-digit number, but it is not the final output of the token 500
for this time epoch T.

Instead, a different passcode P will be produced as final
output of the token for epoch T as described below. Protocode
Paris computed by applying a one-way cryptographic func
tion on the pseudorandom key Kaz and an additional input
that is of the form T or TI D, where T is the current time
epoch of the token and D, is an optional additional input
related to a data transaction performed by a high-level appli
cation that the token communicates with. Whenever the token
has such a transactional data D, input then TD, is used as
input, otherwise T is used. For instance, if T D, is used as
input, then P-MAC(Kr.TID) where the MAC function
is implemented using, e.g., CMAC.
The pseudorandom key K used for producing protocode

Paz may either have been produced as output of the blue
FS-PRNG module in this epoch T or it may have been pre
computed at an epoch T that is earlier than T.

US 9,270,655 B1
17

Again, the protocodes output of the protocode generation
are binary strings of the appropriate lengths Pal, IP,
specified by the exact parameterization of the one-time
authentication token 500.

Auxiliary-Information Portion 530
1. As shown in FIG. 5, an auxiliary-channel module 530

encodes a small number of bits, e.g., 4 bits, into a codeword
W that is used to embed some auxiliary information into the
final OTP passcode at time epoch T. In an exemplary setting,
this module 530 receives as input 4 auxiliary-information
bits, 1 control bit and the pseudorandom value R(that is, an
output of the blue FS-PRNG module 512-1 for the same
epoch T).

If the control bit is 0, then the module 530 outputs W-0,
which indicates that no auxiliary information will be embed
ded into the final OTP passcode for epoch T.

If the control bit is 1, then the module 530 produces a
decimal codeword of 6- or 8-digits that will embed 1 silent
alarm bit bor 2 drifting key bits big bar, and 1 auxiliary bit
by into the final OTP passcode for epoch T as follows.

The auxiliary-channel module 550 maps the bits produced
by the silent-alarm module 535 and drifting-key module 540
into a decimal codeword. The mapping occurs in three steps:

(a) Concatenate the bits bat, b27, b7 and bog into a 4-bit
value; if bris a “reserved” unused bit, then the most signifi
cant bit is always 0;

(b) Compute an 8-bit extended hamming code from the
4-bit value; and

(c) Map the bits of the hamming code to a decimal code
word as follows:

If the bit is 0, it is mapped to a '0' digit;
If the bit is 1, it is pseudorandomly mapped to a digit from

1 to 9, using a 9-bit pseudorandom value (derived)
from the value Raz to select the digit.

The codeword is added, with no carry between digits, to the
protocode to produce the passcode. If the passcode is only 6
digits, the process is the same, but only the least significant six
digits of the codeword are added to the 6-digit protocode.

2. The silent-alarm module 535 produces a silent alarm bit
bor for epoch T that corresponds to a pseudorandom sam
pling or hash value of the silent alarm state Os of the token
500. In particular, at all times the token 500 maintains a silent
alarm state Os which is a binary string of some appropriate
length los specified by the exact parameterization of the
one-time authentication token 500.

This silent alarm state Os evolves over time in an event
based and forward secure manner. That is, whenever the token
500 detects or senses one or more predetermined events (e.g.,
that indicate possible compromise), state Os is instantly
changed to value Os–h'(Os), where h is a cryptographic
hash function, h') denotest iterations of function h, that is, for
instance, h'(x)=h(h(h(x))), and t is a small integer value that
depends on the exact event that is sensed by the token 500.
Optionally, an additional control input c, which takes on a
value coming from a small set of sizel, can participate in the
above hashing operation, i.e., Osh'(Osc). The silent
alarm state is thus updated at times that are independent of the
regular time epochs of the token 500.

At each time epoch T the silent alarm state is sampled in a
pseudorandom manner. In particular, the pseudorandom
value Rs, output of the blue FS-PRNG module 512-1, and
the silent alarm state Os are combined together through the
dot product operation to define bit bor, i.e., boz-Rsros.
where los =Rs7.

3. A drifting-key module 540 produces two drifting key bits
biz and bar for epoch T that correspond to pseudorandom
samplings or hash values of the drifting key states O, and

10

15

25

30

35

40

45

50

55

60

65

18
O, respectively, of the token 500, having sizeslo, and
lo,..., specified by the exact parameterization of the one
time authentication token 500. The operations of the two
states is identical, and in the simplest case, these two states
can be set to be at all times the same, i.e., O, FO, 2. Then,
in this case, the module operates as follows.
At every time epoch T of some predefined length (e.g.,

every one week, or every 5 days), the drifting key state is
being shifted by k positions to the right and new random bits
are being inserted into the state, where k is specified by the
exact parameterization of the one-time authentication token.
Thus, kbits of the state O, are deleted and k random bits
are inserted at the beginning of the state.
At each time epoch T the drifting key state O, is sampled

twice in a pseudorandom manner. In particular, the pseudo
random value Routput of the blue FS-PRNG module, is
split into two equal parts Roz and Reza, and then each such
part and the drifting key state O, are combined together
through the dot product operation to define bits brandbar,
i.e., bir RRT. Odki and b27. RRT2'Opk where We
require that opkil-Razl-Rs.72.

4. Finally, as shown in FIG. 5, a passcode-generation mod
ule 560 combines the outputs of the blue and red protocol
generation parts 510-1 and 510-2 with the output of the aux
iliary-information portion 530 to produce the final OTP
passcode.

In particular, for user-based OTPs, the two blue and red
protocodes P, Pyare first digitalized into two 6- or 8-digit
passcodes P-DIG(P), Pri-DIG(P) where DIG is a
function transforming binary strings into digital numbers of
length 6 or 8; then, these Prand Prare combined as PR,
PCDP, where €D denotes digit-wise addition module 10
(without carries) to form the combined protocode for epoch T.
Finally, the final OTP passcode Pfor time epoch T is defined
to be PPR, CDW, i.e., the combined protocode distorted or
shifted by the codeword W. that is output of the auxiliary
channel module.

For long OTPs, the operation of the module 560 is analo
gous with the case above but now the digitizing of the proto
codes is omitted and the combining operation can be an XOR
operation over the binary strings Paz Prz and a binary rep
resentation of W, or a binary representation directly related
to auxiliary-information bits.

Token-Side Operation

FIG. 7 illustrates exemplary pseudo code for token opera
tion 700 for an exemplary hardware implementation of token
500. As shown in FIG. 7, at the beginning of every time epoch
T and for the duration of the lifetime of the token 500, the
following operations occur:

Step 0: A carefully chosen random jitter delays or expedites
the beginning of the computation of the following steps
with respect to the beginning of current epoch T.

Step 1: The blue FS-PRNG module 512-1 sequentially
updates the state and computes blue pseudorandom key
and values; if T is the beginning of an epoch T, then
pre-computation of such keys and values for Some future
epochs T is also computed; old used States are immedi
ately deleted. The red FS-PRNG module 512-2 operates
similarly. If T corresponds to the beginning of an epoch
Tthered and blue FS-PRNGs 512-1 and 512-2 exchange
hashes of their partial states that lie at the higher level of
the hierarchy.

Step 2: The combined protocode for epoch T is computed,
incorporating any additional transactional data inputted
to the token for epoch T.

US 9,270,655 B1
19

Step 3: The silent-alarm state is sampled to the silent-alarm
bit; ifT corresponds to the beginning of an epoch T, then
the drifting-key state is updated and shifted; the drifting
key state is sampled to the drifting-key bits.

Step 4: The auxiliary channel 550 maps the auxiliary
information bits to codeword W., by which the com
bined protocode is shifted to get the final OTP passcode.

FIG. 8 illustrates exemplary pseudo code for token opera
tion 800 for an exemplary software implementation of a token
500. As shown in FIG. 8, immediately after the launching of
the token application, then at the beginning of every time
epoch T and for the duration of the running of the token
application, the following operations occur:

Step 0a: The tokens FS-PRNG, silent-alarm and drifting
key states are retrieved.

Step 0b: A carefully chosen random jitter delays or expe
dites the beginning of the computation of the following
steps with respect to the beginning of current epoch T.

Step 1a: If the current epoch T is the first epoch after the
launching of the token application, then the blue and red
FS-PRNG modules 512-1 and 512-2 update their states
in a step of the appropriate length. If the current epochT
is later in time than the epoch T that the two FS-PRNG
modules 512-1 and 512-2 were lastly used, where T is
encoded in the FS-PRNG states, then update the states to
correspond to epoch T" that is the next epoch of T.

Step 1b: The blue FS-PRNG module 512-1 sequentially
updates the state and computes blue pseudorandom key
and values; if T is the beginning of an epoch T, then
pre-computation of such keys and values for Some future
epochs T is also computed: old used states are immedi
ately deleted. The red FS-PRNG module 512-2 operates
similarly. If T corresponds to the beginning of an epoch
T the red and blue FS-PRNGs exchange hashes of their
partial states that lie at the higher level of the hierarchy.

Steps 2-4: Same as in the hardware case 700.

Server-Side Operation

The usage of split-server passcode verification 312,
requires the use of two server. FIGS. 9A and 9B, collectively,
illustrate exemplary pseudo code for server operation 900 for
an exemplary split server implementation. As shown in FIG.
9A, upon receipt of candidate passcode P, the operation of
each server 150-blue and 150-red is as follows.

Step 1: The blue server 150-blue maintains the complete
history of silent-alarm and drifting-key states and each
server 150-blue and 150-red maintains a history of FS
PRNG states related to a slack window of sizes around
each current time epoch T, where s is specified by the
exact parameterization of the one-time authentication
token. If the current epoch T is earlier in time than the
epoch T that was lastly used at a server, then the FS
PRNG state is updated in a step of the appropriate
length.

Step 2 For each epoch in the slack window:
Step 2a: The blue server 150-blue computes and sends to

the red server 150-red all possible codewords W for T.
Step 2b: Using commitment schemes, the two servers 150

blue and 150-red exchange their blue and red proto
codes, gradually for individual pieces of the protocols,
e.g., by exchanging 2 digits 4 consecutive times in the
case of 8-digit OTP passcodes. They compute the com
bined protocode PR.

Step 2c: For each W, each server 150-blue and 150-red
checks if PPRODW by performing the following:

5

10

15

25

30

35

40

45

50

55

60

65

20
Replace each non-zero digit in W, with a 1 value to obtain

the candidate binary codeword.
Check if the binary codeword is a valid hamming code

value.
Thereafter, as shown in FIG.9B.
Step 3: If no Step 2c validates, then each server 150-blue

and 150-red outputs “reject” otherwise let B, * be the
matching binary codeword for epoch T. Then, binary
codeword B.* is decoded to a 4-bit value to get the
silent-alarm bitbo and drifting-keys bits band b, and
each server 150-blue and 150-red outputs “accept.” If
both servers 150-blue and 150-red output “accept” the
user is (conditionally) authenticated according to some
server-side policy that is in place.

Step 4: The silent-alarm state is sampled by the blue server
150-blue to get the silent-alarm bit b'. If b'zbo then a
silent-alarm exception is raised by the blue server 150
blue, and additionally the blue server 150-blue attempts
to find the concrete values oft and c with which that the
silent alarm test Os–h'(Osc) is validated, where t
and c are treated as additional information about the
current alerting state of the token.

Step 5: The drifting key bits band b are used by the blue
server 150-blue to update the drifting-key state and if an
inconsistency is observed, using the inconsistency
checking described below, a drifting-key exception is
raised by the blue server 150-blue.

Drifting Key Inconsistency Checking
Given the two drifting key bits band b that are provided

to the blue server 150-blue as part of Step 3 above, the blue
server 150-blue can update its drifting key state as follows.
The server 150-blue stores a drifting key state value that is

equal in size to the drifting key state stored by the token. Each
bit of the server state may have three values, 0, 1, or “don’t
know.” The 0 and 1 values correspond to known values
determined after a successful authentication during the cor
responding interval. The “don’t know value indicates that no
Successful authentications were received for the token during
that interval, so the server cannot determine the drifting key
State.

When the blue server 150-blue receives drifting keys b
and b, it checks their consistency with respect to the current
drifting key state. This consistency check is performed by
computing the two pseudorandom mask values correspond
ing to each bit, then determining if the dot product of the
known state and the mask value could equal the candidate b
and b values. If b, and b are both possible dot products, the
value is consistent, otherwise it is inconsistent. If the received
bits are consistent, then the drifting key state for the current
epoch is updated using the equations learned by band b.

If the number of “don’t know values in the drifting-key
state of the blue server 150-blue is large (for example, if the
token is used infrequently), it becomes unlikely that incon
sistent codewords will be detected. This will reduce the serv
er's ability to detect invalid drifting key states, but will not
interfere with normal use of the token 500.

Conclusion

As previously indicated, the above-described embodi
ments of the invention are presented by way of illustrative
example only. Numerous variations and other alternative
embodiments may be used, as noted above. The present
invention provides new general-purpose techniques for
improving resilience to a number of attacks.

Additional details regarding certain conventional crypto
graphic techniques referred to herein may be found in, e.g., A.

US 9,270,655 B1
21

J. Menezes et al., Handbook of Applied Cryptography, CRC
Press, 1997, which is incorporated by reference herein.

Advantageously, the illustrative embodiments do not
require changes to existing communication protocols. It is
therefore transparent to both existing applications and com
munication protocols.

While exemplary embodiments of the present invention
have been described with respect to processing steps in a
Software program, as would be apparent to one skilled in the
art, various functions may be implemented in the digital
domain as processing steps in a Software program, in hard
ware by a programmed general-purpose computer, circuit
elements or state machines, or in combination of both soft
ware and hardware. Such software may be employed in, for
example, a hardware device. Such as a digital signal proces
Sor, application specific integrated circuit, micro-controller,
or general-purpose computer. Such hardware and Software
may be embodied within circuits implemented within an inte
grated circuit.

Thus, the functions of the present invention can be embod
ied in the form of methods and apparatuses for practicing
those methods. One or more aspects of the present invention
can be embodied in the form of program code, for example,
whether stored in a storage medium, loaded into and/or
executed by a machine, or transmitted over some transmis
sion medium, wherein, when the program code is loaded into
and executed by a machine, such as a computer, the machine
becomes an apparatus for practicing the invention. When
implemented on a general-purpose processor, the program
code segments combine with the processor to provide a
device that operates analogously to specific logic circuits.
The invention can also be implemented in one or more of an
integrated circuit, a digital signal processor, a microproces
Sor, and a micro-controller.

System and Article of Manufacture Details

As is known in the art, the methods and apparatus discussed
herein may be distributed as an article of manufacture that
itself comprises a computer readable medium having com
puter readable code means embodied thereon. The computer
readable program code means is operable, in conjunction
with a computer system, to carry out all or some of the steps
to perform the methods or create the apparatuses discussed
herein. The computer readable medium may be a recordable
medium (e.g., floppy disks, hard drives, compact disks,
memory cards, semiconductor devices, chips, application
specific integrated circuits (ASICs)) or may be a transmission
medium (e.g., a network comprising fiber-optics, the world
wide web, cables, or a wireless channel using time-division
multiple access, code-division multiple access, or other
radio-frequency channel). Any medium known or developed
that can store information Suitable for use with a computer
system may be used. The computer-readable code means is
any mechanism for allowing a computer to read instructions
and data, Such as magnetic variations on a magnetic media or
height variations on the Surface of a compact disk.

The computer systems and servers described herein each
contain a memory that will configure associated processors to
implement the methods, steps, and functions disclosed
herein. The memories could be distributed or local and the
processors could be distributed or singular. The memories
could be implemented as an electrical, magnetic or optical
memory, or any combination of these or other types of storage
devices. Moreover, the term “memory' should be construed
broadly enough to encompass any informationable to be read
from or written to an address in the addressable space

10

15

25

30

35

40

45

50

55

60

65

22
accessed by an associated processor. With this definition,
information on a network is still within a memory because the
associated processor can retrieve the information from the
network.

It should again be emphasized that the particular authenti
cation and communication techniques described above are
provided by way of illustration, and should not be construed
as limiting the present invention to any specific embodiment
or group of embodiments. Also, the particular configuration
of system elements, and their interactions, may be varied in
other embodiments. Moreover, the various simplifying
assumptions made above in the course of describing the illus
trative embodiments should also be viewed as exemplary
rather than as requirements or limitations of the invention.
Numerous alternative embodiments within the scope of the
appended claims will be readily apparent to those skilled in
the art.
What is claimed is:
1. A method for configuring a one-time authentication

token, comprising the steps of:
providing a plurality of selectively enabled token features

in said configurable one-time authentication token,
wherein said plurality of selectively enabled token fea
tures comprise at least two of a split-server passcode
Verification feature, a silent alarms feature, a drifting
keys feature, a forward-secure pseudorandom number
generation feature, a token randomness generation fea
ture used for the generation of passcodes, a randomized
state transitions feature, a data-transaction signing fea
ture, an auxiliary channel feature and a time synchroni
Zation feature used to maintain synchronization between
said one-time authentication token and an authentication
server;

obtaining a configuration selection of at least said plurality
of said selectively enabled token features; and

configuring said one-time authentication token based on
said configuration selection to enable said selected token
features in said one-time authentication token, wherein
said configuration selection must always enable said
forward-secure pseudorandom number generation fea
ture for said one-time authentication token and at least
one additional selected token feature, wherein said time
synchronization feature communicates that a forward
clock attack has occurred.

2. The method of claim 1, further comprising the step of
ensuring said configuration selection satisfies one or more
dependency rules relating at least two of said selectively
enabled token features.

3. The method of claim 2, wherein said one or more depen
dency rules comprise requiring that each of said split-server
passcode Verification feature and said silent alarms feature
each require said forward-secure pseudorandom numbergen
eration feature.

4. The method of claim 2, wherein said one or more depen
dency rules comprise requiring said randomized State transi
tions feature requires a randomness source feature.

5. The method of claim 2, wherein said one or more depen
dency rules comprise requiring said drifting keys feature and
said silent alarms feature require said auxiliary channel fea
ture.

6. The method of claim 2, wherein said one or more depen
dency rules comprise requiring said drifting keys feature
requires a randomness Source feature.

7. The method of claim 1, wherein said split-server pass
code Verification feature, said silent alarms feature and said
drifting keys feature comprise high-layer protection that pro
vides intrusion-detection and intrusion-resilience.

US 9,270,655 B1
23

8. The method of claim 7, wherein said high-layer protec
tion provides resistance to cloning of said one-time authenti
cation token.

9. The method of claim 1, wherein said forward-secure
pseudorandom number generation feature, said token ran
domness generation feature and said randomized State tran
sitions feature comprise low-layer protection that provides
tamper-resistance.

10. The method of claim 9, wherein said low-layer protec
tion provides leakage resistance by said one-time authentica
tion token of a secret state of said one-time authentication
token.

11. The method of claim 1, wherein said data-transaction
signing feature, said auxiliary channel feature and said time
synchronization feature comprise intermediate-layer protec
tion that provides token-visibility.

12. The method of claim 11, wherein said intermediate
layer protection allows said one-time authentication token to
communicate an assessment of said one-time authentication
token to said authentication server.

13. The method of claim 1, wherein said one-time authen
tication token is selectively configured at one or more of a
time of manufacture, system initialization and Software
update time.

14. A non-transitory machine-readable recordable storage
medium for configuring a one-time authentication token,
wherein one or more software programs when executed by
one or more processing devices implement the steps of the
method of claim 1.

15. The method of claim 1, wherein said drifting keys
feature is enabled and wherein said method further comprises
the step of using one or more drifting key bits to update a
drifting-key state for said drifting keys feature.

16. An apparatus for configuring a one-time authentication
token, the apparatus comprising:

a memory; and
at least one hardware device, coupled to the memory, con

figured to implement the following steps:
provide a plurality of selectively enabled token features in

said configurable one-time authentication token,
wherein said plurality of selectively enabled token fea
tures comprise at least two of split-server passcode Veri
fication feature, a silent alarms feature, a drifting keys
feature, a forward-secure pseudorandom number gen
eration feature, a token randomness generation feature
used for the generation of passcodes, a randomized state
transitions feature, a data-transaction signing feature, an
auxiliary channel feature and a time synchronization
feature used to maintain synchronization between said
one-time authentication token and an authentication
Server,

obtain a configuration selection of at least said plurality of
said selectively enabled token features; and

configure said one-time authentication token based on said
configuration selection to enable said selected token
features in said one-time authentication token, wherein
said configuration selection must always enable said
forward-secure pseudorandom number generation fea
ture for said one-time authentication token and at least
one additional selected token feature, wherein said time
synchronization feature communicates that a forward
clock attack has occurred.

17. A configurable one-time authentication token, com
prising:

a plurality of selectively enabled token features in said
configurable one-time authentication token, wherein
said plurality of selectively enabled token features com

10

15

25

30

35

40

45

50

55

60

65

24
prise at least two of split-server passcode Verification
feature, a silent alarms feature, a drifting keys feature, a
forward-secure pseudorandom number generation fea
ture, a token randomness generation feature used for the
generation of passcodes, a randomized State transitions
feature, a data-transaction signing feature, an auxiliary
channel feature and a time synchronization feature that
maintains synchronization between said one-time
authentication token and an authentication server,
wherein said configurable one-time authentication
token is always configured to enable said forward-secure
pseudorandom number generation feature for said one
time authentication token and at least one additional
token feature, wherein said time synchronization feature
communicates that a forward clock attack has occurred,
and wherein said forward-secure pseudorandom num
ber generation feature obtains a secret state from at least
one memory using at least one processing device.

18. The configurable one-time authentication token of
claim 17, wherein said configurable one-time authentication
token computes a user authentication passcode based on a
state corresponding to a current leaf node in a hierarchical
tree.

19. The configurable one-time authentication token of
claim 17, further comprising a plurality of protocode genera
tion modules for generating a plurality of protocodes for use
with a plurality of split authentication servers.

20. The configurable one-time authentication token of
claim 19, wherein said plurality of protocode generation
modules comprise a forward secure pseudo random number
generator and a protocode generator.

21. The configurable one-time authentication token of
claim 20, wherein said forward secure pseudo random num
ber generators produce a forward-secure pseudorandom key
K that is processed by said protocode generator based on a
current time epoch T of said configurable one-time authenti
cation token and optionally additional data input D to gener
ate a corresponding protocode P.

22. The configurable one-time authentication token of
claim 20, wherein only one of said forward secure pseudo
random number generators produce forward secure pseudo
random values processed by an auxiliary-information module
of said configurable one-time authentication token.

23. The configurable one-time authentication token of
claim 17, further comprising an auxiliary-information mod
ule.

24. The configurable one-time authentication token of
claim 23, wherein said auxiliary-information module
encodes one or more bits into a codeword to embed auxiliary
information into a final passcode at time epoch T.

25. The configurable one-time authentication token of
claim 23, wherein said auxiliary-information module sets a
flag to indicate if auxiliary information is embedded in a final
passcode at time epoch T.

26. The configurable one-time authentication token of
claim 23, wherein said auxiliary-information module maps
one or more bits from said silent alarm feature and said
drifting keys feature into a codeword.

27. The configurable one-time authentication token of
claim 26, wherein said silent alarm feature produces one or
more silent alarm bits corresponding to a silent alarm state of
said configurable one-time authentication token.

28. The configurable one-time authentication token of
claim 26, wherein said drifting keys feature generates an
updated set of keys K, for time tby applying a randomized key
update function to a previous set of keys K, for time t-1.

US 9,270,655 B1
25

29. The configurable one-time authentication token of
claim 26, wherein said drifting keys feature shifts a drifting
key state by k positions and inserts new random bits into the
drifting key state.

30. The configurable one-time authentication token of
claim 26, further comprising a passcode-generation module
that combines outputs of one or more protocode generation
modules with an output of an auxiliary-information module
to produce a final one-time authentication passcode.

31. The configurable one-time authentication token of
claim 26, wherein a random jitter delays or expedites a begin
ning of a computation of one or more operations with respect
to a beginning of a current epoch T.

32. The configurable one-time authentication token of
claim 26, wherein at least a first forward secure pseudo ran
dom number generator sequentially updates a state and com
putes a first pseudorandom key and values; and wherein if T
is the beginning of an epoch T that is larger than T, then said
first pseudorandom keys and values are precomputed for
Some future epochs T.

33. The configurable one-time authentication token of
claim 26, wherein at least two forward secure pseudo random

5

10

15

26
number generators exchange hashes of partial states that lie at
a higher level of a hierarchy.

34. The configurable one-time authentication token of
claim 26, wherein a combined protocode for epoch T is com
puted, incorporating any additional transactional data input to
the token for epoch T.

35. The configurable one-time authentication token of
claim 26, wherein at epoch T, a silent-alarm state is sampled
to a silent-alarm bit and a drifting-key state is sampled to
drifting-key bits; wherein ifT corresponds to the beginning of
an epoch T, then the drifting-key state is updated and shifted
prior to said sampling of drifting-key bits.

36. The configurable one-time authentication token of
claim 26, wherein an auxiliary channel maps auxiliary-infor
mation bits to a codeword W., by which a combined proto
code is shifted to obtain a final OTP passcode for epoch T.

37. The configurable one-time authentication token of
claim 26, wherein if a current epoch T is a first epoch after a
launching of a token application, then one or more forward
secure pseudorandom number generators update their states
in a step of an appropriate length.

k k k k k

