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INTRODUCTION

Theories of intelligence can be of use to neuroscientists if they:

1. provide illuminating suggestions about the functional architecture of neural
systems;
2. suggest specific models of processing that neural circuits might implement.

— !, ~The objective of our session was 10 stand back and consider the prospects for this
interdisciplinary exchange. ,

One of the facts that emerged early in our discussions was that given our current
level of knowledge, it is hard to tie theories and models of intelligence to actual neural
machinery. Skeptics see this bridging problem as nonaccidental. We know, for in-
stance, that human intelligence depends on a range of knowledge representation
capacities, reasoning methods and additional computational mechanisms that have
both principled and unprincipled components. Theorists in artificial intelligence (AI),
cognitive science, linguistics and psychology are beginning to tell us something about
the principled components—the core competences of human intelligence. But there
is widespread disagreement about how much of cognition is principled. Most of human
intelligence has evolved through extension and repair of simpler cognitive systems.
This suggests that biological designs may not be as cleanly principled as engineers
would like. If intelligence is really the product of prolonged tinkering, high-level
accounts of cognitive designs may be misleading. Each intelligent system might have

Exploring Brain Functions: Models in Neuroscience
Edited by T.A. Poggio and D.A. Glaser © 1993 John Wiley & Sons Ltd.




294 D. Kirsh et al.

its own idiosyncratic design, depending on its evolutionary history, and so theories of
intelligence could be of use to neuroscience in one way alone: as specifications of
behavi(?ral capacities intelligent systems display. They could offer few concrete design
constraints neuroscientists might find useful.

" In our discussions we did not take this skeptical stance for two reasons. First, it is
harq to imagine how any biologically designed intelligence, no matter how idiosyn-
cratic, can fail to be organized around certain high-level principles of functional
organization characteristic of rational systems. We may be wrong in some of the details
of our account of these principles; however, it is unlikely that we could be wrong about
the key competences underpinning rational intelligence. This is particularly so if we
are motivated not only by abstract considerations of what is necessary for intelligence
but by studies of human subjects with brain damage and studies of comparativ;
intelligence.

The second reason we rejected the skeptic’s position is that more complex models
f’f dynamical systems allow us to relax, somewhat, our idea of what a principled design
is. PDP systems, cellular automata and other highly connected systems tend to
implement functions in complex ways. These approaches have yet to yield theories
about the global architecture of intelligence, but they are highly suggestive of some
of the forms and properties of neural representations and circuitry.

Our report is organized into six sections, each addressing a particular issue. What
are the key competences underpinning intelligence? How are we to understand the
various levels of functional organization characteristic of brains? What are some of
the forms and properties of neural representations? What makes conceptual knowledge
special? What is the role of expectation in intelligent systems? And finally, because
no free ranging discussion of intelligence would be complete without areconsideration
of consciousness and its functional role, we reviewed a few of the facts and difficulties
associated with consciousness.

COMPETENCES UNDERPINNING INTELLIGENCE

It would be standard in philosophical circles to begin an inquiry into intelligence with
an analysis of what we ordinarily mean by intelligence. The outcome of such an
analys.is might be a list of basic competences, such as the ability to reason and problem
§olve in propositional, spatial and other analogue domains; the ability to learn by
induction, by inference to the best explanation; the ability to be self-aware; and the
ability to explain the conduct of others, to name just a few. The chief element missing
from such an analysis is a structural framework that might explain how basic com-
petefnces interact to produce intelligent behavior. Our first step, accordingly, was to
mfmvate such a list by reviewing some of the abstract properties of intelligent systems
with an eye to uncovering what would be needed to build a computational systerr vith
human-like properties. "
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Intelligence in the Abstract

Following the analysis offered by Rosenbloom and Newell, we began by assuming
that intelligence is a measure of a system’s rationality: the more rational a system, the
more intelligent it is. An agent is perfectly rational if it is able to bring all of its
knowledge to bear in the service of its goals; it always chooses the optimal action,
given its knowledge, goals, and action capabilities.

Intelligence, on this account, is to be sharply distinguished both from knowledge
and behavioral competence per se. In any given case, inadequate performance in a
task may be due either to inadequate knowledge or inadequate intelligence. If a
creature has the requisite knowledge to choose the rational act relative to its goals, we
will say that its failure to do so is evidence that it is not perfectly intelligent; it lacks
certain capacities necessary for making the most of its knowledge. If, by contrast, it
Jacks certain bits of essential knowledge, no amount of intelligence can substitute for
this knowledge. We will say that its inadequate performance is caused by ignorance,
not stupidity.

One feature of this approach is that intelligence can now be understood as an attribute
of design rather than just a set of behavioral competences. If a system is sufficiently
well designed so that it is well adapted to its environment of activity, it is by definition
highly intelligent. At first this may seem counterintuitive for it seems to imply that .
cognitively primitive creatures, such as aplysias or nematodes, no less than cats and
humans, can be assessed for intelligence. But two facts qualify this. First, because
intelligence has to do with using knowledge effectively, only systems that can be
characterized as having knowledge can be assessed for degree of intelligence. Second,
because systems surviving in complex environments require more sophisticated goals,
knowledge, and action capabilities than systems surviving in simpler environments, the
information-processing capacities which more complex creatures require for choosing
rational actions will themselves have to rise in complexity. It is often this requirement
of competence in complex domains that we associate with intellligence.

What then can be said from this perspective about the design of intelligent systems
adapted to complex environments? Since the environments of activity in which
humans operate range from simple physical worlds where obstacle avoidance, loco-
motion, and object manipulation are the basic requirements of life to complex social
worlds where body language, conversational skill, and knowing when to be silent are
critical acts, we know that the type of system that could cope with all of these
requirements will minimally have to have the competence (a) to perceive its situation,
(b) to represent situations in working memory, (c) to select among its goals, (d) to
combine information of that goal and situation with potentially relevant background

knowledge stored in long-term memory, (e) to perform appropriate computations 10
choose a rational or nearly rational action, and (f) to execute that action in the world.
Note that all these are domain-independent competences.

Moreover, since in complex environments it is unlikely that a system has enough
knowledge to attain all of its goals immediately, we can expect at least two additional
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features: a reflective component whose job is to schedule goals, to plan, to determine
relevant implications of existing knowledge, to problem solve; and a leaming compo-
nent that will update existing knowledge in the light of the activities of the reflective
component and perceived consequences of actions on the world (see Fig. 20.1). !
This list of competences and components is, to be sure, abstract: it abstracts from
particular domains, and leaves unspecified all details of representation and algorithm.
Yet any functional decomposition of a system based on an analysis of the requirements
of rationality will be similarly abstract. It is only when we add facts about the
processing time and memory size a system has available, and about the particular task
environments the system must succeed in that we can say much more about the
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Figure 20.1 The key components of an intelligent system, on this view, are a set of actions the
system can perform, goals it seeks to attain, a body of facts, laws, principles rules, etc. that it
knows and can use, as well as a mechanism for selectively retrieving goal-relevant knowledge
and actions, and a mechanism for rationally deciding a course of action given that retrieved
material. Implicated are also a reflection component for overcoming impasses at the original
level and a learning component to ensure continuous adaptation to a dynamic world.
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functional structure of these general mechanisms. One such further decomposition has
formed the basis for the Soar architecture (Newell 1991; Rosenbloom et al. 1991). In
Soar, each of these components is given a specific implementation. The result is a
computational system that has been shown to provide a good match to a range of
human psychological data. ’

Having blocked out some of the abstract requirements for intelligent systems we
next considered evidence from the study of lesions to human brains to gather further
evidence about the key competences of intelligent agents.

Lessons from Lesions

According to Damasio, the study of brain damage gives broad confirmation for a
functional decomposition akin to Rosenbloom’s. But from a clinical perspective
planning, attention, and learning (especially learning associated with punishment and
reward) are of particular interest for human intelligence. See Fig. 20.2 for a diagram
of some of the key dependency relations between functional systems that are motivated
by clinical case studies. .

Although lesions in varied sensory cortices can reduce overall intelligence because
of the ensuing deficits in perception, memory, or language, it is damage in the frontal
cortices, especially in the prefrontal sectors, that most consistently produce the defects
in intelligence, in the sense most regularly used in the clinic. Curiously, some of those
defects may not be readily measured by psychological test scores; many frontal lobe
patients maintain IQs in the normal range and may have largely intact basic neuropsy-
chological performances (e.g., in perception, conventional memory, and language).

—» Attention <«——— Innate Knowledge Reasoning Planning
A
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Figure 20.2 In Damasio’s view, human intelligence can break down if lesions are made to any
of several systems in cerebral cortices. The magnitude of the defect varies with the system
affected. When lesions compromise systems which include prefrontal cortices, there tend to be
major defects in reasoning and planning. Yet damage o other systems, by compromising
attention, or active perception, or the retrieval of knowledge, can also diminish the scope and
level of intelligent behavior.
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However, that intelligence is defective is apparent in real-life situations. Patients fail
to plan their activities properly, often in the immediate- and medium-term ranges, and
may be entirely disrupted in their ability to plan for the long-term future. Furthermore,
where their social behavior was intact before the claimed onset, there can develop
marked defects in social conduct.

Aclass of frontal lobe patients that deserves special mention is made up of patients
with ventromedial frontal lesions (involving largely the orbital prefrontal cortices);
they develop profound disturbances of planning and social conduct in the face of
otherwise intact intelligence. Patient EVR is an important example. Up to his mid-
thirties, when he underwent a surgical resection of ventromedial frontal cortex to
remove a meningeoma, he was a successful professional, husband, and parent,
respected and loved by his friends and relatives. After the lesion, he was no longer
able to decide intelligently how to run his daily life—in professional or personal
terms—and he was no longer able to plan for the future. He could not maintain his
job; he made disastrous financial decisions; he was not able to maintain previously
stable and advantageous relationships; and he initiated personal relationships that led
to personal tragedy. He has not been able to learn from any of his mistakes, in spite of
the fact that they have been explained to him in detail and that he has clearly understood
the implications of his actions. Yet EVR is not only psychometrically intelligent, he
is personally pleasant.

In EVR and in four other comparable individuals, recent research has identified a
defect in the ability to generate and experience somatic states relative to emotionally
charged stimuli. In other words, EVR and similar patients, seem to be unable to “feel”
much in situations in which previously they apparently had “normal” feelings, and in
which presumably normal individuals also have normal “feelings.” These findings
have led to the hypothesis that a failure to reenact negative (or positive) somatic states,
clearly associated to punishment and reward, may deprive these individuals of an
important signal marking potentially dangerous (or advantageous) future outcomgs as
they are internally represented in decision-making scenarios. '

WHAT DOMAIN OF KNOWLEDGE IS CRITICALFOR
INTELLIGENCE?

Our account of competences has so far been at the functional level; nothing concrete
has been said about the kind of knowledge essential for human intelligence as we know
it. On the basis of comparative studies with animals and studies in developmental
psychology, Premack approached the question of what knowledge is essential for
minimal performance in human environments. Based on his view, not only must an
agent have certain skills arid mechanisms before it can be intelligent in a human way,
it also must have certain ontological categories and predispositions for conceptualiz-
ing. Chief among the critical elements of knowledge are the capacities to divide the
world into categories, such as physical object, mind, biological kind, and number.
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Possession of these concepts is significant for two reasons. First, it is probable that

* only systems with certain higher functional capacities are capable of possessing such

categories, and second, it is probable that possession of such categories is a pre@ndi—
tion for acquiring a host of additional capacities. We will return to this notion of higher
functional capacity shortly.

It is easy to appreciate how the concept of a physical object is central to' arange of
cognitive capacities we rely on to make sense of our world. Without 'tl.us concept,
systems may have the ability to respond in similar ways to similar stimuli if the .nonon
of “similar” is simple enough; however, a more sensitive response often requires an
ability to identify, individuate, and reidentify entities. .

Evidence suggests that this capacity to identify is innate or nearly innate.

Four-month-old infants tested with habituation/dishabituation, for instance, show
“knowledge” of what an object is; they rely on von Uexkiill’s criterion: an (.)bject
is an item whose parts move in unison (Spelke 1985). Indeed, infants at this age
rely exclusively on this criterion, making no use of the object quality information
that adults and older children use. They also “understand” some basic facts about
the interaction between objects, e.g., that two solid objects cannot occupy the same
place at the same time. In this same period, however, they display no knowledge
of either gravity or inertia. .

The concept of mind and mental causation is equally important for understand‘mg
our world. Teleological, intentional, and purposive explanations are different in logical
structure than simple law-like explanations. This fact is significant because of the
obvious link between explanation and understanding. The more we can explain the
more we can predict and respond adaptively. )

There is some data based on three-year-old children that suggest that humans are
endowed early on with the capacity to distinguish intentional from noninlentiopal
actions and systems (Dasser et al. 1989). For example, children appear to distingu.lsh
objects that seem to be self-propelled, i.e., objects that start and stop their own motion
from objects that move only when acted upon. The self-propelled objects they.seem
to interpret as intentional, whereas non self-propelled objects are not seen as inten-
tional. Moreover, infants further distinguish the valence of intentional actions. Gentle
rubbing is seen as positive, hitting as negative. When an infant perceives one objf:ct
act upon another in a valenced manner, it attributes social intention to the one object
and expects the action to be reciprocated, and for the reciprocation to preserve valence
(Premack 1990). -

Related to the capacity to distinguish intentional from nonintentional actions, but
obviously more sophisticated, is the capacity to attribute'mental states to oneself and
others. Often called possessing a “theory of mind” (TOM), this capacity is acquired
by all children without formal pedagogy (Premack and Woodruff 19785 Premack
1988a). Children attain an adult level of competence by the fourth year (Wimmer and
Perner 1983). This is a vital acquisition, for arguably TOM can be seen as a precon-
dition for pedagogy, the teaching of one organism by another, which is not seen in
other species (Premack 1984; Premack 1991). ‘
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LEVELS OF FUNCTIONAL ORGANIZATION IN BRAIN AND
COMPUTER

If possession of certain concepts is a precondition for some of our higher capa-
cities, it is vital that we understand what the expression “higher functional
capacities” means. The expression is naturally allied to the idea of higher levels
of function, or functional organization. This idea, it seems, has several different
senses. We distinguished three:

1. level of a function as its place in an epistemological hierarchy—processes
nearer the sensory periphery are at lower levels, processes nearer the reasoning
centers are at higher levels;

2. level of a function as its place in a control hierarchy—processes that can turn
on or shut off lower-level processes are higher in a control sense; and

3. level of a function as its level in a decompositional hierarchy—processes
analyzed at higher levels are implemented in processes at lower levels

Level as Epistemological Hierarchy

For Changeux, who introduced the discussions, the aim of the life sciences is not only
to specify function but, most of all, to relate a given function to an appropriate
anatomical organization. In this search for anatomical implementation of functions,
we need to map out an order of functioning. Changeux suggested that the logic of
processing information from sensory perception to understanding (“Verstand” or
“entendement”), up to reasoning (“Vernunft” or “raison”) and planning might be
related to gross neuroanatomical compartments of the brain. These would, for instance,
include primary and secondary cortical areas, parietotemporal cortex with other
association areas, and prefrontal cortex.

The functional level of a process viewed from this epistemological perspective is
quite distinct from the level at which a process may be analyzed. Changeux emphas-
ized that the Marr/Poggio computational/algorithmic/hardware distinction does not
mark a difference in level of organization, but of analytic understanding. In principle,
any process may be studied at different levels of analysis, the difference being the kind
of questions we answer about the process. For instance, at the computational level we
analyze a process in terms of the informational problem it is meant to solve. We can
ask about the well-posedness of the problem and its absolute complexity. At the
algorithmic level we can ask questions about the costs and benefits of particular
representations and particular algorithms. And at the hardware level we can ask
about the suitability of particular neural mechanisms to instantiate particular
algorithms and representations. In most cases, each of these questions is worth
asking but they are orthogonal to our concern with localization at a compartmental
level.
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Level as Control Hierarchy

Cognitive processes that are deeper or higher in an epistemological sense arc often
higher in a control sense too. Let us say that an event or process is higher up the control
hierarchy if it can initiate, terminate, or interfere with events or processes at lower
levels. Premack offered a thought-provoking experiment to show that human intcl-
ligence is organized hierarchically in a control sense.

Assume we have conditioned both a human and a dog to flex their legs to a
conditioned stimuli associated with a shock to the foot. The next day we run an
extinction session. Before our subjects arrive, however, there is a power failure in the
village so that dog and human find a lab lit by candles. The difference in behavior of
the two species is dramatic. Dogs produce a normal extinction curve; people do not.
They do not flex their leg even to the first presentation of the conditioned stimuli.

The reason, of course, is that in people, knowledge that the shock is caused by
electricity coupled with knowledge that there is a power failure overrides learning.
Learning is not eliminated; when power is restored, people will generate a perfectly
normal extinction curve. The organization of human intelligence, however, grants
knowledge the power to override the performance called for by learning. Whether the
same process operates in nonhumans is an open question. At present, we have little
evidence of this type of knowledge operating in nonhumans. Clearly more must be
said. We need a proper account of the difference between informational states acquired
through nonconditioned learning: (e.g., through reasoning) and informational states
acquired through conditioning or association. Presumably, the two are encoded in
different ways. Information based on conditioning may be represented by low-level
representations (e.g., by sensory images) whereas information based on causal rea-
soning cannot be so represented; it requires more highly processed mental events,
sensory images that are coded for type, token and beyond.

A second example of multilevel organization is the disparity we sometimes find
between habituation/dishabituation and explicit choice. Infants show recognition for
a distinction of which they can make no instrumental use. For example, 18-month-old
infants, both humans and chimpanzees, show differential habituation/dishabituation
to sameness and difference. Following experience with AA (two like objects) they
respond less to BB than CD; likewise, following experience with EF (two different
objects) they respond less to CD, than BB. But they cannot match sameness and
difference, i.e., match AA to BB, or CD to EF. Disparities of this kind speak to the
multilevel organization of intélligence, showing that processing of events which is
successful on one level is unsuccessful at a higher level (Premack 1988b; Wellman
1991; Premack 1976).

. Level as Decompositional Hierarchy

The third type of hierarchy we need to distinguish is, in certain respects, the most well
understood. In computers we know that there are well-defined functional levels, such
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as devices, circuits, register level descriptions, symbolic or program-level descriptions,
agorithmic descriptions, etc. Each level is well defined in terms of components and
operations, and each level can be used to implement the next. A level provides a clean
abstraction in the sense that a function on one level can generally be described without
reference to the levels below.

The question whether analogous decompositional levels exist within the brain is
open for several reasons. First, computers have levels because they have been
engineered to do so. Evolution may have adapted this engineering strategy, but then
again it need not have. In other domains, nature seems disposed to decompositional
hierarchies. Complex organizations are easier to create (Simon 1962) if they are
constructed in Chinese box fashion, and decompositional levels confer a certain
robustness on processors. Yet, as Hillis argued, although decompositional levels are
likely within the brain, they are not nearly as distinct and well-defined as in the
computer, and they stand to each other in more complex relations than simple
hierarchies. 3

A second reason pointed out by Kirsh is that in computers, levels are assumed to
be insulated against processes occuring at lower levels because the speed of processes
occurring at different levels is sufficiently far apart that one can be confident that
lower-level processes will settle fast enough to serve as building blocks for higher-
level processes. Level-specific regularities in computers are reliable as long as there
is no breakdown and a lower level shows through. Programs are excellent descriptions
of system behavior unless registers fail to behave as.assumed. Hence, in normal
conditions, each level can be treated as modular and can be assumed to behave
according to its own laws. However, in biophysical substrates, features of lower levels
may show through regularly because of the importance of timing effects, connectivity,
and local inhomogeneities in detailed aspects of the biophysics of neurons. This means
that information can leak through levels, making it difficult to construct clean models
of the information processes occuring at a given level. (See Koch et al, chapter 6, for
a more complete account of this problem.)

A further, more specific question that provoked discussion was whether there exists
a level of the brain that corresponds to the symbol manipulation level in computers.
It is a central thesis of mainstream Al that there exists such a level—a level where
compositional répresentations can be combined, uncombined, and manipulated. There
was partial consensus on this point; however, those who disagreed rejected the idea
completely.

This led to consideration of a different level at which models of brains and
computers might connect: the level of idealized “neuron,” the level of connection
models, a subset of which are familiar connectionist models. In the ensuing disagree-
ment, a useful consensus was reached in that whatever model—symbolic or connec-
tion —proves more useful, it will largely be irrelevant to the type of regularities to be
found at higher computational levels. '

This is not to say that insight into higher levels may not be obtained by studying
lower levels. Virtually everyone present assumed that biological models of brain
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performance set important constraints on the class of computational models empiri-
cally minded computationalists wish to propose. But, as Hillis pointed out, before
computationalists can exploit these constraints, they must be told the different types
of computational elements experimentalists believe there are; how many of each type
there are; the kinds of patterns they communicate in; and the time scale of their
communication. These questions are more important for the computationalist to know
than details of function. For example,. it is more useful for building computational
models to know how many neurons there are and how fast they are than to understand
their specific responses to stimuli.

Despite periodic moments of agreement in our discussion, true consensus was
seldom reached.

A Cautionary Note (C. Koch, R. Douglas, P. Roland)

The computer is not a model of the brain, and explanations that assume that it is
are actively dangerous and pernicious for the progress of neuroscience. A model

is a simplified description of the system under study. As such, the model must-

reflect the cardinal properties of the architecture and functions of the system that
it models. Because neurons are organized in ways that are fundamentally different
to general purpose computing machines, similes and explanations of behavior that
arise out of computer science are essentially inadequate. Concepts such as “pro-
gramming,” “input buffers,” “pipe-lining,” and the like have no correlates in
biological neuroscience. Because the ontology of computer models is not com-
mitted to brain properties, predictions and proposed experiments will not be
matched to their biological counterparts. This results in a misleading coupling

between theory and experiment.

NEURAL REPRESENTATION

Whether one accepts the standard computer model, a connection model, or some
even less idealized account of neural processing, it is accepted as dogma today
that the central function of neural tissue is to process and represent information.
Some of this information can be implicit in the structural organization of the
cortex, but much of it must be explicitly represented in patterns of neural activity,
which dynamically emerge as functional states in the cortical network. Intelligent
behavior of an organism will certainly be constrained by its ability to create
representations of objects and events in a flexible way. This appears as a prereq-
uisite for the acquisition of memory, for the anticipation of future events in the
outside world, and for the planning and execution of purposeful behavior. Because
of this fundamental importance, it is worth clarifying what some of the means are
for representing information in patterns of neural activity.
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Models of Neural Representation

Engel pointed out that the formation of cortical representations can essentially be
viewed as a problem of binding, which arises from the highly distributed nature of
cortical information processing. The binding problem can be exemplified by conside-
ring the visual system. Due to the finite extension of their receptive fields, most
neurons in visual cortical areas integrate information only from a limited part of the
visual field. In addition, all these neurons respond only to a limited range of feature
constellations. Thus, for instance, certain cells are sensitive to the movement direction
of a figure, but not to its particular shape, orientation, or color. These features, in turn,
are registered by other neurons. Representing a visual object therefore requires the
binding of information between different parts of the visual field. In addition, binding
has to occur across feature domains, that is, the shape of the object has to be linked
with its color, movement trajectory, texture, and all other possible attributes. This need
to integrate distributed information into representational entities is not confined to the
visual modality, but constitutes a general problem which applies to all cortical systems.

A number of models have been proposed which approach the binding problem in
quite different ways. These models are schematically reviewed in Table 20.1. A
well-known classical proposal that has pervaded cortical neurobiology for decades
was made explicit by Barlow. He introduced the notion of “cardinal cells” which
extract (in a serial-hierarchical manner) information from lower-level neurons and
thus acquire sufficient specificity to represent complex objects or events. Thus, in the
visual cortex, for instance, individual dedicated cells were assumed to represent a
whole object such as a grandmother’s face. The difficulties with single-cell repre-
sentations have now been widely recognized. Severe problems arise first from the
enormous number of cells which would be needed to represent all possible feature
constellations (combinatorial explosion); second, representations which rely ona very
small number of cells are highly vulnerable; and third, since in this model binding is
expressed by convergence of anatomical connections, it is not flexible enough to
account for the fact that humans clearly can create novel representations within
100-200 ms, which occurs, for instance, during tachistoscopic presentation of novel
visual scenes.

Thus, an alternative proposal made by Hebb seems to be more advantageous.
Hebb’s fundamental idea was that assemblies of cells rather than single units should
be the correlate of representations. Such assemblies are formed by cooperative
interactions between large numbers of neurons distributed in the cortex. In the I'ebb
model, an assembly is defined by the fact that the participating cells concurrently
elevate their average firing rates. Thus, binding is expressed by response amplitudes.
Clearly, assembly representations provide higher flexibility and reliability than single-
cell representations. Defining assemblies by response amplitudes, however, still
exhibits a major drawback, that has be addressed as the “coexistence problem.” Facing
a natural environment, the organism has to represent multiple objects or events at any
one time. Coexistence of several representations, however, constitutes a major problem
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Table 20.1 Comparison of different models for the formation of cortical representations
(Engel). The rightmost column summarizes fealures which are common to the correlational
models proposed by von der Malsburg, Singer and coworkers, and Damasio. For further details,
see Singer et al. and Damasio and Damasio (chapters 13 and 17, respectively).

Barlow Hebb Correlational Modecls
Neural correlate of single cell assembly assembly
representation
Code for binding anatomical response amplitude synchrony
convergence
Parsimony low, high, the same
combinatorial cells can
explosion participate in
different assemblies
Flexibility low rearrangement by high, rapid changes of
. “slow” plasticity temporal relationships
Coexistence of possible impossible possible, uncorrelated
representations firing of cells
belonging to different
assemblies

for the Hebb model. In this case, several cortical assemblies raise their average firing
rates, and it cannot be determined which of the active cells pertain to which of the
representations.

This severe restriction led to the suggestion of a third class of models which may
be called “correlational models” for assembly formation. Such models have been
suggested by Abeles, von der Malsburg, and more recently also by Singer and
coworkers and by Damasio (Table 20.1). The key assumption of these models is that
temporal correlation on a fast time scale serves a code for binding. Cells representing
a particular object fire synchronously, whereas cells belonging to different repre-
sentations fire in an uncorrelated manner. This mechanism would solve the coexist-
ence problem mentioned above.

Two particular architectures have been discussed. One model that was introduced
by von der Malsburg and later modified by Singer et al. (see chapter 13) implies that
cells with oscillatory firing pattemns, i.e., cells which exhibit recurrent bursting, may
be useful for the establishment of temporal correlation. This notion has now received
experimental support (Singer et al., chapter 13). In particular, it has been verificd in
experiments on cat visual cortex that two assemblies of oscillating cells can coexist
in the same cortical region which are distinguished by the absence of fixed phase-re-
lationships between the assemblies (Engel et al. 1991b<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>