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Global Wire Routing in Two-Dimensional Arrays 1 

R. M. Karp ,  2 F. T. Leighton,  3 R. L. Rivest ,  3 C. D. T h o m p s o n ,  z 
U. V. Vazirani ,  z and  V. V. Vazirani  4 

Abstract. We examine the problem of routing wires of a VLSI chip, where the pins to be connected 
are arranged in a regular rectangular array. We obtain tight bounds for the worst-case "channel-width" 
needed to route an n x n array, and develop provably good heuristics for the general case. Single-turn 
routings are proved to be near-optimal in the worst-case. 

A central result of our paper is a "rounding algorithm" for obtaining integral approximations to 
solutions of linear equations. Given a matrix A and a real vector x, then we can find an integral i 
such that for all i, l i~ -x , l< l  and (Ai) i -(Ax)i<A. Our error bound A is defined in terms of 
sign-segregated column sums of A: 

A=max(max(  ~ aij, ~ -aisle. 
J \ ~ . i :a l j>O i:aq<0 ) /  

Key Words. Global routing, Gate arrays, Integer programming, Linear programming, Computer- 
aided design for integrated circuits. 

1. P rob lem Definition. We use a c lass ical  m o d e l  o f  a ga te -a r ray  where in  the  
chip  a rea  is cons ide red  to be  d iv ided  into a un i fo rm n x n a r ray  o f  square  cells, 
Each  cell  conta ins  p p ins  ( connec t ion  po in ts  for  logic  e lements) .  Each  ins tance  
o f  our  rou t ing  p r o b l e m  specifies a co l lec t ion  o f  nets where  each  net  is specif ied 
as a set o f  pins.  (Each  p in  is on  at  most  one  net.)  Each  ne t  is to be  connec ted  
toge ther  b y  hor i zon ta l  and  ver t ical  wires. Unless  s ta ted  otherwise ,  we assume 
tha t  p = 1 and  tha t  each  ne t  connects  exact ly  two pins.  

A p l a c e m e n t  ( p l ana r  e m b e d d i n g )  o f  the  under ly ing  circui t  is impl ic i t  in an  
ins tance  o f  the  ga te -a r ray  rout ing  p rob lem.  The  on ly  r ema in ing  work  is to route  
the  wires be tween  the pins.  F o r  this  reason,  the  ga te -a r ray  rou t ing  p r o b l e m  is a 
spec ia l  case o f  ( and  pe rhaps  easier  than)  the  genera l  p l a c e m e n t  and  rou t ing  
p r o b l e m  s tud ied  in [T], [L3],  [L1],  [L2],  [BL],  and  [CR5] .  

I t  is c o m m o n  to solve a ga te -a r ray  rou t ing  p r o b l e m  ins tance  P in two steps:  

1. C o m p u t e  a g loba l  rou t ing  R speci fy ing for  each  net  the set o f  cells and  cell  
edges to be  t raversed  b y  the wir ing for  tha t  net. 
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Fig. 1. A global routing problem. 

2. Compute a detailed routing that specifies for each net the exact position of 
each wire, which follows the previously computed global routing and satisfies 
the usual separation constraints between wires, etc. 

In this paper we are concerned exclusively with the problem of finding good 
global routings (which we henceforth call routings). 

1.1. T-turn Routings. We are particularly concerned with t-turn routings, in 
whch the path for each net contains at most t turns. A one-turn routing will have 
for each wire either a straight wire segment or an "L"-shaped  wire segment. In 
general, a t-turn routing consists of  at most t + 1 straight-line segments. When 
horizontal and vertical wires are implemented on distinct layers, then at most t 
"vias" or "contact cuts" are required to join the straight-line wire segments 
together. 

NOTATION. We denote the set of global routings for problem instance P by 
F(P).  The set of  t-turn global routings is denoted by Ft(P).  

1.2. Example. Figure 1 presents an example of  our global routing problem on 
a 4 x 4 grid with eight nets. Figure 2 presents a typical solution to this problem, 
which happens to be in FI(P).  
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Fig. 2. A solution to the problem of Figure 1. 
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1.3. Channel Widths. Let P denote an instance of our global routing problem 
and let R denote a global routing solving P. 

NOTATION. Let w(R) denote the maximum number of wires passing from one 
cell into an adjacent one in the global routing R. 

REMARKS. Intuitively, w(R) is the "channel width" which is needed to route 
the wires of  the solution R, so we call w the "width" of the solution R. The 
one-turn routing R of  Figure 2 has width 3, as there are three wires between cell 
(2, 4) and cell (3, 4). Flipping either net 2 or net 8 to its other " L "  configuration 
will reduce the width to 2. Readers can convince themselves that no one-turn 
routing has width 1 by considering nets 1, 6, and 7. 

DEFINITION. All optimum global routing R is one that minimizes w(R) over 
all global routings for the given problem instance (i.e., over all R ~ F(P)) .  

NOTATION. We let 

w(P) denote the width of  an optimal routing for P, 
wt(P) denote the least width of any t-turn routing R that solves P, 
w(n) denote the maximum width of any problem instance defined on an n x n 

array, 
wt(n) denote the maximum of  we(P) for any problem instance P defined on 

an n x n array, 
w(n, p) denote w(n) when p, the number of  pins per cell, is not equal to one, 

and 
wt(n,p) denote we(n) when p ~ 1. 

REMARKS. The reader will be able to distinguish the notations w(R), w(P), 
and w(n) by the type of  argument. 

1.4. Motivation. Our research was motivated by the following intriguing con- 
jecture. 

CONJECTURE. w(n) = wl(n) = [n/2J + 1. 

This controversial-sounding conjecture states that in the worst case we need 
only consider one-turn routings. 

On the other hand, the conjecture merely requires that for any problem instance 
P there exists a one-turn routing R for P such that w(R) < - w(n) and not that 
w(R)<_ w(P). (It is not ditficult to develop problem instances P for which 
w(P) = 1 but Wl(P)=~(n).) 

2. Results. Our major theorems are listed here; except for Theorem 1, all proofs 
and proof  sketches are given later. 

THEOREM 1. /n/2J -< w(n) <- n. 

PROOF. For the lower bound connect (i,j) to (i, n - j )  for l _ j _ <  n/2, and 
consider the number of  wires that must cross from column [n/2J to [n/2J + 1. 
For the upper  bound use any routing in FI(P)  for a given instance P. [] 
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THEOREM 2. Ln/2J + 1-- wl(n)  <-- In/2]  + 1. Furthermore, a one-turn routing R 
with w ( R )  <- In/2]  + 1 can be computed in time O ( n  3 log n). 

REMARKS. Theorem 2 proves the second equality of our conjecture for all even 
n. The upper-bound proof  involves the development of an elegant algorithm of 
independent interest for computing a good integral approximation to the solution 
of a set of  linear equalities. The following theorem states the main result used. 

THEOREM 3 (The Rounding Theorem). Let  A be a real-valued r • s matrix, 

let x be a real-valued s-vector, let b be a real-valued r-vector such that Ax = b, and 

let A be a positive real number such that in every column o f  A, 

(i) the sum o f  the positive elements is <_A, and 
(ii) the sum o f  the negative elements is >- - A .  

Then we can compute an integral s-vector ~ such that 

(i) f o r  all i, 1 <- i < - s, either xi = [xiJ or xi = [xi] (i.e., ~ is a " rounded"  version 

o f  x), and 
(ii) A~ = b, where f~i - bi < A f o r  1 <- i <- r. In  the case that all entries in A are 

integers, then a stronger bound applies: b ~ -  [ b i ] -  A -  1. 

Furthermore, if x contains d distinct components, we obtain the integral approxi- 
mation ~ in time O(r  3 log(1 + s~ r) + r 3 + d2r + sr). 

REMARKS. The Rounding Theorem says that when A has only a few small 
nonzero entries in each column, then we can effectively round x to a nearby 
integral point ~ while keeping A~ from increasing very much over Ax. 

In our application, the initial vector x is trivially formed as (1/2, 1 / 2 , . . . ,  1/2) r, 
so that its integral approximation is obtained rapidly. In cases where the initial 
x has no repeated entries, our technique will compute an integral x more slowly. 

Some years ago, Beck and Fiala [BF] obtained a theorem with a similar 
appearance. To the best of our knowledge, our Rounding Theorem cannot be 
obtained by their proof  technique, nor does their result follow from our proof. 
For the readers' convenience, we quote Beck and Fiala's theorem below. 

THEOREM [BF]. Let  A be a 0-1 r x s matrix, let x be a real-valued s-vector, and 
let b be a real-valued r-vector such that Ax = b. Furthermore, let A be a positive 
real number such that in every column o f  A, the sum o f  the elements is <_A. Then 
one can f ind  a 0-1 s-vector ~ such that 

(i) f o r  all i, l<- i<-s ,  either ~i = [x~J or ~i = [xi] (i.e. ~ is a " rounded"  version 

o f  x), and 
(ii) A~=b ,  where [ f i , -b , l -<A-1  f o r  1 < - i < - r. 

REMARKS. Note that Beck and Fiala's matrix A contains no negative entries. 
This permits a two-sided error bound on A:~, as opposed to our one-sided 
bound. 
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THEOREM 4. It is NP-complete tc. determine, given an instance P of  our global 
routing problem, whether Wl(P) -< In/2]  - 2. 

REMARKS. This result is perhaps surprising in view of  Theorem 2; the approxi- 
mation algorithm presented there is remarkably good. The result can also be 
improved, although we do not include the details here. In particular, it is also 
NP-complete to determine whether wl(P) <- [ n / 2 ] - 1 .  When p is even, it is 
NP-complete to determine whether w~(P)<pn/2 .  Given the result proved in 
Theorem 5, this result is as tight as possible. 

THEOREM 5. When p is even, w l ( n , p ) = p n / 2 .  

COROLLARY.  [n/2J <-w3(n)-< [ n / 2 ] + 1 .  

COROLLARY.  When p is odd, p [n/2J --- w 3 ( n  , p) <- [pn/2] +p. 

REMARKS. Theorem 5 shows that three-turn routings can yield an improvement 
(by one). The upper bound proof  uses an elegant argument based on finding 
Eulerian tours in an associated graph. 

THEOREM 6. There is a polynomial time approximation algorithm achieving 
w(R)  = O(w(P)  log(np/w(P)) )  for any problem instance P. 

REMARKS. The proof  of Theorem 6 involves a hierarchical bottom-up approach, 
using a recursion based on 2 x 2 subdivisions. We believe it is possible to reduce 
the logarithmic term to a constant, but have not yet been able to do so. The result 
is also valid for P containing multipoint nets. 

THEOREM 7. I f  n=-2 or 3 (mod4),  then w(n) > - [n/2J +1. 

REMARKS. This lower bound extends that of  Theorem 2 to handle routings 
containing arbitrarily many turns, in the cases indicated. 

THEOREM 8. w2(n ) -  [n/2J + 1. 

REMARKS. This theorem refines the techniques and results of Theorem 5 and 
its first corollary, moving from three-turn to two-turn nets and improving the 
upper bound for odd n by one. 

3. Discussion of the Model. Chen et al. [CFKNS] give an excellent overview 
of how IBM uses algorithms for solving this global routing problem to automati- 
cally wire-master-slice logic arrays for their System/370 implementations. The 
model is particularly appropriate for gate-array technologies where each cell 
might contain a single NAND gate. Fabrication turn-around time can be very 
small here since wafers can be preprocessed to contain the array of gates and 
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the only processing required once the logic design is finished is to produce 
horizontal and vertical wiring on the last two metal layers, to connect the gates 
together as desired. However, the preprocessing involved usually fixes an upper 
bound on the value of  w(R) that will be a l lowed-- i f  all routing channels between 
gates have width 20 then the routing cannot be realized if w(R)>  20. 

As noted earlier, our concern is with "worst-case" values w(n); in practice 
one would expect "typical" chips to have w(P) substantially less than w(n). 

4. Related Work. Much of the earlier algorithmic work on global routing (e.g., 
[HN]),  as well as most industrial practice, is based on shortest-path algorithms 
that route one net at a time. Global routing problems have also been solved with 
simulated annealing [VK], multicommodity flow [NSS], and hierarchical 
approaches [BP], [LM]. 

Johnson [J] gives an overview of the NP-completeness results known in this 
area. Most notably, Kramer and van Leeuwen prove that (local) wire-routing in 
gate-arrays is NP-complete if knock-knees are not allowed [KvL]. 

Some probabilitic models have been developed by El Gamal [EG] to estimate 
w(P) under various assumptions about the average distance between the pins on 
a net, etc., in a typical instance P. 

Subsequent to our first publication of this research [KLRTVV], two groups 
have used integer programs to wire actual gate-arrays. (As noted previously, the 
approach reported here is limited to worst-case analysis.) Hu and Shing [HS] 
solve the integer program for global routing in a top-down hierarchical fashion. 
Their approach is thus faster, but lacks the performance guarantees, of  the 
"randomized-rounding" integer programming algorithm currently under investi- 
gation by Ng, Raghavan, and Thompson [RT], [NRT]. 

5. Proofs of Theorems 2-8. Theorem 1 was proved in Section 2. All other 
theorems are proved below. 

5.1. Proof of  Theorem 2: One-Turn Routing by Rounding 

THEOREM 2. [n/2J + 1--< wl(n) <-- In/2]  + 1. Furthermore, a one-turn routing R 
with w(R) <- In /2]  + 1 can be computed in time O(n 3 log n). 

PROOF. For n = 2, a lower-bound example is easily constructed as in Figure 3. 
For larger values of n, we connect the corners of  the array as in the 2 • 2 example. 
We then put ( [n/2] - 1) nets into the outermost horizontal and vertical channels, 
as shown in Figure 4. 

The upper bound is proved using the Rounding Theorem. We first describe 
how to apply the Rounding Theorem to our routing problem, and then in the 
next section describe a surprisingly efficient "rounding algorithm." 

We assume for convenience here that n is even. Let xi be a 0-1 valued variable 
associated with net i indicating which of the two L-shaped routes will be used. 
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Fig. 3. Lower-bound example for n = 2. 

The interpretation is fixed but arbitrary. We assume here that each L-shaped 
route has exactly two wire segments. I f  both pins for a net lie in the same row 
or column we assume the two L-shaped routes are distinguished by the inclusion 
of different zero-length wire segments at their ends. (These are degenerate L- 
shapes with one leg of  the L having zero length.) Each assignment of  0-1 values 
to x -- (Xl,.  �9  x,2/2) places an easily computed number  of  wire segments in each 
row and column. For example, in the problem of  Figure 3 the number  of  wire 
segments in column 1 is ( 1 - x l ) + x >  

It is then simple to write a set of  equations specifying that each row and column 
will contain exactly n/2 wire segments: 

(*) Ax = b, 

where A is a (2n) x (n2/2) integer-valued matrix, and b = (n/2, n / 2 , . . . ,  n/2) r. 
Each variable xi will participate in at most four constraints, since its two L-routes 
affect the wire segment count in at most two rows and two columns. Furthermore, 
it is easy to check that A satisfies the conditions of  the Rounding Theorem with 
A = 2, since each xi will enter two constraints positively and two negatively. 

"T 1.--. 
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C 

Fig. 4. Lower-bound example for n = 8. 
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Finally, it is easy to see that the vector x =  (1/2, 1/2, 1 / 2 , . . . ,  1/2) 7- satisfies 
equation (*), since each net endpoint will then add 1/2 to the wire segment count 
for its row and column. 

Following the constructive proof  of  the Rounding Theorem (see Section 5.2), 
we find a 0-1 valued vector t such that for all i, 

(At),-< [bl] + A -  1. 

Since A = 2, the vector t corresponds to a routing with at most In /2 ]  + 1 wires 
in each row or column. We conclude that wl(n)-< In /2 ]  + 1. 

In our application of the Rounding Theorem, we have r = 2n (one equality for 
each row or column) and s = n2/2 (one variable for each net), so the execution 
time is O ( n  3 log n). This compares favorably with the more usual approach based 
on shortest paths, which routes an n x n array in time O(n4). [] 

5.2. Proof  o f  Theorem 3: The Rounding Algorithm 

THEOREM 3 (The Rounding Theorem). Let  A be a real-valued r x s matrix, let 
x be a real-valued s-vector, let b be a real-valued r-vector such that Ax = b, and let 
A be a positive real number such that in every column o f  A, 

(i) the sum o f  the positive elements is <_A, and 
(ii) the sum o f  the negative elements is >- - A .  

Then we can compute an integral s-vector t such that 

(i) for  all i, 1<-- i<-s, either t i  = LxJ or t i  = [xi] (i.e. t is a " rounded"  version 
o f  x) ,  and 

(ii) A t  = b, where b, - bi < A for  1 <- i <- r. In the case that all entries in A and b 
are integers, then a stronger bound applies: bl - [bi] <- A -  1. 

Furthermore, if x contains d distinct components,  we obtain the integral approxi- 
mation t in time O(r 3 log(1 + s / r )  + r3+ dEr+ sr). 

PROOF. We exhibit a "rounding algorithm" that efficiendy computes an 
appropriate  vector t ,  given A, A, b, and x as input. 

In brief, our approach is to convert the given problem to a 0-1 problem, by 
subtracting off the integer parts of  the given vector x. We then examine the r x s 
matrix A. I f  r < s, clearly A is singular. We are thus able to round some xi without 
affecting the product Ax. Similarly, if s < r, we can eliminate some constraint bj. 
The only difficult case is when s = r. By a combinatorial argument, we show how 
to find a constraint that can be safely ignored, in the sense that no rounding of 
the x can cause this constraint to be violated by more than A. 

The Rounding Algorithm: 

1. [Convert  to 0-1 problem.] Replace x by x - x ' ,  where x[ = [xi] for all i. Replace 
b by b - A x ' .  Solve the modified problem (steps 2 to 3) and then convert back 
by adding x'  to the t computed and Ax' to the A t  computed. Halt. 
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Fig. 5. Row-echelon form of matrix C. 

2. [Fast reduction in the number of variables.] I f  there are d distinct values among 
the variables x, this step reduces the number  of  variables to r or less in 
O(d + r log(1 + s/r)) iterations. 
2a. [Test if done.] I f  s -  < r go to step 3. 
2b. [Grouping.] Divide the s variables into k = m a x ( d ,  r + l )  groups, where 

the variables in each group all have the same value. ( I f  d < r + l ,  then 
make the k groups as nearly equal  in size as possible.) Consider a new 
problem Cy -- b', where y is a k-vector having one element for each group, 
and C is an r x k matrix. Here, C, y, and b' are obtained from A, x, and 
b by adding the constraint that within each group each variable will have 
the same value. For example, the first column of C is the sum of the 
columns of  A corresponding to variables in the first group, and Yl is the 
(common)  value of  the xi's from the first group. 

2c. [Reduce C to row-echelonform.] Using elementary row operations, convert 
the r x k matrix C to row-echelon form, as in Figure 5 (drawn for the case 
that C has rank r = 6). Note that this operation does not change the null 
space of C. 

2d. [Round.] Let Yo be a nonzero k-vector in the null space of C. (This is easy 
to compute given step 2c.) Let A * = m i n { A - 0 1 y + A y  0 has an integral 
component} and let w = y +  A*yo. 

2e. [ Update.] For each variable xi in a group j where % is integral, fix ~i at 
wj and remove xi from the problem (i.e., set b = b-wjAt . , i  ~ where At.,q is 
the ith column of A, delete x~ from x and delete the ith column of A). 
Set the remaining x~ to their group values %. 

2f. [Revise group structure.] I f  now s -< r, go to step 3. I f  there are fewer than 
( r +  1) groups, repeatedly split the largest group into two smaller ones 
until there are exactly (r + 1) groups. Update  C to reflect the changes in 
steps 2e and 2f, and return to step 2d. 

3. [One by one reduction in equalities and variables.] I f  s < r execute step 3a, if 
s > r execute step 3b, else execute step 3c. Repeat  step 3 until all variables 
have been fixed. Then halt; the desired solution has been found. 
3a. [s < r: Eliminate an equality.] Let I be the set of  2 s integer vectors obtained 

by rounding each component  xj either up to [xj] or down to [xjJ. As 
shown below, an argument involving an interchange of two summations 
shows that for some i, (Az)~<(Ax)~+A for all z ~ I .  This means we can 
drop the ith inequality from explicit consideration, since b~-  bi will be 
less than A no matter  how the rounding is done. Also, in the case that all 
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A 
entries of A and b are integral, then all entries in b must be integral. Thus ^ 
we have the stronger result that b~ - [b~ ] -< A - 1. The existence of  a redun- 
dant inequality i is shown as follows: 

~ / m a x ( ( A z ) i - ( A x ) i ) = ~ / (  ~ .  {ZEI} a~j(1-xj)+ ~ - a o ( x j )  ) 
�9 {jla0>O} {j]aq<O} 

=~( ~ a/j(1--xj)+ ~--aijxj) 
j {i]aq>O} {ilaij<O} 

-<2 (A(1 - xj) + Axj) 
J 

- < Y  A 

< rA. 

Hence there exists an i, 1-<i---r, such that Vz (Az)~ < (Ax)~ +A. We can 
find a redundant row i rapidly, since 

m a x ( ( A z ) , - ( A x ) , ) =  Y~ a~j(1-xj )+ Y~ 
{ZEI} {jlaij>O} (jlaq<O} 

=-Y~ai jxj+ Y~ aij 
j {jla~y>O} 

= - b ~ +  ~ a U. 
{jla~j>o) 

- aux i 

Thus we merely look for an i such that 

-b~+ ~ a~<A.  
{jlaii>0} 

3b. [s > r: El imina te  a variable.] This is much as in steps 2d-2f, except we 
may only eliminate one variable; here each variable is in its own group. 

3c. Is = r: El imina te  an equali ty  or a variable.] As will be proved below, there 
are two possibilities. Either the rows of  A are linearly dependent, or 
3i  Vz (Az)i < (Ax)i + A. Thus we can eliminate either a variable as in step 
3b or an equality as in step 3a. We argue as follows. If  Vi Vz (Az)i--- 
(Ax)~ +A, so that we cannot eliminate an equality, then 

rA <- E max((Az)i - (Ax)i) 
i {Z~l} 

= ~ ((N.~>o, a#) (1 - xJ) + ({,..,j~<o,- a#) xJ ) 

---E (a (1 -  xj) + A(xj)) 
J 

= r A .  
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Since Vj 0 < x j  < 1, the second "<-" in the derivation above is an equality 
only if 

and 

Thus 

Vj E a0 =A 
{ilaij>O} 

Vj Y, -a i j  = a.  
{ilaij<O} 

Vj Y,% =0, 
i 

demonstrating that the rows of A are linearly dependent. 

This completes our description of the rounding algorithm. The claimed running 
time is verified as follows. 

Each iteration of step 2 eliminates one group of variables. We distinguish 
between the original d groups and the groups that are obtained by splitting other 
groups (in step 2f or 2a). Because we always split the largest remaining group, 
the smallest nonoriginal group contains at least [!/2] variables, where l is the 
size of the largest group before the split. After d iterations, there are at most 
r +  1 groups and the smallest nonoriginal group contains at least  1/(3r) of the 
remaining variables. We have at most r variables (and thus exit step 2) after j 
iterations, where j is constrained by the following equation for the case j >- d: 

( -aY -d 
s 1 3 r ]  --<r. 

Taking logarithms of both sides, and using the fact that - l n ( 1 - 1 / z )  > 1/z for 
z >  1, we obtain 

j-< max{d, d + 3 r In(s/r)} -< d + 3 r In(1 + s~ r)). 

Thus there are O(d +log(1 + s/r)) iterations of  step 2. Also, there are at most 2r 
iterations of  step 3. 

We now show that each iteration on a k x r matrix (where k-> r) can be carried 
out in time O(kr). Since C is in row-echelon form, we can read off a nonzero 
element of  its null space in O(kr) time. This time is also sufficient to maintain 
C in row-echelon form. 

Total time for the first d iterations is then O(d2r), and the total time for the 
last O (r log(1 + s~ r)) iterations is O (r 3 log(1 + s/r)). The stated total time for the 
algorithm also allows O(d2r+sr) time to transform the original matrix C into 
row-echelon form, in step 2c, and O(r 3) time for step 3. [] 

5.3. Proof of Theorem 4: NP-Completeness of Optimal One-Turn Routing 

THEOREM 4. It is NP-complete to determine, given an instance P of our global 
routing problem, whether Wl(P) ~ In /2]  - 2. 
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PROOF. The reduction is from 3-SAT. Given an instance E of  3-SAT with 
variables xl ,  x2,. �9  xq and clauses c~, c2, . . . ,  cm, set n = 14m+3  and define the 
routing problem P as follows. 

Pins in the rightmost 7m +3 columns of the grid are not included in any net. 
Any one-turn routing of P can thus have row widths at most 7m = [ n / 2 ] - 2 .  
Therefore, we are only concerned with column widths in what follows. 

Pins in the leftmost 7m columns but not in the middle seven rows are paired 
so that the pin in the ith row of the j th  column is linked to the pin in the 
(n - i + 1)st row of  the j th  column. Each of these nets must be routed as a vertical 
wire, and the question of  whether w~(P) <- rn /2]  - 2  is equivalent to the question 
of whether the middle seven rows can be routed with column width 2. 

The middle seven rows of the leftmost m columns are used to represent the 
clauses. There is one column for each clause. The middle seven rows of the next 
6m columns are used to represent the variables. There are 2ri columns foi variable 
xi, where ri is the number  of  times xi appears in E. 

The structure of the "clause columns" is trivial. A unique pin name cjk is 
assigned to each of the three terms in clause cj. See Figure 6. 

The "variable columns" are more complex. As indicated in Figure 6, we stitch 
a net dlt (1-< l<-2ri) vertically through each of  the 2ri columns for variable xi. 
We stitch nets air and b, (1 -< l_< ri) in a knight 's-move pattern through adjacent 
pairs of  columns. Finally, we connect variables to clauses in a fashion that 
depends on the given instance E of 3-SAT. I f  the kth term in clause c~ ( k =  1, 2, 
or 3) is x~, then the first avai lable+symbol  in the 2ri columns for xi is replaced 
by Cjk. I f  the kth term in clause cj is xi, then the first available - symbol in the 
2rl columns for x~ is replaced by Cjg. Since x~ appears ri times in E, there are 
always enough + ' s  and - ' s  for all the Cjk'S. The remaining + 's  and - ' s  (as well 
as the dots) are not assigned to a net. In what follows, we show that the middle 
seven rows can be routed with column width 2 if and only if E is satisfiable. 

Since we allow at most one bend in a routing, the nets labeled with dig'S must 
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Fig. 6. A_u NP-complete touting problem P. 
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Fig. 7. Routing the NP-complete problem P. 

be routed as vertical wires. This leaves only two ways to route the nets labeled 
with aik'S and bik'S. The two routings correspond in a natural way to the truth 
value of the associated variable x~. The routings are shown in Figure 7. 

It remains to route the Cjk'S. It is easily shown that if Cjk corresponds to xi 
where x~ has a true routing or to x~ where x~ has a false routing, then net Cjk can 
be safely routed without using a vertical wire segment in the column for cj. This 
is not the case if Cjk corresponds to x~ where x~ has a false routing or to x~ where 
x~ has a true routing. In the latter cases, the net for Cjk must include a vertical 
wire segment in the column for cj that passes through the top of the cell containing 
cjl. Hence the middle seven rows can be routed with column width 2 if the only 
if there is a k for each j such that C~k corresponds to x~ where x~ has a true routing 
or to xi where xi has a false routing. This condition is equivalent to E being 
satisfiable. [] 

5.4. Proof of  Theorem 5: Routing Using Eulerian Tours 

THEOgEM 5. When p is even, wl(n, p )=pn /2 .  

PROOF. Let each of  the cells of  the n x n arra3, be the vertices of  a graph, and 
connect any two vertices that are connected by a net. 
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Since p is even, every vertex will have an even degree. 
Thus the edges can be organized into a direct path which is an Eulerian tour, 

traversing each edge exactly once. (The case that the graph is not connected 
arises but is easy to h a n d l e . . . )  

For each edge (i,j) -~ (k, l) of the Eulerian tour, we use an L-shaped route with 
the horizontal arc first: 

(i,j) -~ (i, 1) -~ (k, l). 

Since each vertex will have p/2 horizontal arcs leaving it and p/2 vertical arcs 
entering it, we can route the entire chip with pn/2 tracks in each row or column. 

To prove the first corollary (p  = 1), we group the cells into 2 x 2 squares and 
apply the above construction for p = 4. 

Then we may need to introduce small (length 1) jogs within each square to 
get the two horizontal arcs leaving on different rows. This we can do with only 
one extra track for each row or column, yielding In~2] + 1 tracks at most. Here 
each L-shaped route may have a little tail at each end so a net may have three 
turns total. 

In general, for odd p, we use the same idea of grouping cells into 2 x 2 squares. 
Assigning routes with Euclidean tours, we put at most pn horizontal arcs on each 
pair of  rows. Using p additional tracks for length-1 jogs within the 2 x 2 squares, 
we split the pn arcs evenly between the two rows. In all, we use [pn/2] +p tracks 
per row, proving the second corollary. [] 

5.5. Proof of  Theorem 6: Provably Good Routing 

THEOREM 6. There is a polynomial time approximation algorithm achieving 
w( R ) = O( w( P ) log ( np / w( P ) ) ) for any problem instance P. 

PROOF. (Sketch): Let cut(P) denote the maximum, over all subsquares of  the 
n x n array, of  the number  of  nets which must cross the border  of  the square, 
divided by the perimeter of  that square. It is easy to see that w(P)>-cut(P)>-p. 

Divide the chip into squares with A = cut(P)/p cells on a side. Route these 
squares independently, in an arbitrary one-turn manner  using channel width at 
most O(cut(P)). Nets that must leave a square can be routed arbitrarily to any 
convenient point (different for each net) on the perimeter of  that square. Then 
proceed through log(n/A)-<log n levels of  bot tom-up recursion, at each level 
pasting together four squares from the previous level in a 2 x 2 pattern. 

The statement of  the theorem allows O(cut(P)) additional width in each 
channel for new wiring at each level of  the recursion. By the definition of cut(P), 
no more than cut(P) nets will leave any square at any level of  the recursion. 
Thus the recursively generated wiring problems are trivial. Total channel width 
is O(cut(P)log(np/cut(P))), which is an increasing function of cut(P). Using 
w(P) as an upper  bound on cut(P), we see that our routing R has channel width 
w(R) = O(w(P) log(np/w(P))). A weaker but more understandable bound is 
w(g) = O(w(P) log n). [] 
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Fig. 8. Four quadrants of a chip. 

5.6. Proof of Theorem 7: Improved Lower Bound 

THEOREM 7. I f  n=-2 or 3 (mod4),  then w(n)>_ In/2] +1.  

PROOF. Let f =  In/2]  and c = In/2] .  Consider dividing the chip as shown in 
Figure 8 into four quadrants A, B, C, and D, where A is f x f ,  B and C a r e f x  c, 
and D is c x c. 

Consider a problem instance where each pin of A is to be connected to a 
corresponding pin in D, and each pin in B is connected with a pin in C. (If  c > f ,  
the remaining pins in D can be left unattached, or paired off.) Since [A I = f2  is 
odd, at least [f2/2]  of  the wires from A must run through B (without loss of  
generality--the case for C is symmetric.) Thus the perimeter of B will be crossed 
at least ( f2+  1 )+fc  times: ( f2+  1) times for the A-D nets and fc times for the 
B-C nets. Since the perimeter of B is crossed by only f +  c channels (rows of 
columns), at least one of these channels must contain at least 

/ = f +  = 1 +  1 = + 1 

wires. [] 

5.7. Proof of Theorem 8. Good Two-Turn Routings 

THEOREM 8. w2(n) ~ In/2]  +1.  

PROOF. This is similar to the proof  of the first corollary to Theorem 5, except 
that we group the cells regularly into I x 2 rectangles instead of  2 x 2 squares. 
The Eulerian theorem is applied as before. Finally, the L-shaped routings obtained 
will have to have at most one tail added to produce the final routing. When n is 
even, it is easy to arrange the tails without increasing the number of tracks 
required by more than one. When n is odd, the argument is a little more delicate. 
Consider labeling each pin either " H "  or "V" according to whether the route 
determined by the Eulerian tour would connect to that pin with a horizontal or 
vertical segment. Figure 9 shows a labeling that might result for a problem with 
n = 7 .  
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I1 

Fig. 9. Labeling of pins for a good two-turn routing. 

We are guaranteed that each I x 2 rectangle contains one H and one V by the 
use of  the Eulerfan tour, and we need to guarantee that each row has at most 
[n/2J + 1 H's  and that each column has at most [n/2J + 1 V's. The rows are 
already okay if the tiling pattern is like that of  Figure 9. To adjust the columns 
we note that by running a short tail within a rectangle we can effectively move 
a V "on  top o f "  its neighboring H. We can do this safely only in rows which 
have a V in the rightmost column; otherwise the tail might increase the required 
channel width. However, there are [n/2J in the rightmost column, so we can 
always move as many as [n/2J V's out of  any column into a neighboring one. 
Thus we can use the tails to guarantee that no column will have more than 
[n/E] + 1 V's. 

6. Open Problems. We present here some open problems related to the above 
results. 

OPEN PROBLEM 1. IS there a constant c and a polynomial-time global routing 
algorithm A such that A will produce for any problem instance P a routing R 
with w(R)<-c, w(P) (i.e. a routing whose width is within a constant factor of  
optimal) ? 

OPEN PROBLEM 2. What is w,(n)-w(n) for any fixed t? Is there a fixed t for 
which this difference equals 0 for all n ? 

OPEN PROBLEM 3. What are other applications of  the Rounding Algorithm? 

OPEN PROBLEM 4. Can the logarithmic factor in the running time of the 
Rounding Algorithm be eliminated? 

OPEN PROBLEM 5. Let cut(P) be defined as in the proof  of  Theorem 6. Is there 
a constant c such that w(P) <- c. cut(P) for all problem instances P?  (Note: we 
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can prove that a similar measure computing wire-length within subsquares is 
linearly related to the c u t  measure.) 

OPEN PROBLEM 6. Can the additive "+p"  term be improved in the second 
corollary to Theorem 5 ? 

OPEN PROBLEM 7. Develop, empirically or otherwise, a good model of the 
wiring-problem instances that arise in practice. 
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