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A PROCEDURE FOR IMPROVING THE UPPER BOUND 
FOR THE NUMBER OF ̂ -OMINOES 

D. A. KLARNER AND R. L. RIVEST 

1. Introduction. We begin with some definitions and a formulation of the 
problem treated in subsequent sections. Also included in this section is a 
brief indication of some of the known results dealing with the w-omino enu
meration problem. Some of what follows together with more details may be 
found in [3] or [4]. 

Let C denote the set of all integer points in the Cartesian plane, that is, 
C = I X I where / denotes the set of all integers. Elements of C are called 
cells, and two cells are said to be connected if the distance between them in the 
Cartesian plane is 1. The set of cells C may be regarded as the vertex set of 
an infinite planar graph R whose edges consist of all pairs of connected cells 
in C. For each natural number n, let R(n) denote the connected subgraphs 
of R having exactly n vertices. Clearly, R(n) has infinitely many elements 
for each number n, but we are only interested in certain equivalence classes 
defined on R(n) by means of the automorphism group 5^ of R. 

The automorphism group S^ of R consists of isometries of the plane which 
map C onto C; more precisely, an element of £f is the restriction of such an 
isometry to C. An important subgroup *^~of 5^ corresponds to the set of trans
lations of the plane which map C onto C. All of the elements of S^ may be 
formed by combining the elements &~ with combinations of some of the follow
ing isometries of the plane: reflection along the x-axis or ^-axis, 90°, 180°, or 
270° rotation about the origin. 

Two elements of R (n) are said to belong to the same translation class if one 
of these elements can be transformed into the other by an element of 3?~. 
The set of all translation classes induced in R(n) b y ^ is denoted by T(n). 
Representative elements of the translation classes induced in JR(3) b y ^ are 
shown in Figure 1. In the figure, boxes have been drawn around the cells of 
the animals, and the vertices and edges of the graphs have not been indicated 
in the conventional way. 

Two elements of R(n) are said to be the same if one of them can be trans
formed into the other by an element of ^ . The set of equivalence classes 
induced in R(n) by J^ is denoted S{n). Representative elements of the equi
valence classes induced in R(3) by S^ are shaded in Figure 1. Read [6] called 
elements of R(n) and S(n) fixed and free animals respectively. 
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1 V/// 

FIGURE 1. Representative elements of classes in T(S) 

Let t(n) = \T(n)\ and s(n) 
that 

|5(w)|, then it follows from the definitions 

(1) \t(n) S s(n) è t(n) S 8s(n) (n = 1, 2, . . .). 

Furthermore, it was shown in [3] that (i) the limits 

(2) 6 = Km (*(n))1/w, 0' = lim (s(w))1/w 

w->oo w->oo 

exist, (ii) 6' = 0, (hi) 6 ^ (t(n))1/n for all », and (iv) 6 > 3.72. This last 
result was an improvement over 6 > 3.14 and 6 > 3.20 given in Eden [1], 
and [5] respectively. Also, Eden showed that 

(3) 

and since 

(4) ^œ \ \ » - 1 / / 4 

it follows from this result that 6 g 6.75. Thus, the best bounds on 6 after [3] 
were 

3.72 < 6 ^ 6.75. 

Read [6] (for more details see also [4]) gave a method for computing the 
generating function for the number of elements of T(n) involving n-ominoes 
whose cells occupy no more than r rows of cells in the plane. For example, 
when r = 2 this generating function is (1 + x2)/(l — 2x + x4). In general, 
Read's method gives rise to a rational function pr(x)/qr(x) with pr and qT 

relatively prime polynomials such that gr(0) = 1. Thus, if the largest real 
root of qr(l/x) is ar, then it follows that a* ^ a z + i ^ 8 for i = 1, 2, . . . . 
Therefore, this method leads to a procedure for improving lower bounds on 6 
indefinitely. Furthermore, Ashok Chandra, a graduate student in the Com
puter Science Department at Stanford University has shown us a proof that 
the sequence (at: i = 1 ,2 , . . . ) converges to 6. It might be remarked that 
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the amount of work required by this method to improve the bound 3.72 < 6 
(proved by an entirely different method in [3]) appears to be prohibitive. 

An alternative procedure for improving lower bounds on 6 indefinitely was 
proposed by the late Leo Moser. Consider the set Win) of translation classes 
of n-ominoes X such that X has exactly one cell in its bottom row and more 
than one cell in all other rows; also, one cell in the top row of X is to be distin
guished from the other cells. For example, W(l) has one element, W(2) is 
empty, and W(3) has four elements. Figure 2 illustrates the elements of FT(4) ; 
the distinguished cells in top rows are marked with a cross. Now we use 

X X X 

X X X 

X X X 

FIGURE 2. Elements of W(4) 

elements of Wil) \J W{2) KJ . . . to construct elements of a set T* (n) con
sisting of translation classes of w-ominoes X such that X has exactly one cell 
in its bottom row and a distinguished cell among the cells in its top row. Let 
t*(n) = | r* («) | ; then it is easy to see that 

(5) t{n - 1) ^ **(») g nt(n), 

and this implies 

(6) lim (t*(n))1/n = 6. 

Now we estimate t*(n) from below. Every element X £ T*(n) corresponds 
to a unique sequence (Xlt . . . , Xk) with Xi G W(ni), . . . , Xk G W(nk) 
where k, ni, . . . , nk are certain numbers uniquely determined by X with 
n = ni + . . . + nk. This sequence is found by cutting X into pieces with 
lines running along the bottom of each row of X containing exactly one cell. 
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The element X{ lies between the ith and (i + l )s t of these lines, and the 
distinguished cell in the top row of Xi is either the distinguished cell of X 
(in case i = k), or it is the cell joined to the unique cell in the bottom row of 
Xi+i. Letting w(n) = \W(n)\, it follows that 

(7) t*{n) = J2 w(ni) . . . w(nk) 

where the sum extends over all compositions (wi, . . . , nk) of n into k positive 
parts for k = 1, 2, . . . , n. If (w*(l), w*(2), . . .) is any sequence of non-
negative numbers such that w*(n) = win), then of course 

(8) t*(n) = £ w * ( » i ) ...w*(nk). 

Setting 

CO 

(9) f(x) = £»*(»)*", 
n-=l 

we have 

(io) wW = £ { ̂  w*(wi) • • • w * ( w ' } } * " 
where the index of summation for the inner sum is the same as in (7). The 
coefficient of xn in the power series in (10) is a lower bound for t*(n) so long 
as 0 ^ w* in) S win). Thus, if we define 

(11) /,(*) = E w(n)xn, 
n=l 

and define a sequence (£r*(l), /r*(2), . . .) by 

then it follows that 

(13) *r-i*(n) = *r*(») = /*(») 

for r = 1, 2, . . . and w = 1, 2, . . . . Furthermore, if we put 

(14) <pr = Hm (t*(n))1,n, 
W->oo 

then (pi ^ <̂ 2 ^ . • • ^ 0. Finally, we come to the computation of <pT. Since 
/ r ( # ) / ( l — frix)) is a rational function which generates a sequence of increas
ing positive integers, it follows that <pr is equal to the largest real root of the 
equation fT(l/x) — 1 = 0 . Thus, Moser's procedure comes down to enumerat
ing the sets W(l), . . . , W(r) to find <pr. One has more and more work to find 
improvements by this method, and indeed, so far no one has had the ambition 
required to calculate <pT for a large enough number r to improve the bound 
3.72 < 0. 
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So far we have seen two procedures for improving lower bounds on 6 
indefinitely. No such procedure is known for improving the upper bound on 0, 
and it is our goal in this paper to show that such a procedure exists. Further
more, we shall achieve a considerable improvement over Eden's bound 
6 ^ 6.75. The next section deals with combinatorial aspects of this problem 
which lead to a technical problem involving generating functions. This prob
lem is dealt with in the third section, and in the final section we discuss the 
calculations which lead to our new upper bound for 6. 

2. w-ominoes viewed as sequences of twigs. In this section we develop 
an idea wThich originates with Eden [2]. We begin with a description of this 
idea, reformulating it so that our development appears straightforward. The 
idea is that a unique planted plane tree Ex embedded in R may be associated 
with each n-omino X. The tree Ex is then interpreted as a sequence of "twigs", 
that is, certain small subtrees also embedded in R. Eden's set of twigs E 
(shown in Figure 3) is finite, and each F £ E is assigned a weight w(Y) = 
xayb, where a denotes the number of cells in Y less 1, and b denotes the number 
of dead cells in F. (Dead cells are coloured black in Figure 3: they will be 
explained later.) Let Ek denote the set of all sequences of elements of E 
having length k for k = 0, 1, . . . , and define the weight of Y £ Ek to be 
W(Y) = xw(Y1) . . . w(Yk) where F = (Yly . . . , Yk) for k = 1, 2, . . . , and 
define the weight of the empty sequence to be x. 

It turns out that sequences of twigs corresponding to elements of T(n) 
have weight xnyn, and the sum of the weights of all finite sequences of elements 
of £ is 

(i) x\ i - E ™(y) I = Ê * ^ w{Y) I 
c»  

= E _z w(n 
Jc=0 Y£Ek 

Since 2 w(Y) = y (I + x)3, the generating function given by (1) is 

/y OO OO 3w+l / c\ \ 

l - y ( l +x) feo fco £=i \m - 1/ 

Thus, if it is shown that there exists an injection of T(n) into the set of finite 
sequences of E having weight xnyn, then we are justified in concluding that the 
coefficient e(n, n) of xnyn in this power series is an upper bound for t(n). 
Hence, if 1/e is the radius of convergence of the "diagonal" power series 
of (2), that is, the power series 

OO 

(3) J2e(n,n)zn, 
w=0 
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5 n 
o À ; 

Ei > < E3 

o—• 
Eb 

#^o 
£ 7 

B 
FIGURE 3. Eden's set of twigs E 

then 6 S e where 6 is defined in (1.2). But, 

(4) e(n,n) = (n ^ J and e = 
27 
4 

and this is Eden's result mentioned in § 1. 
It remains to describe an injection of T(n) into the set of finite sequences 

of elements of E having weight xnyn. Suppose X £ R{n)\ then a spanning 
tree Ex of X which is at the same time a planted plane tree embedded in R 
may be defined as follows: Assign labels 1 and 0 to the left-most cell in the 
bottom row of X and the cell below this one respectively, then draw an edge 
from cell 0 into cell 1. Now we define a process which generates a spanning 
tree of X assigning labels 1, . . . , n to the vertices of X. See Figure 4 for an 
example of a spanning tree created by this process; the sequence of twigs in 
this example is (£4, £4, -Es, £3, E&, Es, E8, EGf E7, £ 8 ) , and 

#^(£4) . . . w(Es) = x • x2y - x2y • y > x2y ' xy • y • y • xy • xy • y cl0y10. 
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FIGURE 4. A spanning tree generated by Eden's method 

The process consists of a sequence of n steps P (1 ) , . . . , P(n) of which the 
general step P(i) is as follows: An edge has been drawn from cell j \ i nto cell i. 
Three cells together with cell j t surround cell i which for the moment we call 
a,, bif Ci going clockwise around cell i from cell j t . If at is a cell of X and has 
not been labelled earlier in this process, then an edge is drawn from cell i 
into aif and at is assigned the successor of the last label used in this process. 
Repeat this for bt and cu and go on to P(i + 1) or stop if i = n. It can be 
shown easily by induction that carrying out P ( l ) , . . . , P(n) creates a span
ning tree of X which is also a planted plane tree embedded in R. At vertex i 
in this tree we find exactly one of the twigs shown in Figure 3; denote this 
twig by Yu and define Ex = (Fi, . . . , Yn). 

It is an easy matter to check that the weight of Ex — (Fi, . . . , Yn) is 
xnyn for all X £ R(n). Furthermore, if X, X' G R(n) and X is a translation 
of X', then Ex = Exf- Thus, the spanning tree of a representative element of 
a translation class of w-ominoes is representative of the spanning trees of all 
the n-ominoes in the translation class. This completes the description of an 
injection of T(n) into the set of finite sequences of elements of E having 
weight xnyn. 

Our development of Eden's idea now follows naturally. The spanning tree 
Ex of X 6 R(n) may be viewed as a sequence of elements selected from a set 
of * 'larger" twigs. For example, such a set of twigs may be defined for 
k = 1, 2, . . . as follows: Let E(k) denote the set of all partial planted plane 
trees Z embedded in R such that (1) the dead cells of Z are connected to the 
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root of Z with a path of length less than k, and (2) Z must be a subtree of the 
partial spanning tree of some polyomino. The weight of an element F G E(k) 
is defined to be wk(Y) = xayb where a denotes the total number of cells in F 
less 1, and b denotes the total number of dead cells in F. The weight of a 
sequence F = (Fi, . . . , YT) of elements of E(k) is defined to be Wk(Y) = 
xwjc(Yi) . . . wk(Yr). Every w-omino X gives rise to a unique sequence of 
elements of E(k), and it can be shown by induction that the weight of such a 
sequence is xnyn. It follows from these definitions that E(l) = E, and the 
elements of E ( l ) are shown in Figure 3. The elements of E(2) are compactly 
represented by the drawings in Figure 5 which are interpreted as follows: 
Each drawing represents the collection of twigs having in common the dead 
cells marked as black vertices. The elements of each collection are obtained 
by including all subsets of the cells marked with square vertices as white cells 
of a twig. The sum of the weights of all the twigs in each collection is written 
below each drawing. 

Following (1), the sum of the weights of all finite sequences of elements of 
E(k) is given by 

(5) x\ 1 - E MY)I ' = É ek(m,n)xMyn, 

and the coefficient ek(n, n) of xnyn is an upper bound for t(n). Furthermore, it 
can be shown that ek+i(n, n) ^ ek(n, n) for k = 1, 2, . . . and all n, in fact, 
for any fixed k, strict inequality must hold for all sufficiently large n. (Since 
our final result does not depend on these claims, we shall not bother to prove 
them.) Thus, if l/ek denotes the radius of convergence of the diagonal power 
series of the power series given in (5), we have ei ^ e2 ̂  . . . è 0, where 6 
is defined in (1.2). In the next section we show how to compute an upper 
bound for ek; in fact, it follows from the results proved there that ei = 6.75, 
€2 è 5.50, and e3 ̂  5.25. The amount of work required by this procedure 
for k = 4 or 5 say, may not be prohibitive, and the upper bound for 6 might 
be further improved by this method. However, there is a set of twigs more 
efficient than the extension of Eden's set and it is the procedure associated 
with this set that we plan to push to the limits of our computing ambition. 

There are eight L-shaped 4-sets of cells near a given cell u which we call 
L-contexts of u\ rather than take space to define these 4-sets precisely, we 
merely picture them in Figure 6. Using this concept, we describe the set of 
twigs L shown in Figure 7. Each element of L is composed of the following 
things: (i) a root cell along with a specified L-context of this cell, (ii) a set 
(possibly empty) of open cells which is linearly ordered, and (iii) each open 
cell is assigned one of its L-contexts. In Figure 7 we have marked the L-
context of a twig's root cell with asterisks, the root cell itself is coloured black, 
the open cells are coloured white, and the L-context assigned to each open cell 
is indicated with an L. Certain cells are indicated with a large cross; these 
cells are called forbidden cells and they will never become a cell of the sub-polyo-
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x3y4(l + x)b 

x2ys(l +x)4 x2y*(l +xY x2y3(l + xY 

xy2(l + x)2 xy2(l +x)3 xy2(l + x)2 

H 
FIGURE 5. Elements of E(2) 

mino of which the twig is a root. Where necessary (that is, in twigs Lz and i 5 ) , 
the linear order assigned to the open cells of a twig is indicated by numbering 
them. 

Every element X Ç R{n) corresponds to a unique n-term sequence of 
elements of L. Just as in Eden's method, this sequence is constructed algorith-
mically by assigning a linear order to the cells of X at the same time assigning 
an element of L to each cell of X. The left-most cell u in the bottom row of X 
is cell 1 of X. The L-context U of u which consists of the cell to the left of u 
and the three cells below u form the L-context of a twig (which we will specify 
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FIGURE 6. The eight L-contexts of cell u 
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FIGURE 7. The set of twigs L 

0' 

* * * 

(iii) L3 , 
(iv) L4 , 
(v) L6 , 

in a moment ) whose root is w. Le t w and y denote the cells connected to the 
r ight and above u, and let x denote the cell (T&U) connected to w and y. T h e 
twig assigned to u ( tha t is, cell 1 of X) is 

(i) Lu if w,x,y £ X, 
(ii) L2 , if w, x g X, y G X, 

if w g X , x, y e X, 
if y <2 X, w e X, 
iî w,y 6 X. 

I t is easy to check t h a t ( i ) - (v) cover all possible si tuat ions. T h e L-context of 
a twig is interpreted as a set of cells whose s ta tus of belonging or no t belonging 
to X is known. This is the case with the root of the twig assigned to u. No t e 
however t h a t this is t rue for cell 2 of twigs L 3 and L 5 only after the twig 
assigned to cell 1 has been specified. Now the linear order assigned to the cells 
of X and the assignment of twigs to the cells of X is carried ou t by doing 
Q(2), . . . , Q(n) where Q(i) is defined as follows: Suppose labels 1, . . . , j V i 
have been given to cells of X with j \ _ i the last label given any cell. Go to 
cell i of X which is the open cell of a twig assigned to ye t another cell of X, 
and let the L-context specified be the L-context of the twig to be assigned to 
cell i. All previously labelled cells of X are deleted, and cell i is viewed as the 
root cell of some connected component of X. Now the twig assigned to cell i 
is determined in the same way as for cell 1, and the open cell (or cells) belong
ing to this twig is (are) labelled 1 + j t (or 1 + j t and 2 + j t according to the 
linear order specified by the linear order of the open cells of the twig) . Note 
t h a t generally the L-context of cell i m a y require one to reflect a n d / o r ro ta te 
the appropr ia te twig to be assigned to it. T h e sequence of elements of L 
assigned to X by this method is defined to be Lx = (Xi, . . . , Xn) where Xt 
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is the twig assigned to cell i by Q(i). The spanning tree and sequence of twigs 
generated by this method corresponding to the decomino shown in Figure 4 
is shown in Figure 8. 

FIGURE 8. Lx = (L5, L4, L3, Lb, Lu Lu L2, Lit L4, Lx) 

Clearly, a common sequence is assigned to the elements of a translation 
class of ^-ominoes, and w-ominoes belonging to different translation classes 
are assigned different sequences. Hence, there is an injection of T(n) into the 
set of ^-sequences of L. Furthermore, if the elements of L are given the weights 
w(Lx) = y, w(L2) = xy, w(Lz) = x2y, w(L4) = xy, w(L5) = x2y, and the 
weight of a sequence X = (Xly X2, . . .) of elements of L is defined to be 
W(X) = xw{Xl)w{X2) . . . , then W(LX) = xnyn for all X £ R(n). Thus, 
there is an injection of T(n) into the set of sequences of L with weight xnyn. 

Letting l(m, n) denote the number of sequences of L having weight xmyn, 
we can use (1) with L in place of E to find that 

00 x 
( 6 ) £ o l{m> M ) * V = l-y(l + 2x + 2x>) 

= ] £ xyn(l + 2x + 2xif. 
n=0 

Thus, l(n, n) is equal to the coefficient of xn~l in (1 + 2x + 2x2)", that is, 
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bu t 

(8) S ' i , H l , » - 2 i - i r 

V2 èo \ M + 1, » - 2* - 1/ \V2/ \V2/ 

^-Sfe+^+ i)K < ( 2 + 2 V 2 r-
It follows that 

0 = lim {t(n))lln g lim (l(n, n))1,n ^ 2 + 2V2 < 4.83, 

which is already a substantial improvement on Eden's bound 6 ^ 6.75. We 
can improve further on 0 < 4.83 using L in analogy to our improvement on 
0 < 6.75 using E. 

Consider the infinite set H of twigs generated from the set of twigs L in the 
following way. Every partial spanning tree of a polyomino is a member of H, 
where the spanning tree is generated with the procedure Q corresponding to 
the set of twigs L. Each twig X Ç H is like a polyomino except that (i) it has 
a unique root cell indicated, (ii) a particular L-context is associated with the 
root cell, (iii) a spanning tree of X is indicated, (iv) all nonterminal nodes of 
the spanning tree are dead cells, and (v) some of the terminal nodes of the 
spanning tree may be open cells, each with an associated L-context. Thus, the 
subset of H consisting of w-cell twigs with no open cells is isomorphic to T(n). 

A partial order ^ may be defined on H as follows: For any X, Y Ç H put 
X ^ Y whenever 

(i) X has fewer cells than F, and 
(ii) the root of X has the same L-context as the root of F, and 

(iii) the spanning tree of X is isomorphic to a subtree of Y rooted at the 
root of Y. 

In essence, X ^ Y whenever Y can be "grown" from X by repeatedly 
applying the process Q to the open cells of X. The element 0 (a twig of no 
cells) is considered to be the smallest element of H. The covering relation of H 
ordered by ^ is a tree with root 0. A finite subset C (^{0}) of H is called a 
cut if every element of H is comparable to some element of C (for example, 
the set L forms a cut of H). A cut is said to be minimal if no other cut is a 
proper subset of it. 

Given a minimal cut C, it is easy to show that the spanning tree of any 
w-omino X can be uniquely decomposed into a spanning tree corresponding 
to elements of C. The set of twigs corresponding to X are ordered by the label 
assigned to their root by the process Q. The set C of twigs thus forms a 
"complete" set of building blocks, that is, a set of twigs capable of construct
ing any w-omino. Furthermore, using the weight function w defined on L, we 
define the weight of an element X = (Xi, . . . , Xk) of C to be w(X) = 
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w(Xi) . . . w(Xk), and the weight of a sequence Y = (Fi, . . . , Yj) of elements 
of C is defined to be W(Y) = xw(Yi) . . . w{Yj). Thus, if Cx denotes the 
sequence of elements of C corresponding to X G R(n), then W(LX) = W{CX)-
Hence, there is an injective mapping of T{n) into the set of all sequences of C 
having weight xnyn. 

Next, suppose C and C are minimal cut sets, and every element of C is less 
than or equal to some element of C'; then we write C ^ C'. It is rather easy 
to prove that if lc(m, n) denotes the number of sequences of C with weight 
xmyn, and if C ^ C, then lc(n, n) ^ lC'{n, n). The point is, if sequences of 
elements of C and C are converted into sequences of elements of L, then the 
sequences giving rise to the number lC' (n, n) constitute a subset of the 
sequences giving rise to the number lc(n, n). Thus, for each sequence 
(Ci, C2, . . .) of minimal cuts with d ^ C2 ^ . . . , we have 

(10) lCl(n, n) ^ lC2(n, n) ^ . . . ^ t(n). 

To calculate /c*(w, n) we use (1) with Cz- in place of E: 

oo 

(H) T-^-^Cn= S lct{m,n)xmf. 

Thus, estimating la(n, n) in (11) presents us with the problem of estimating 
from below the radius of convergence of the ''diagonal function" of a rational 
double power series. We want to use the fact (implied by (10)) that if 1/X* 
denotes the radius of convergence^ la(n, n)xn, then 

(12) Xi è A2 è . . . è 0. 

This is the problem treated in the next section. 

3. The diagonal of a rational function. In this section we tell how to 
find a lower bound for the circle of convergence of the diagonal of a double 
power series which represents a rational function. More precisely, suppose 
P(x,y) and Q(x, y) are polynomials with integer coefficients such that 
P(0, 0) = 1 and Q(x, y)/P(x, y) is in reduced form. Then consider the 
representation of Q(x, y)/P(x, j ) as a power series 

(1) F(x, y) = f |^ | = £ /(«, n)xmf. 

The diagonal of F(x, y) is defined to be 

CO 

(2) FD{z)=^f{n,n)zn. 
71=0 

In Section 2 we encountered the problem of determining an upper bound for 

(3) ^ = l iminf(/(^,^))1 / n ; 
n-ïoo 
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t h a t is, <p~x is a lower bound for the radius of convergence of FD(z). T o solve 
this problem, we use the integral representat ion for FD(z) given in [2]. 

W e can suppose there exist positive constants a and /3 such t h a t the power 
series in (1) represents F(x, y) for all x and y such t h a t \x\ < a, \y\ < f$. T h u s , 
the function F(s, z s - 1 ) 5 " 1 regarded as a function of s is represented by the 
Lauren t power series 

(4) F(s, zs-^s'1 = ê f(m, nWs1"*-1 

m,n=0 

inside the circular annulus 

A = {s : \s\ < a, His - 1 ! < 13} = {s : \z\p~1 < \s\ < a} 

which is not emp ty provided \z\ < afi. No te t h a t the residue of F(s, s s - 1 ) 5 " 1 

a t 5 = 0 is jus t FD{z). Thus , if T is a circle inside A with its centre a t 5 = 0, 
then we can apply the residue theorem to conclude t h a t 

(5) FD(z) = ~-. f F&zs-^ds; 

furthermore, the integral on the r ight is the sum of the residues of 
F(s, zs^s"1 a t the singularities enclosed by T. Now we take into account the 
special form of F(x, y). 

There exist numbers u, v with w = u + v, together with polynomials 
Po(z), . . . , Pw(z) with integer coefficients such t h a t 

(6) P(x, y) = £ x-jPv^(xy) + £ x'P^xy). 

Using this form of P(x, y), we have 

(7) F(s, zs-1)!-1 S ^Q(s, zs-1) 

There exist functions 7ri = 7TI(JS), . . . , 7r«, = irw(z) such t h a t 

w w 

(8) £•?,(*)*'= P«(s) II (*-*>)• 
j=0 j=l 

We shall assume the 7r's are dist inct and t rea t this case only. 
Suppose TTJ is inside T for j = 1, . . . , t, and TJ is outside T for 

j = t + 1, . . . ,w. Then we can combine (5), (7) and (8), and sum the 
residues of F(s, 2S _ 1 ) s - 1 a t Wj for j = 1, . . . , t to find t h a t 

t i w \ - \ 

(9) FD(z)=Zir;-1Q(irj,Zirj-
1))Pw(z) U (*,-**)} • 

Hence, the singularities of FD(z) form a subset of the roots of the equat ion 
w 

(10) R(z) = Pw{z) n (*,(«) - **(?)) = 0, 

file:///z/p~1
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and a lower bound for the radius of convergence of FD(z) is the minimum 
modulus of all these roots. If it is known that {f(n, n) : n = 0, 1, . . .} is an 
increasing sequence of integers, a lower bound for the radius of convergence of 
FD(z) is the smallest real root of (10). Note that if the 7r's are not all distinct, 
then the product in (10) is 0, and this test fails. 

Finally, R{z), the function defined by the left member of (10), is symmetric 
in 7Ti, . . . , TTW, so R(z) can be expressed as a polynomial in P0/Pw, • • • , Pw-i/Pw. 
In fact, dzR(z) is the discriminant of svP(s, zs'^/P^z) regarded as a poly
nomial in s. This discriminant may be expressed as a determinant, and com
puted in terms of the quantities P\/Pw (i = 0, . . . , w — 1) as in Uspensky 
[7, pp. 277-291]. We find 

(11) (Pw(z)y°-*R(z) = d e t A f ( 2 ) , 

where M is a (2w — 1) X (2w — 1) matrix whose first w — 1 rows consist 
of cyclic shifts of (Pw, Pw-i, . . . , P0, 0, . . . , 0), and the next w rows consist 
of cyclic shifts of (wPw, (w — l)Pw-i, . . . , Plt 0, . . . , 0). 

Thus we are led to the following conclusion: If F(x, y) is a rational function 
with the form given in (1), and if the diagonal FD(z) of F(x,y) generates an 
increasing sequence of integers, then an upper bound for cp defined in (3) is 
the largest real root of the polynomial equation 

(12) det M{l/z) = 0. 

4. Computational results. The method outlined in the preceding sections 
was carried to the limits of practical computation to find an upper bound for 6 
(defined in (1.2)). In this section we describe in more detail the computational 
method used, and the results achieved. 

A sequence of increasingly larger cut sets Ci, C2, . . .of the set H (as defined 
in § 2) is precisely defined in this section. It will be clear that Ct < C l+i for 
i = 1, 2, . . . , so that the radii 

Xi_1, X2
_1, . . . of X) lci(n, n)xn, X lc2(n, n)xn, . . . 

respectively decrease and are bounded below by 6. Of course, this implies 
lim(^' —-> oo ) \ t = X exists, but we only know that X ̂  6. We conjecture that 
X = 0. 

The elements of d were enumerated explicitly by a computer program 
written in SAIL (an ALGOL dialect) for the PDP-10 at the Artificial Intelli
gence Laboratory of Stanford University. The twigs of each cut set were 
displayed on a scope allowing us to verify the correctness of the program. 
The definition of Ci and enumeration procedure are as follows. 

The cut set Ci is defined to be the set of all twigs having exactly i dead cells 
together with the set of all twigs having fewer than i dead cells and having 
no open cells. Every twig T containing more than i dead cells must contain 
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a sub-twig rooted at the same cell as T which has exactly i dead cells. This 
demonstrates that Ct < Cj for all j > i. 

Some insight for our enumeration procedure may be gained from an under
standing of the tree-structure of H induced by the covering relation of the 
partial ordering defined on H. Recall the constituent parts of a twig: First, 
there is a root cell which is dead and marked to show the orientation of the twig 
in the plane. Apart from the root cell, the twig may have other dead cells. 
Also, the twig may have a set of open cells, and when they are present, these 
cells are assigned a definite linear order. Each of the open cells is marked to 
indicate the orientation of a twig which will eventually have its root super
imposed on this cell. Finally, certain cells near the twig called forbidden cells 
are marked to indicate that no descendant of the twig includes any of these 
cells. The immediate descendants of a twig T are constructed as follows: 
First, if T has no open cells, then T has no descendants. Next, if T has any 
open cells, then there is a least open cell X, and X has been marked to indicate 
the orientation of a twig to be joined to T at X. Now we superimpose the root 
cell Yi of twig Li (shown in Figure 7) on X for i = 1, . . . , 5 so that the 
orientation indicated on Yt matches the orientation on X. An element Lt*T 
of H is formed in this way if the following condition holds: 

(*): None of the cells of Lu except for Yu overlap any of the cells or for
bidden cells of T, and none of the forbidden cells of Lx overlap any cells 
of T. 

If Lt*T meets condition (*), the construction is completed by including the 
forbidden cells of Lt with those of T to form the set of forbidden cells of Yt*T. 
Next, cell X is made a dead cell of Yt*T. Note that this implies that every 
immediate descendant of T (if any) has just one more dead cell than T. 
Finally, the linear ordering of the set of open cells of T is modified in an obvious 
way to form a linear ordering of the open cells of Lt*T. The set of open cells 
of Lt*T includes the set of open cells of T with X deleted together with the 
open cells (if any) contributed by Lt. The open cells of Lt keep their relative 
order and become the largest elements in the new ordering. 

Every twig T may be assigned a unique sequence a{T) = (Zi, . . . , Zi) 
having range L = {Li, . . . , L 5 } . This sequence is selected so that 
T = Zi*(Z2* . . . {Zi) . . .). The fact that the sequence exists and is unique 
follows by induction. It follows from the observation that a twig's immediate 
descendants have one more dead cell, that the length \<J{T)\ of a{T) is the 
number of dead cells in T. Recall that the weight of a twig T is defined to be 
xw{Zi) . . . w{Zi) where a{T) = (Zi, . . . , Zt). If T has no descendants and i 
dead cells, it follows that W{T) = x^-y1. Let 

(1) Hi = {T:T G H, W{T) = xY\ 

and let 

(2) Hi' = {T:T e H, \a{T)\ = i, W{T) ^ xY\. 
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Thus, now it follows from the definition of Ct that 

(3) Ct = H? U U H/. 

Our method involves the computation of 

(4) Wt(x, y) = £ W(T) = Wt"(x, y) + Z Wt'{x, y) 
Tea j=i 

where 

Wt"(x,y)= E W(T), W/(x,y)= £ W(T) 0 = 1 , 2 , . . . ) . 

The following algorithm describes our procedure for computing Wi(x, y): 

Step 1. Set Ct <— 0, B <— the set containing the single twig: 

* * * 

that is, a twig with one open cell and four context cells, and W <— 0. 
,Ste£ 2. U B = 0, stop (Ci is the desired cut set, and W = Wi(x, y)). 
Step 3. Select any twig T 6 B, and set B *— B\{T}. If T contains no open 

cells (that is, T G H/, for j ^ i) or exactly i dead cells (that is, T G H/'), 
set C<- C U {T}, W<-W -w{T), and return to Step 2. 

Step 4. For i = 1, . . . , 5, set 7\- = L^T, and if 7\- meets condition (*) 
give above, set B <— B U {Ti}. Return to Step 2. 

This completes the description of the enumeration procedure. From the 
weight Wi(x, y) thus calculated, the largest real roots of (3.12) can be found 
using a binary search method, using Gaussian elimination to evaluate 
det M(l/z) at each value of z. 

The results are summarized below. It should be noted that the largest real 
root of (3.12) for i = 10 turned out to be 7.0075. This root can be disregarded 
since Xio must be smaller than X9, so that the smallest root less than X9 is 
tabulated below. This phenomenon may be attributed to the fact that 
{R{zy)~x has the same singularities as FD(z), but may have others besides 
these. From the table we conclude that 

lim (t(n))1/n = 0 S 4.649551. 
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Table 1 

* \Ci\ Xi 

1 5 4.828428 
2 21 4.828428 
3 93 4.828428 
4 409 4.796156 
5 1803 4.765534 
6 7929 4.738062 
7 34928 4.714292 
8 151897 4.690920 
9 656363 4.669409 
10 2821227 4.649551 
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