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1 Introduction 

At the Eurocrypt 85 conference, we presented experimental statistical evidence that the set of 
DES transformations is not closed under functional composition \KRS85] , z  During May to  Au- 
gust 1985, we performed additional experiments to determine if DES has certain other related 
algebraic weaknesses. In particular, we addressed the open question, "Is DES a pure cipher?"' 
In addition, we performed a screngthened version of our closure test and we ran two experiments 
to investigate the order of DES transformations. Using a combination of software and special- 
purpose hardware, we carried out eight experiments, covering five diKerent algebraic tests. Al- 
though we experimented only with DES, our tests are general in nature and apply to any to finite, 
deterministic cryptosysten. 

?;one of our experiments involving randomly chosen DES transformations detected ar,y alge- 
braic weaknesses. In particular, oiir data show with extremely high confidence that DES is not 
pme. However, one experiment inadvertently discovered fixed points for two of the keys, thereby 
revealing a previously unpublished additional weakness of the weak keys [Dav82]. 

This abstract is organized in four sections. Section 1 gives an overview of our experiments 
and explains the purpose of our tests. Section 2 introduces the notation and terminology used 
throughout the abstract and summarizes previous cycling studies on DES. Section 2 also briefly 
reviews the cycling closure test and describes our hardware imF1ementation of it. Section 3 lists 
concise descriptions of our algebraic tests. Finally, section 4 summarizes our findings and explains 
the two interesting structural properties that we encountered during our  tests. An appendix which 
describes our detailed experimental results is also included. 

1.1 Overview and Motivation 
It is important to know if DES is pure for essentia!ly the same reasons that it is important to 
know if DES is closed. If DES were pure, then Tuchrnan's multiple encryption scheme would be 
equivalent to  single encryption, and DES would be vulnerable to a known-plaintext attack that 
runs in 2" steps on the average [KRS85!.' It is possibie that DES is pure, but not closed. (Of 
course, if DES were closed, then DES would also be pure.) A!though there is no particular reason 
to suspect that DES is pure, it is unknown in the open literature if DES has this weakness. 

The question "Is DES closed?" is a question about the order of the group generated by DES. 
A related and more detailed question-which we call the small subgroup question-is: "What is 
the order of the group generated by n given DES transformations?" Any set of DES transforma- 
tions that generates a small group would suffer the weaknesses of closed ciphers. Specifically, any 
such set of transformations would be vulnerable to our known-plaintext attack against closed ci- 
phers. In addition, multiple encryption (using either sequential multiple encryption or Tuchman's 
scheme) involving only transformations from such a set would be equivalent to single encryption 
from the set.' Finally, when used in output-feedback mode with feedback width 64 [FIS80], m y  
transformation from such a set would be at greater risk to produce a key stream with short period. 

'The Data Encryption Standard (DES) is a federal standard for the cryptographic protection of computer data, 

'See section 2.1 for a review of the de6nition of a pure ciphcr. 
4To encrypt a message z under Tuciimnn'3 scheme i to compute T,Tj-iTi(z): where the keys a,i. and k are 

5To encrypt a message 2 using sepuextiol muifipie encr3p:ron i3 to compute T,T.(z), where rhe keys i and i are 

adopted in November 1'376 by the United Stares Nationai Bureau of S tanda rds  [YBS) [FIPS77,DaP84]. 

chosen independently [Tuc78,?dcMSZ~. 

chosen independently [MeHSl]. 
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Two of our tests address the small subgroup question for n = 1,2. 
To test DES for purity and other algebraic weaknesses, we examined the orbits of subsets 

of DES transformations on particular messages. Our method was to compute the orbits of sin- 
gle DES transformations and to apply our cycling closure test to subsets of two or more DES 
transformations. To carry out the tests we built special-purpose hardware and implemented a 
variation of the constant-space cycle-detection algorithm described by Sedgewick and Szymanski 
[SSY82;. We applied our tests both to  randomly chosen transformations and to  transformations 
with special properties (e.g. transformations represented by weak keys). The dominant theme of 
our tests was to determine if DES has algebraic properties different from those expected from a 
set of randomly selected permutations. 

Since there is an overwhelming chance that even two randomly selected permutations will 
generate either the alternating group or the symmetric group [BoW77,Dix69], we did not expect 
to detect any pairs of DES transformations that generate small groups. 

2 Background 

2.1 Definitions and Notation 

The Data Encryption Standard (DES) specifies a mapping T : K x M 4 M, where K = { O , l } s E  is 
the key space and M = {O,l}" is the message space. Each key k E K represents a transformation 
Tk = T ( k , . ) ,  which, by the definition of DES, permutes M. DES is endomorphic: its message 
space and ciphertext space are the same set. It is unknown if DES is fuithful: does every key 
represent a distinct permutation? 

We shall use the following notations throughout the paper. Let M = IMI = P4 be the degree 
of DES; let K = 1K1 = 2'6 be the size of the key space; and let T = U{Tk : k E K} be the set of 
all DES transformations. In addition, for any transformation Tk E 7 ,  let TL1 denote the inverse 
of Tk. 

Let I be the identity permutation on M, and let AN and S,,, be, respectively, the alternating 
group and symmetric group on M.6  For any permutations g ,  h we denote the composition of g and 
h by gh = g 0 h = g[h(.)l. For any permutations g1,g2,. . . ,gnr  let (gl,gZ,. . . , gn) denote the group 
generated by g 1 , g 2 , .  . . , gn. Of course, for any R DES transformations Tl, Tz, . . . , T,,, it is true that 
(TI) 5 (T1,TZ) 2 (T l ,T2 , .  . . ,Tn) C {T). Since each round of DES is an even permutation, it is 
also true that (7)  

SW, for any z E M, the G-orbit of z is the set G-orbit(z) = {g(z) : g E 
C}. For any permutation g E Sa, may write g-orbit(z) to denote the (g)-orbit of z. I f f  is any 
function (not necessarily a permutation) and if z E Dornain(f), we define the f-closure of z to be 
the set f-closure(z) = { f ( z )  : a 2 O}. For any subgroup G C SW, the order of G is the number 
of elements in G .  For any g E S f i ,  the order ofg is the order of (9) .  

A cryptosystem is closed if and only if its set of encryption transformations is closed under 
functional composition, i . c .  DES is closed if and only if for all keys t,j E K there exists a key 
k E K such that T,T, = Tk.7 Since every finite cancellation semigroup is a group, DES is closed 
if and only if 7 forms a group under functional composition. 

A.q . 
For any subgroup G 

'See [Car56], [Rot78], or :We641 for a review of basic concepts in permutation group theory. 
'Note that we are using the term closed cipher to refer to what Shannon called an idempotent cipher /Sha49]. 

Shannon defined a closed cipher to be any cryptosystem with the property that each cryptographic transformation 
is surjective. 
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Shannon's notion of a pure cipher generalizes the idea of closure to non-endomorphic cryp- 
tosystem [Sha49]. DES is pure if and only if, for every keys i , j , k  E K,  there exists a key 1 E K 
such that T,T,T'Tk = Zi.8 It is easy to  see that DES is pure if and only if for every TO E T the 
set T , ' T  is closed. Moreover, TG'T is closed for every To E T if and only if TC'T is closed for 
same TO E 7. Every closed cryptosystem is pure, but not every endomorphic pure cryptosystem 
is closed. 

Finally, for any any string s E (0 ,  I}*, let s denote the bitwise complement of s. 

2.2 Previous Cycling Studies on DES 
To the best of our knowledge, the small subgroup question for two or more DES transformations 
had not been previously investigated in the open literature. A few researchers have, however, 
studied the pseuderandom key streams produced by DES in output-feedback mode [FISBO]. 
Whenever the feedback width is 64 bits, each such key stream describes the orbit of a DES 
transformation on some initial message. In a series of software experiments, Gait computed the 
key stream produced by DES in output-feedback mode t o  at most 106 = 2" places. He found no 
cycles for nonweak keys [Gai77j. Gait did not state what feedback width he used. Davies and 
Price [DaP82,DaP82a] and Jueneman [Jue82] studied mathematically the cycle structure of the 
key stream produced in output-feedback mode, but did not report performing any experiments 
on DES. Davies and Price did run a series of experiments on random permutations on {0,1}* 
[DaP82a]. Finally, in a series of experiments, Hellman and Reyneri investigated the cycle structure 
of mappings induced by DES on the key space IHeR.821. None of these studies answered the 
question, "Is DES pure?" 

2.3 
The cycling closure test is a statistical test that explores one aspect of the algebraic structure of 
any b i t e ,  deterministic cryptosystem. It works by taking a pseudo-random walk in the message 
space for a specified number of steps or until a cycle is detected. For each step of the pseude 
random walk, the previous ciphertext is encrypted under a key chosen by a pseudwandom 
function of the previous ciphertext. Results of the test are asymmetrical: long walks are over- 
whelming evidence that the set of permutations is not a group; short walks axe strong evidence 
that the set of permutations has a structure different from that expected from a set of randomly 
chosen permutations [KRS 851. 

When applied to DES and given an initial message zo, the cycling closure test computes the 
+,-closure of zo, where the function 7/ j lp  : M -+ M is defined by $J~(Z) = T,(.)(z) whenever z E M, 
and p : M -+ K is a deterministic pseudo-random function. If p is Pandom," then $J~ acts like a 
random function on the (T)-orbit of zo. The expected length of the $,,-closure computed by the 
test is about the square root of the length of the (7)-orbit of 2 0 .  

When applied to  a subset S 7 of two or more DES transformations, the cycling closure test 
computes the +,-closure of zo, where p : M + H and H C K is a set of keys that represents S. 

If DES acts like a set of randomly chosen permutations, then we would expect (T)-orbit(zo) = 
M ,  in which case we would expect Ir,6,,-closure(zo)l B a = 2j2. However, if DES were closed, 
then l ( T )  -orbit(q)l 5 K ,  in which caSe we would expect I$p-closure(zo)I 5 a= 2*'. 

Review of Cycling Closure Test 

'Shannon also required each transformation of a pure cipher to be equally likely. 
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The cycling closure test collects evidence which can be used to compute a measure of our 
relative degree of belief in the following two competing hypotheses: 

Hc = "DES is a group." 

HR = "Each DES transformation was chosen independently with uniform probability from 
the symmetric group on M." 

Let E be the evidence that a trial of the cycling closure test ran for r steps without detecting a 
cycle. As explained in [KRS85], this evidence can be interpreted by computing the conditional 
probabilities p~ = P ( E  1 H e )  and P R  = P ( E  I H R ) ,  where 

pc  ~g e-rZ/ZK and PR e-ra/zM. (1) 

In light of the evidence E, a Bayesian would update her initial odds in favor of HG over HR by a 
factor of p c I p ~ .  

2.4 Special-Purpose Hardware 
We carried out each experiment using special-purpose hardware which we had originally built to 
test DES for closure. The main feature of our hardware is that it can compute a sequence of 2" 
DES encryptions per day, where at  each step the previous ciphertext is encrypted under a key 
that depends on the previous ciphertext. Our hardware consists of a custom wire-wrap board 
that plugs into an IBM personal computer. The board contains one AMD 28068 DES chip and a 
7.1 MHz finite state controller. By modifying the microcode of the board's finitestate controller, 
we adapted the board to carry out each of the five algebraic tests. (See [KRS85] for a more 
detailed description of our special-purpose hardware.') 

3 Cycling Experiments on DES 
This section briefly describes the four additional cycling tests that we performed on DES. We 
call these tests the purity test, orbit test, small subgroup test, closure test, and eztended message 
space closure test. A sixth reduced message space test is also described. 

3.1 Purity Test 
Pick any transformation To E T and apply the cycling closure test to  the set TG'T. 
section 2.3 for a review of the cycling closure test.) 

(See 

3.2 Orbit Test 
Given any key k and any message 20, compute zi = T; (zo) ,  i = 1,2,. . . for a specified number of 
steps or until a cycle is detected. 

The period of this sequence is the length of Tk-orbit(zo). In other words, if we consider the 
permutation Tk as a product of disjoint cycles, then the period of the sequence is simply the 

'Schematic diagrams of our hardware will be included in a revised version of this paper, to be available from the 
authors same time in the future. 
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length of the cycle that contains 20. If this test is run for r steps without detecting a cycle, then 
r is a lower bound on order(Tb) and hence on order({T)). 

For a randomly chosen permutation on M ,  for each 1 5 I 5 M ,  the probability that zo lies in 
a cycle of length exactly I is 1/M [HarSS,PuW68] (iKnu691, exercise 3.1.12). Hence, the expected 
cycle-length of the longest cycle of a randomly chosen permutation on n letters is about 0.624n 
[ShL66] (for DES, this is about 263). For a randomly chosen permutation on M ,  the chance that 
we fall into a cycle of length 236 or less is about 2-(63-36) = 2-*'. 

Although we do not do so in this preliminary abstract, it is possijle to interpret results of the 
orbit test to obtain statistical lower bounds on the order of the group generated by DES. Such 
analysis depends on the structure of the group. For example, the orbit test behaves differently 
on cyclic groups than on symmetric groups. Consequently, it is useful to combine the orbit test 
with other algebraic tests, including tests for faithfulness, commutativity, solvability at various 
levels, and nilpotence at various classes. 

3.3 Small Subgroup Test 
Given two distinct keys i , j  E K and any message zo, apply the cycling closure test to the set 
{T,,T,} to obtain a statistical lower bound on the length of the (T,,Tj)-orbit of ZO. 

In the orbit and small group tests, it would be interesting to examine both randomly chosen 
transformations and certain "special" transformations. For example, it would be interesting to 
explore weak keys, semi-weak keys, light keys (keys with a low density of ones), heavy keys (keys 
with a high density of ones), and pairs of related keys (e.g. keys that differ in one bit and keys 
that are complements of each other). 

3.4 

For any experiment that uses the cycling closure test, perform the cycling closure test with an 
extended message space space that consists of the Cartesian product M' of the original message 
space, for some small integer 1.'' 

The closure test works by computing a statistical lower bound on the length of (7 )  -orbit(zo), 
which, in turn, yields a lower bound on the order of (7) .  Limits on the lower bounds achievable 
by this test are imposed both by the number of steps the test is carried out and by the relative 
sizes of the message space and key space. For all 1 5 r 5 m, if the test is run for r steps 
without detecting a cycle, then with high probability order( (T)) 2 r2. To use the cycling closure 
test to obtain statistical lower bounds on order(( 7 ) )  greater than 264, it is necessary to perform 
an extended message test with I > 1. 

Extended Message Space Closure Tests 

3.5 Reduced Message Space Tests 

Perform each of the above tests on a modified version of DES in which the message space is reduced 
in size. Specifically, consider DES-derived functions di : M ,  -+ M ,  on the reduced message space 
M, = { O , l } r ,  where r is some small integer (say, r = 8) and & is defined as follows. For each 
key k E K, define 4 k  by 4~ = KZTkKl, where ~1 : M, + M is an injection and TTZ : M 4 M, is a 
projection. (For example, x1 might fix the first 56 DES input bits to 0, and a2 might take only 
the last 8 DES output bits.) 

'"In the extended message space closure test, the pseudo-random function p maps M1 in60 K .  
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Table 1: Summary of DES experiments, May-August, 1985. (The numbers PG and p~ are the con- 
ditional probabilities of the experimental evidence under the hypotheses "DES is closed (pure)" 
and "Each DES transformation was drawn at random from the symmetric group on M" respec- 
tively.) 

Studying reduced message space versions of DES is useful for two reasons. First, it is one way 
to look for structures that  may be present on subsets of the message space. Second, by sufficiently 
restricting the message space, it is possible to write down a complete description of the action of 
particular transformations on the reduced message space. 

4 Experimental Results and Conclusions 

This section summarizes our experimental results and discusses two interesting structural findings. 

4.1 Summary of Experimental Results 
During May to August 1985, we performed eight cycling experiments covering five different alge- 
braic tests. Specifically, we performed three closure tests, one extended message space closure test, 
two purity tests, one small subgroup test using two of the weak keys, and one orbit test." These 
experiments gathered overwhelming statistical evidence that DES is neither pure nor closed and 
that the size of the group generated by DES is at  least Zm. Table 1 summarizes our experimental 
results. 

As one test of correctness, we ran a software implementation of the cycling closure test for 
30,000 steps. The software and hardware implementations agreed on all values. As a second test 
of correctness, we repeated experiments 1 and 2 and obtained identical results. We invite the 
interested reader to verify our results using the detailed experimental data found in appendix A. 

In experiment 7, we applied the small subgroup test to the transformations represented by 
the two weak keys that  consist respectively of all zeros and all ones. Since each of the weak 
transformations is self inverse, we implemented this test as an orbit test using the composition 
of the weak transformations. This experiment produced a short cycle of about Z3' steps, which 
would be unusual (probability less than lo-') if the tested permutation were chosen at  random 
from Sx. 

"We also performed one trial of a reduced message space closure test that detected no algebraic weaknesses. 
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Figure 1: Results of experiments 1 and 2. Starting at different initial messages, both 
pseud-random walks entered the same cycle. Every message on the cycle is the bitwise comple- 
ment of the corresponding message halfway around the cycle. 

4.2 Two Structural Findings 
Although moat of our experimental results are consistent with the hypothesis that DES acts like 
a set of randomly chosen permutations, three experiments did yield interesting regularities. One 
regularity is a result of the well-known complementation property;“ the other involves a newly 
discovered property of the weak keys. We will now explain these structural findings. 

4.3.1 Complementation and Drainage Properties 

In the first two experiments, we performed two independent trials of the cycling closure test. 
Each of theae experiments used the ‘identity” next key function-the function p: M -+ K that 
removes each of the eight parity bits. These two experiments produced two interesting findings. 
First, each of the pseud-random walks drained into the same cycle. Second, each point on the 
cycle was the bitwise complement of the corresponding point exactly halfway around the cycle. 
Figure 1 illustrates these findings. 

The first finding is explained by the fact that, for the graph of a randomly chosen function, 
most points on the graph will probably drain into the same cycle. See [HeR82] for one analysis 
of this phenomenon. 

The second finding is a consequence of DES’s complementation property and the fact tha t the  
identity next key function also has a complementation property (for all messages z, p ( Z )  = ~ ( z ) ) .  
The cycling closure test computes a pseudo-random walk zo, zl,. . ., where z,+~ = Tp(z , ) ( z , ) ,  for 
i 2 1. If z, = Z; for any i > j, then it  would follow that 

=s+1 = T P ( * , ) ( Z * )  = T P ( f ; ) ( z ; )  = Tm(q) = 7-t(=,1(4 = Gi. (2) 

Therefore, by induction, z , + ~  = 21+h for all h 2 0. This situation arises whenever some Z, = 2; 
before any 5, = z, with i > 1, which will happen for about half of all initial messages. 

“For wery key k and every message z, Tk(z) = [DaP84]. 
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Figure 2: Results of experiment 7. (Filled circles denote the messages z, on the Tl..,1T0...o-orbit 
of an initial message 2 0 .  Unfilled circles denote intermediate values To,,,o(z,). Dotted lines link 
identical messages.) 

4.2.2 

In experiment 7, we computed the orbit of a message under the composition of the two weak keys 
that consist respectively of all zero8 and all ones. Although each weak key is self-inverse, we did 
not expect the composition t o  produce short orbits. Much to o w  surprise, we detected a cycle of 
length less than 2=. We presented this finding at the Crypto 85 conference and sought a simple 
explanation. 

After some thought, Don Coppersmith suggested that we had encountered fixed points of the 
weak keys, i . e . ,  messages z for which Tl...l(z) = z or To ~ ( z )  = z. Since each weak key yields 16 
identical round keys, for each weak key, a fixed point results whenever DES’s L and R registers 
agree after eight rounds. Since the middle L and R registers are equal with probability about 
1/2”, there should be about 2” fixed points for each of the four weak keys. Hence, by 2” steps, 
it wa3 likely that we had encountered a fixed point. Figure 2 illustrates the effeet of the fixed 
points on the walk in the  message space and explains why a cycle resulted. 

After the conference, we found the fixed points and thus confirmed Coppersmith’s hypothesis 
(see appendix). To the  best of our knowledge, these fixed pointa are the first published in the 
open literature. These fixed points further illustrate the deficiencies of the weak keys. 

Coppersmith also suggested that the algebraic strmture detected in experiment 7 can be used 
to prove strong lower bounds on the size of the group generated by DES. Experiment 7 computed 
the length, I, of the g-orbit of 20, where g = Tl.,,lTo ..o is composition of two DES transformations 
and zo  is the initial message. Since 1 divides the order of g, it follows that 1 divides the order 
of the group generated by DES. Therefore, if experiment 7 were repeated r times with different 
initial messages, and if these experiments yielded orbit lengths l 1 , l Z , .  . . , I , ,  then l c m ( l ~ , l ~ ,  . . . , I , )  
would be a lower bound on the order of the group generated by DES. We have not yet extended 
our results in this direction. 

Fixed Points of the Weak Keys 
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A Detailed 'Descriptions of Experiments 

This appendix presents nine tables that  describe in detail the cycling experiments we carried 
out during summer 1985. The first table defines the pseudwrandom next key function used 
in several of the experiments. The remaining eight tables-ne for each experin;ent-list all 
relevant experimental parameters together with important checkpoints encountered during the 
experiments. 

A.1 Notation 
In the body of the abstract, we defined the key space of DES to be the set K = (0, l}56. Most 
DES implementations, however, nominally treat each key as a string of 64 bits, where every eighth 
key bit is a parity bit which is ignored. In this appendix, we too shall specify keys and messages 
as %bit string!, described in hexadecimal notation. To do this, it is coFvenient to  introduce the 
DES function T: K x M -+ M that operates on the nominal key space K = (0, l}64. 

A.2 Next Key Functions 
The cycling closure test depends on a function p: M + K to compute the next key from the 
current message. We will now describe the two particular nezt k e y  functions that we used duri:g 
our experiments. We will define each next key function in terms of its related function 3: M + K .  

Each next key function operated in a byteby-byte fashion using a byte substitution table 
(1 byte = 8 bits). For any 0 5 i 5 7 and any z E M, let ~ ( ~ 1  denote the ith byte of z. For each 
0 5 i 5 7, we computed b(z)"] = S(di)), for some byte substitution table S: {0,1}8 --+ {0,1}8. 

In experiments 1 and 2, we chose S to be the identity function. In the other cycling closure 
experiments, we used the byte substitution table given by table 2.'' This table was designed SO 
that each entry has odd parity and such that each entry appears exactly twice. The table was 
generated using the random number generator in the C library on our IBM PC. 

For the experiments that  used the extended message space M2, we computed j(z)(') = S(z(*')) 
using the substitution table given in table 2. 

A.3 Selection of Experimental Parameters 
We chose initial messages and keys in a variety of nd hoe ways. Some we selected in an obviously 
deterministic manner (e.g., 20 = 0123456789ABCDEF). Others are related to  the authors' social 
security numbers or other personal data. The rest we generated using DES and MACSYMA. 

A.4 Detailed Experimental Results 
Tables 3-10 list the detailed results of our cycling experiments. 

~~ 

13The substitution table is used as lollorus. To substitute any byte B, consider the representation of B as two 
hexadecimal digits. Select the table entry whose row is given by the 619t digit and whose column is given by the 
second digit. 
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0 
1,389,523,413 
1,389,523,414 
5,152,082,299 
9.374.575.329 

Table 
leader 

-. 4 
1216028508020864 
48BB6CQF86CD286A end of leader 
AFF6OE97653421BF start O f  C y C k  

AE6530AOEQ71BSE8 experiment 1 intersection 
FBOAi3Q8EQZDi473 end of cycle 

Table 2: Byte substitution table for pseudo-random next key fu .nction. 

3: Closure experiment with identity next key function. Cycle length 7,985 
length 34,293,589 x zz5. 

- 1 -  - 1 -  -,-- , ~ 

9,374,575,330 I AFF60E9765342lBF 1 restart of cycle n 

,051,916= 23s; 

Table 4: Closure experiment with identity next key function. Cycle length 7,985,051,916 
leader length 1,389,523,414 zs 230. 

Zs3; 
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3,233,340,363 
4,531,729,424 
4,531,729,425 

Table 5 :  Closure experiment with pseuderandom next key function. Cycle length 
1,568,438,014 is 230.5; leader length 2,138,241,979 N Z3'. 

EFE7B7112233DD88 start of cycle 
COODFA478C384QBE end of cycle 
EFE7B7112233DD88 restart of cycle 

Experiment 4 Z;+l = i . ;(FI)(Z;),Z, E M Z  
i 2; I Note 

Table 
in 234 

0 i 4C957F303AC4D08B 63E15CQC7A398042 1 
4,294,967,296 1 2C173869EAF8804B 767469BBlQB26D8A I 232 iterations 
8.589.934.592 I 4349368A49700D3B 65FC02F8848BC64F 1 233 iterations 
, , I ,  1 12.884.901.888 I 55D1202F5DOOB268 C30ABSOFF3B03D08 j 3 .  Z3' iterations - _ _  - > - - - , -  1 , 

17,179,869,184 1 4A224C66B8A48DEB OOC7DOCA64C48240 1 z3* iterations 

6: Extended closure experiment with pseudo-random next key function. No cycle 
steps. 

Experiment 5 
Note 

detec ted 

Table 7: Purity experiment with pseudo-random neut key function. Cycle length 
1,298,389,062 FS z3O; leader length 3,233,340,363 % 23'.5. Key = 97778ElBC3FD8EO7. 
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1 

0 
2,227,161,945 
4.454.323.890 

0 1 121502850B020664 I 
1.366.287.307 I E43D6EF9361DDB4A I end of leader 

21 Note , 
0123456789ABCDEF start of cycle 
664B672D3DBC73AB 0.. .O fixed point 
293FD4F2C13DD94F “hidden crossin&’ 

, , ,  

tt 1.366.287.308 1 7SCBC23C21EA50DA I start of cycle n 

i 

. , .  , 
5,581,675,814 I FDBElECDF38BF3E5 I end of cycle 

I 5,555.675,815 1 75C6C23C21EA50DA 1 resrarr of cycle - - _. _. - - - ..- 

2, Xote  

Table 8: Purity experiments with pseudo-random next key function. Cycle length 
4,218,388,507 w 2”; leader length 1,366,287,308 a Z3’. Key R = 4D3FDOFED9A4FA9B. 

I , , ,  - 
6,890,012,565 I 3CC5B06ADEFD3CAO 1 . .  . 1  Bxed point 
7,325,701,239 i 012345678QABCDEF restarc of cyc!e , 

Table 9: Small subgroup experiment using weak keys. Cycle length 7,325,701,239~ 233; leader 
length 0. 

Table 10: Orbit experiment. No cycle detected in 236 steps. Key ,& = 116EOB8275AEC431. 


