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Abstract 

We i n v e s t i g a t e  the p rob lem of f i n d i n g  a 
homeomorphlc image of a "pattern" graph H in a larger input 
graph (3. We view this problem as finding specified sets of edge 
disjoint or node disjoint paths in (3. Our main result is a linear 
time a lgor i thm to determine if there exists a simple cycle 
containing three given nodes in (3; here H is a triangle, i'4o 
polynomial time algorithm for this problem was previously 
known. We also discuss a variety of reductions between related 
versions of this problem and a number of open problems. 

I. Introduction 

The subgraph homeomorphism problem (SHP) is to 
find a horneomorphic image of a "pattern" graph H in an input 
graph (3. The images of certain nodes of H, which are nodes of 
(3, may be specified a priori and the images of the edges of H, 
which are paths in (3, may be required to be node-disJoint or 
edge-disJoint. Graphs G and H are either both directed or both 
undirected. Examples are finding a Kuratowski subgraph (K 5 or 
K3, 3) in a non-planar graph, finding certain kinds of network 
flows, f ind ing  Hamil tonian cycles, f inding a simple cycle 
containing given nodes of (3, and finding a.set of disjoint paths 
connect ing certain nodes of C3. Subgraph homeornorphism 
problems also arise in the study of programming schema, since 
many schema properties are characterized by the presence or 
teachability of certain substructures [Hunt]. 

We summarize our research on the SHP as follows. 
We observe that the SHP is b/P-complete if both H and (3 are 
given as input; this follows from the Harnilitonian circuit 
problem for node-disjoint SHPs and from the multi-commodity 
integral network flow problem for edge-disjoint SHPs. We 
therefore consider the various SHPs derived by fixing H. The 
main open question for such SHPs is, "For every pattern graph 
H, is there a polynomial time algorithm which, given an input 
graph (3, will determine whether there is a homeomorhpic image 
of I-I occurring in (3?" We can neither find a fixed H whose SHP 
is NP-¢ornplete nor demonstrate that every H has a polynomial- 
t ime algorithm for its SHP. We therefore concentrate on the 
p rob lem of d e t e r m i n i n g  which pat tern  g raphs  H have  
polynomial-time algorithms. These problems turn out to be 
surprisingly difficult, even for very simple graphs H. 

'~ This research was supported in part by NSF grant MC76-14294. 

The main result of this paper is a l inear- t ime 
a lgor i thm which determines if there exists a simple cycle 
containing three given points of an undirected input graph (3. 
This problem is an instance of the SHP where the pattern graph 
is a cy,:le of length three (a triangle). Although thisproblem has 
a simple pattern graph, no polynomial time algorithm was 
previously known. A linear time algorithm for another SHP with 
simple pattern graph-- the two disjoint paths problem for 
undirected graphs--was recently found by ¥. Shiloach. A third 
such problem--finding a cycle in a directed graph containing two 
given nodes--is still an open problem. 

In Section II, we present definitions and a general 
discussion of the subgraph homeornorphisrn problem. In 
Section IlI we briefly sketch some reductions relating various 
versions of the SHP and in Section IV we present the linear time 
algoritlhrn for the triangle problem. Section V is dedicated to a 
discussion of open problems and other work in the area. 

II. Ba,:kground 

We assume the reader is familar with standard graph 
and network flow concepts [Ah][Hu]. Let H and (3 be two 
graphs,  b o t h  directed or both undirected. A subgraph  
homeomorphism is formally defined as a pair of one-to-one 
mappings, (v,a), the first from nodes of H to nodes of (3; the 
second from edges of H to simple paths of (3. We require that a 
path in (3 which corresponds to edge (x,y) in H go from v(x) in (3 
to v(y) in (3. The graph H is called the pattern graph. If the 
image of the edges of H is a set of paths which are node disjoint 
up to endpoints ,  the horneornorphism is a node dis joint  
homeom0rphisrn. We say that H is node disjoint horneomorphic 
to a subgraph of (3, denoted H <N (3. If the set of paths is edge 
disjoint, then H is edge disjoint horneornorphic to a subgraph of 
(3, denoted H <E G. 

We should .note here that  an a l t e rna te ,  bu t  
equivalent, definition of node disjoint homeomorphism has been 
used hJistorically. In the alternate definition, H -<N (3 if nodes can 
be inserted along the edges of H to yield a new graph H' which is 
isomorphic to a subgraph of (3 [Ha 1973]. We prefer our  
definition since defining a homeomorphism in terms of paths of 
(3 allows one to conceptualize the subgraph horneomorphism 
problem in terms of .finding paths in G and to readily use the 
body of path-finding algorithms already in the literature. 

The most general  subgraph  horneomorhp i sm 
problem--given as input graphs (3 and H, is H homeornorphic to 
a subgraph of G?--is hip complete for both node disjoint and 
edge d~isjoint homeomorphisms, and both directed and undirected 
graphs. For node disjoint homeomorphisms, this follows from the 
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Hami l ton ian Circuit problem. Given the question, "Does G 
contain a Hamil tonian circuit?" we construct H such that the 
number of nodes in H is the same as the number of nodes in G, 
and the edges of H connect the nodes in a cycle, We then ask, "Is 
H homeomorphic to a subgraph of G?" This will be the case i f  
and only i f  G contains a Hamiltonian circuit. 

For edge disjoint homeomorphism, we use the result 
of Even, ltai, and Shamir that the two commodity integral 
network flow problem for unit edge capacities is NP-complete 
[Ev 1976]. Suppose we are given a directed network, N, with 
sources s I and s 2, sinks t I and t 2, and all edge capacities equal to 
one. W e s h o w  how to reduce the quest ion, "Are there 
simultaneous integral flowsfrom s i to t I and s 2 to t 2 of values k I 
and k 2, respectively?" to an edge disjoint SHP for directed 
graphs. The question is equivalent to asking whether there is a 
set of k I + k 2 edge disjoint paths in N such that k i go from s ! !o t l 

and k 2 go from s 2 to t 2. Divide each edge o~t of s i or s 2 into two 
edges by inserting one new node on each edge. Now each edge 
disjoint path from s I or s 2 must have a distinct second node. We 
can model the k I + k 2 edge disjoint paths by a pattern graph, H, 

which has two source nodes, c I and c 2, two terminal nodes, d I and 

d2, k I distinct length two paths from c I to d 1, and k 2 distinct 
length two paths from c 2 to d 2. The paths from c 2 to d 2 are node 
disjoint from the paths from c I to d I. I f  we can modify the present 

network, producing a network N', to Insure that c ! maps to s I, c 2 

maps to s 2, d i maps to tl, and d 2 maps to t 2, then H is edge 
disjoint homeomorphic to a subgraph of N' i f  and only i f  the 
desired flow exists in the original network, N. Let the original 
network have n nodes. T o  insure the desired node mapping, we 
add 4n new nodes to each of H and N' and edges from each of 
these new nodes to c I and s i, respectively. Similarly, we connect 

3n additional new nodes to c 2 and s 2, 2n additional new nodes to 

d I and t !, and n additional new nodes to d 2 and t 2. Node c I must 
map to s I, since s I is the only node in N' with indegree at least 4n. 

(Self-loops are not counted.) Node c 2 must map to s 2, since s I and 
s 2 are the only nodes in N' with indegree at least 3n and s I 

corresdponds to c I. Continuing this reasoning, d I must map to t I 
and d 2 must map to t 2. We have found a pattern graph, H, with 
10n + 4 + k ! . k 2 nodes and a modification of network N, N', such 
that H s E N' i f  and only i f  there are integral flows of two 

commodities in N with values k ! and k 2. 
Given the above NP-completeness results, we focus 

on the solution of problems where the pattern graph H is fixed. 
A graph G and possibly, a partial or tot~al specification of the 
mapping from nodes of H to nodes of G are given as input. An 
example of a node disjoint homeomorphism problem is given in 
Figure !. An algorithm to solve such a problem may depend on 
the pattern graph and the subset of nodes of the pattern graph 
on which the node mapping will be specified. We measure the 
time required by an algorithm to solve the proble m on input G as 
a function of the size of G, I.e. the number of nodes in G plus the 
number of edges in G. 

The variety of properties characterized by subgraph 
homeomorphisms and the appl icat ions of these propert ies 
motivate our interest in efficient algorithms for solving the SHP 
for f ixed pattern graphs. Ultimately, we would like to know i f  all 
subgraph homeomorphism problems with fixed pattern graphs 
can be solved in time polynomial in the size of the input graph. 
This question was in fact proposed by Hunt et. al. In relaUon to 
programming schema and their substructures [Hunt].  The  
question appears to be quite diffficult. We have concentrated 

on two research areas in the hope of learning more about the 
answer: 

i) Methods of reducing one SHP to another. 
i) The solution of the SHP for particular pattern 
g r a p h s ,  p a r t i c u l a r l y  f o r  n o d e  d i s j o i n t  
homeomorphism (since edge disjoint homeomorphism 
p r o b t e m s  are r e d u c i b l e  to node  d i s j o i n t  
homeomorphism problems as discussed in the next 
section.) 
Our polynomial time algorithm for finding a cycle 

containing three given nodes of a graph is our contribution to the 
second line of research above. Other contributions are discussed 
in Section Y. 

Ill. Reductions 

The reductions which we wil l  present are of two 
types: those which relate edge disjoint SHP's to node disjoint 
SHP's and those which reduce a node dis jo int  SHP for a 
part icular pattern graph to a node disjoint SHP for another 
pattern graph. Each reduction takes a pattern graph, H, an input 
graph G, and a partial specification of the node mapping. It 
pl'oduces a pattern graph, H', and a set ofgraphs,  G', with 
corresponding partial specifications of the node mapping. The 
pattern graph H is homeomomphic to a subgraph of G i f  and 
only i f  H'  is homeomorphic to a subgraph of one of the graphs in 
the set G'. The construction of H' depends only on H and is 
independent of G. All constructions will take at most polynomial 
time in the sizes of H and G. Finally, the number of graphs in 
the set G' is at most polynomial in the size of G. Note that the 
reductions we are using correspond to the notion of Tu r i ng  
reducibi l i ty [Rog]. Given an instance of the SHP for pattern 
graph H, we may not be able to find just one instance of the SHP 
for pattern graph H' whose solution corresponds to the solution of 
the first SHP. However, we can use a give n procedure to solve 
the SHP for pattern graph H' as a subroutine, to solve the SHP 
for each graph in G', and thereby determine whether a 
homeomorphic itnage of H exists in G. 

To  simplify the statement of reduction results, we use 
the term fixed SHP when the node mapping is known a priori. 

I l l . I  Edge  Dis jo in t  Homeomorphism versus  Node D i s j o i n t  
Hom, eomorphism 

Within the reductions which relate node disjoint 
homeomorphism to edge disjoint homeomorphism, we have the 
following lemmas: 

Lemma I: Any fixed node disjoint SHP for directed 
graphs is reducible to a fixed edge disjoint SHP for directed 
graphs. 

Proofi The construction used is analogous to that for 
changing vertex capacities to edge capacities in network flow 
problems [Ta 19"/4]. Suppose we have a pattern graph, H, and a 
input graph, G. The reduction is accomplished by replacing each 
node, x, in G by two nodes, HEAD(x) and TAIL(x). A directed 
edge is added from HEAD(x) to TAIL(x). All edges of G Into x 
become edges into HEAD(x), and all edges of G out of x become 
edges out of TAIL(x). We now have a new directed graph, G'. 
A new pattern graph, H', is constructed analagously. If, in the 
original problem, node h of H w a s  mapped to node g of G, then 
the node HEAD(h) of H' maps to HEAD(g) of G', and TAIL(h)  
maps to TAIL(g). A straightforward argument left to the reader 
proves H <N G i f  and only i f  H' <E G'. 
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Figure i: Example of a node disjoint SHP 
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v(3) = c 
(1,3) -- <(b,c)> 
(3,2) -- <(c,d) , (d,e)> mapping of 
(2,1) -- <(e,a), (a,b)> edges in H 

v(3) = d 
(1,3) -- <(b,c) , (c,d)> 
(3,2) -- <(d,e)> 
(2,].) -- <(e,f),(f,b)> 

In this example, the node mapping, v, is partially specified. 

~ indicates a node whose image or inverse image under v is known. 

mapping of 
edges in H 
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Lemma 2: Any edge d is jo in t  S H P  for d i r ec ted  
(undirected)  graphs  is reducible to a node disjoint  S H P  for 
directed (undirected) graphs. 

Proof: The  reduction replaces each node in the input 
graph, G, by a "switch". Let the nodes on a path other than the 
endpoints  of the path be called interior nodes. Edge dis joint  
paths i.n G containing the same interior node pass through node 
disjoint pathswithin the switch corresponding to that node. 

When  a f ixed  S H P  is b e i n g  c o n s i d e r e d ,  no  
modification to the pattern graph is necessary. The  input graph 
is modif ied using switches as follows. In undirected graphs ,  
switches are cliques the size of the degree of the corresponding 
node. In directed graphs, switches are bipartite graphs with one 
set of nodes the size of the indegree of the corresponding node 
and o n e  set o f  nodes  the  size of  the  o u t d e g r e e  of  t h e  
corresponding node. All possible edges from nodes of  the 
indegree  set to nodes of the outdegree set are present in the 
switch. Each edge to a node, x, in the original input graph now 
goes to a distinct node in the switch for x. In the directed case, 
edges into x be~;ome edges into a node of the indegree set and 
edges out of x become edges out of a node of the outdegree set. If  
node x of the input  graph corresponds to a node, bx, in the 

pattern graph, then there is a distinct node, x ' ,  in the modified 
input  g raph  in addit ion t 9 the switch for x. In the new node 
mapping, h x maps to x'. In addition to the edges between nodes 

of the switch for x, there is an edge connecting node x' to each 
node in this switch. In the directed case, these edges are directed 
from nodes of the indegree set and to nodes of the outdegree set. 

When the subgraph homeomorphism problem is not 
fixed, more care need be taken so that we will not create an 
instance of the pattern graph within a switch. Therefore ,  the 
switches are required to have nodes of fixed small degree while 
the "original"  nodes of both the pattern graph and the input  
g raph  are guaranteed to have larger degree by adding  extra 
adjacent nodes. Suppose we have a directed edge disjoint SHP. 
Consider a node y of the input graph, G. Let y have indegree 
INy and outdegree OUTy.  To  create the switch for y, insert 

OUT.y nodes "close to" y on each edge into y and INy nodes 

"close to" y on each edge out of y. Each original edge into y is 
connected to all original edges out of y by adding an edge from 
each inserted node on the incoming edge to  an inserted node on 
an outgoing  edge. Each inserted node is used for exactly one 
interconnection. Therefore, nodes inserted on incoming edges 
h a v e  i n d e g r e e  one and ou tdegree  two; nodes inser ted  on 
outgoing edges have indegree two and outdegree one. Each edge, 
(u,t), in G has become a path from u, through the IN u nodes 

inserted near u followed by the O U T  t nodes inserted near t, to t. 

A path in the original  graph, G, which uses a node y as an 
interior node can bypass y in the modified input graph by using 
an interconnecting edge in the switch for y. To insure that nodes 
of the pattern graph d o  not map to inserted nodes of the new 
input graph, we do the following: For each node of the pattern 
graph and each node of the original input graph we add three 
nodes to the pattern graph and the new input graph, respectively. 
A new edge is directed to ea~:h new node from the node for which 
it was added. In the resulting pattern graph, all original nodes 
have outdegree at least three. In the resulting input graph, all 
nodes  which  were nodes in the o r ig ina l  inpu t  g r a p h  h a v e  
outdegree at least three. All inserted nodes still have outdegree 
one or two, and, therefore, cannot correspond to nodes of  the  
original pattern graph. 

Given an undirected edge disjoint SHP, we construct 
the new pattern graph and input graph in the same manner as 

above. We insert d x - I  nodes on each edge to a nodex  of  G, 

where d x is the degree of x, and make the interconnections. Each 

inserted node will have degree three. Therefore, we add four new 
nodes and edges for each node of the pattern graph and each 
node of  the or iginal  input graph to insure that nodes of the 
original pattern graph map to nodes of the original input graph. 
Figure 2 illustrates the construction used for und|rected graphs. 

I I I . 2  R e d u c t i o n s  a m o n g  N o d e  D i s j o i n t  S u b g r a p h  
Homeomorphism Problems 

Since we are not measuring the time taken by an 
algorithm as 'a function of the size of the pattern graph, we can 
solve any SHP for a particular pattern graph in polynomial time 
if we can solve  the f ixed $ H P  for the pa t te rn  g r a p h  in 
polynomial time. This is accomplished by solving the fixed S l i P  
for each node mapping consistent with any previously g iven  
partial specification of the mapping. This technique results in an 
a lgor i thm which is polynomial in the size of the input  graph ,  
where the order of this polynomial may be the size of the vertex 
set of the pattern graph. This reduction is not very appealing for 
two reasons. First, the exponent may be large. Second, the 
reduction yields no simplification of the pattern graph itself. On  
the other hand, the two reductions discussed below do simplify 
the pattern graph but can only be used when certain subgraphs 
exist within the pattern graph. The  reductions are presented in 
terms of  directed graphs,  but completely analogous reductions 
exist for the undirected case. 

Reduction I: The  first reduction is applicable when H 
contains, a path of length k>l from one node, called the tail node 
of the  pa th ,  to ano the r  node, called the head node.  T h e  
correspo0dence between the tail and head nodes in H and nodes 
of the input graph, G, must be known. Also, all interior nodes on 
this path must have indegree one and outdegree one, and their 
correspondence to nodes in G must be unspecified. Number the 
interior nodes of the path in H from I through k-i, beginning at 
the tail node. We delete the first k-2 interior nodes on the path 
in H, producing a new pattern graph H'. In G, we find all k-I 
length paths such that (i) the tail node of each path corresponds 
to the tail node in H, and (ii) the tail node of each path is the 
only node on the path which is known to correspond to a node in 
H. For each such path, we delete the k-2 interior nodeg from G 

and make the head node correspond to the k-I st interior node on 
the path in H. Then H <-N G if and only if there is a graph, G', 

derived from G by the above method, such that H'  -<N G'. Since 

k is a constant with respect to the size of G, the path enumeration 
can be done in time polynomial in the size of G. The  reduction 
for each path takes only constant time. Figure 3 illustrates the 
reduction for a particular path in G. 

Reduction 2:. The second reduction is appl icable 
when H contains a node, called a parent node, which is adjacent 
to k>0 nodes, called leaf nodes. The leaf nodes must have no 
other nodes adjacent to them. The correspondence of the parent 
node to a node in the input graph, G, must be known, and the 
correspondence of the leaf nodes to nodes in G must be unknown. 
Then, in G, we may assume that the nodes corresponding to leaf 
nodes.are adjacent-to the node corresponding to the parent node 
by edges of the appropriate direction. For each possible image set 
in G of the leaf nodes in H, we delete the leaf nodes in H and the 
image set in G to produce two new graphs, H' and O'. I f  for any 
such H'  and G', H'  -<N G', then H -<N G. Figure 4 illustrates the 
reduction. 
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Figure 2: Construction for Lemma 2 

in H: 

X 

in H': 

new nodes 

in G: 

\ 
¢ 

du=2 t =3 

in G': 

new new 
nodes r~.uu ~' , - I ~ ~ nodes 
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G' and H' are the graphs produced by the reduction. 

Figure 3: Illustration of Reduction 1 
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Flour e 4: Illustration of Reduction 2 
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indicates a node whose image or inverse image under the node mapping, v, 
is known. 

The two special purpose reductions just presented are 
only useful i f  we know how to solve the SHP for the resulting 
pattern graph, H'. Dinic's algorithm for single commodity 
network flow problems [Di] provides polynomial time algorithms 
for some SHP's, for example: any fixed SHP when the pattern 
graph is a tree of depth one (directed or undirected). However, 
for fixed SHp's, such simple pattern graphs as a cycle o f  length 
three or two disjoint edges do not lend themselves to single 
commodity network flow formulation. In the next section, we 
outline a linear time algorithm to solve the fixed SHP when the 
pattern graph is an undirected cycle of length three. 

IV. A Linear Time Al~;orithm for the Triangle Problem 

We now present a linear time algorithm for the 
fo l lowing problem: given an undirected graph, G, and three 
nodes of G, determine whether the three nodes lie on a common 

simple cycle, and construct that cycle if  it exists. We attack the 
problem by  breaking (3 into components and looking fo r  paths 
which must exist in these components i f  the cycle is to exist in G. 
We build up sets of node disjoint paths known to be in G unti l 
we can piece together the desired cycle from these paths or declare 
that the cycle does not exist. The algorithm is rather lengthy and 
involves mu~:h case analysis. Some details have been omitted due 
to space and readibi l i ty considerations. The algori thm was 
originally presented in [Lap], where all details can be found. 

Let the three specified nodes of the graph'G be A, 13, 
and C. We assume that G is biconnected since A, B, and C must 
be in the same bic0nnected component i f  they lie On the same 
cycle. We also assume that none of the edges (A,B), (A,C), or 
(C,13) are in G. I f  one of them, say (A,C), is in G, the problem is 
reduced to finding a path from A to C which contains 13. This 

can be done in l inear time as a unit vertex and edge capacity 
single commodity network flow problem with source B and 
sinks A and C. 

I f  G contains three node disjoint paths, each with A 
as one endpoint and one of 13 or C as the other endpoint (with 
renaming of the nodes i f  necessary), then a cycle can be 
constructed by piecing together parts of these paths with parts of 
other paths which must exist by the biconnectivity of G. Three 
such node disjoint paths can be found by merging nodes 13 and C 
in G into one node, denoted BC, and applying Dinic's network 
flow algorithm to the resulting graph with source 13C and sink A. 
When B and C are merged, each edge to/from 13 or C becomes 
an edge to/from BC. (Duplicate edges are removed.) 

It" G contains three node disjoint paths, each with A 
as one endpoint and one of 13 or C as the other endpoint, we can 
always find three node disjoint paths from A such that two have 
13 as the .other endpoint and one has C as the other endpoint (?r 
vitae versa). To see this, suppose we have three node disjoint / 
paths from A to 13. There must be a path, R, from C to A which 
does not contain ]3, by the blconnectivity of G. Some in i t ia l  
portion of this path, R[C,z], is node disjoint from the three paths 
between A a.nc~ B except at z. (The notation "p[u,t]" denotes the 
port ion of a path p from node'u to node t.) Using this in i t ia l  
portion and the portion of the path it intersects from z to A gives 
a path from A t o  C which is node dis joint  from the two 
remaining paths between A and 13. 

Now assume that two of the paths found have 13 as 
one endpoint and one has C as an endpotnt (or vice versa). Call 
these paths PI' P2' and P3 respectively. Since O is biconnected, 
we can find two node disjoint paths from 13 to C. Call these paths 
04 and  0.2. Define x I to be the closest node to C on Qi[C,13] 
which Is also on PI[A,B] or P2[A,13]. Define x 2 on O~ similarly. 
Both x I and x 2 may equal 13, but at most one equals A, since 04 
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and  0--2 are  node disjoint .  Let y be the closest node  to A on 

P3[A,C] which is also on Ql[C,Xl] or Q2[C,x2]. Since x I (or x2) is 

on P3 only if x I = A (or x 2 = A), and y is on P$, y can equal one 

of x I or  x 2 only if  y is equal to A. Wi thou t  loss of genera l i ty ,  

assume y is on QI- Then  y cannot equal x 2. If x 2 is on P2'  the 

pa th  composed of subpaths  PI[A,B], P2[B,x2] , O~[x2,C] , QI[C,y], 

and  P3[Y,A], in that  order, is a simple cycle containing A, B, and  

C. If  x 2 is on Pl'  subpaths  P2[A,B] and PI[B,x 2] are used instead 

of PI[A,B] and P2[B,x2]. 
If G does not contain three node disjoint paths from 

A to B and  C, then we do the following: 

Step I.: We find a node cutset of size two which  
separates A from B and C and such that this cutset cannot be 
separated from B and C by removing any other two nodes of G. 
If  this  cutset also separates B from C, there is no cycle containing 
A, B, and  C, and we are done. 

T h e  required cutset can be found using information 
provided  by Dinic's network flow algorithm. Given a flow from a 
source node, s, to a terminal node, t, Dinic's algorithm proceeds by 
f ind ing  an augment ing path along which flow can be increased 
while mainta in ing  the edge and node capacity restrictions on  the 
flow. For networks with unit  edge and node capacities, as in our  
application,  the augmenting path can use edges not used by the 
p resen t  flow, and  edges used by the present  flow but  in the  
opposite direction to the flow. The  augmenting path will contain 
an  in t e r io r  node. on a pa th  of present  flow only if at  least one  
edge incident on that  node in the augmenting path is used by a 
path  of present flow in the opposite direction. Upon termination 
of the algorithm, there are no augmenting paths to t. However, 
we know to which nodes there remain augmenting paths from s. 

For our application, A is the terminal node, and  B 
and  C are merged into one source node, BC. If we are executing 
Step I, we can find exactly two node disjoint paths from A to B or 
C, corresponding to a flow of 2 from BC to A. Call the paths  of 
flow from BC to A, PI and P2. Suppose the set of nodes to which 
there  are augment ing paths from source BC upon termination of 
Dinic ' s  a l g o r i t h m  includes a node on PI. Let AI be the  closest 
such node to A on PL Otherwise, let AI be the node adjacent to 
B C  on Pi. Define A2 on P2 similarly. T he  set {AI,A2} is a outset 
separa t ing  A from B and C in G. This  can be seen by noting that  
any  p a t h  f rom A to B or C which does not conta in  AI or A2 
would  d e f i n e  an  a u g m e n t i n g  p a t h  f rom BC to some n o d e  
(possibly A) closer to A on PI than AI or closer to A on P2 than  
A2. 

Suppose there are two nodes different from AI, A2, B 
and  C which separate AI and A2 from B and C in G. T h e n  one 
of these  nodes  must  appea r  on PI[BC,AI] and  the  o the r  mus t  
appea r  on P2[BC,A2]. However, either AI is adjac;ent to BC, or, 
g i v e n  f lows a l o n g  P i [BC,AI ]  and  P2[BC,A2] ,  t h e r e  is a n  
augment ing  path to AI. This  augmenting path increases the flow 
into Al while leaving the flow to A2 unchanged. T h e  new flow 
corresponds to three node disjoint paths in G--two from B or C to 
AI, and  one from B or C to A2. Thus,  two nodes cannot separate 
B and  C from AI and A2. 

Step 2: We now consider only that component K of G 
w.hich contains B and C when nodes AI and A2 are removed. (If 
B and  C are not in one component, the cycle does not exist.) We  
h a v e  a path  in G from AI to A2 containing A which lies outside 
K, T o  complete the cycle, we would like to find a path from AI to 
A2 conta ining g and C in either order whose interior nodes are 
in the component  K. If both of edges (AI,B) and (A2,C) or both  

of edges (AI,C) and (A2,B) are in G, we are done. Any path from 
B to C in component K will complete the desired cycle. 

If nei ther  of the above pairs of edges is in G, we test 
if B and  C are biconnected in K. If B and C are not biconnected 
in K, we can determine if a path from AI to A2 containing B and  
C exists. Let x be a node separating B and C in K. (Remember 
t h a t  edge (B,C) doesn ' t  exist.) Removing  x separates  K in to  
components.  Let K B denote the component containing B and  

K C denote the component containing C. Any path from AI to A2 

conta in ing B and C must consist of a path from AI (or A2) to x 
conta in ing B whose interior nodes are all in K B, and a path  from 

A2 (respectively AI) to x containing C whose interior nodes are all 
in K C. T h e  existence of these pa ths  is easily de t e rmined  by 

solving appropr ia te  network flow problems. 
If B and C are biconnected in K, we continue. 

Step 3: To  component  K, we add  AI, A2, a n d  all  
edges of G which go from AI or A2 to nodes of K. Cal l  t he  
result ing subgraph  of G, K'. Due to our choice of AI and A2 as 
the "nearest" cutset of size two to B and C, there are two cases for 
each of AI and A2. The  cases for AI are: 

(a) There  are three node disjoint paths in the new 
graph,  K', such that  two of the paths have AI as one endpoin t  
a n d  e i t h e r  B or C as the  o t h e r  e n d p o i n t .  T h e  t h i r d  p a t h  
connects A2 with one of B and C. 

(b) T h e  only possible paths from AI to B or C which 
do not contain A2 are edges (AI,B) and (AI,C). At least one of 
these edges is an edge of K'. 

Cases (a) and (b) are not mutually exclusive, but  if (a) 
does riot hold,  (b) must  hold. T h e  cases for A2 a.re a n a l o g o u s  
with the roles of AI and A2 interchanged. If it is not the case 
tha t  (a) holds for both AI and A2, we can reduce the problem of 
f ind ing  a path from AI to A2 containing B and C to at most two 
instances of a problem of the form: "Is there a path in K '  from 
A2 to B containing C but not Al?" (This is the question used if 
(AI,B) exists; B and C are interchanged for the second question if 
(AI,C) exists. Obviously, i r n e i t h e r  path exists, the cycle doesn't  
exist  e i ther . )  If the  new g r a p h  does contain bo th  sets of node  
disjoint  paths, i.e. (a) holds for both Ai and A2, we continue. 

Step 4: The  new graph, K', may not be biconnected, 
regardless of whether  or not the component K from which it was 
constructed is biconnected. 

Claim: If  K '  is not biconnected,  B and  C are  the  
only possible articulation points. 

Proof :  O b s e r v e  t h a t  (i) AI a n d  A2 c a n n o t  be  
art iculat ion points of K', since K'  was formed by adding AI and  
A2 to a component  of G resulting from the removal of AI and A2. 
(ii) Any articulation point of K' must separate AI from A2 in K'. 
Otherwise,  the articulation point is also an articulation point  of 
G, but  G is biconnected. (iii) There  are two node disjoint pa ths  
in K '  from B to C which contain neither AI nor A2. (iv) T h e r e  
are two node disjoint paths in K'  from A| to B or C. (v) T h e r e  
are two node disjoint paths in K' from A2 to B or C. 

Given observations (iii)-(v) above, we can construct a 
path  in K'  from AI to A2 which does not contain node x, where x 
is any node in K'  other than Al, A2, B and C. The  details of the 
construction are left to the reader and are available in [Lap]. 

If K'  is not biconnected, it is simple to split K '  into its 
biconnected components and determine if the required subpa ths  
of a p a t h  f rom AI to A2 c o n t a i n i n g  B a n d  C ex is t  in t h e  
appropr ia te  components. If K'  is biconnected, we continue. 
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Step 5: All sets of three node disjoint paths satisfying 
Case  (a)  of  S tep  3 mus t  h a v e  S t r u c t u r e  I, S t r u c t u r e  2, or  
S t ruc tu r e  3, as shown in Figure  5. Since K '  is b i c o n , e c t e d ,  
S t ruc tu re  3 can be reduced to Structure  i or S t ruc ture  2 by a 
method similar to that  used on the original graph, G. to reduce 
three  node disjoint paths from A to B to three node disjoint paths  
with two from A to B and  one from A to C. If S t ruc tu re  I is 
found for either AI or A2, we can piece together the desired path  
from AI to A2 containing B and (3 using the three disjoint paths  
of S t r u c t u r e  I a n d  o t h e r  p a t h s  known to exis t  in K'.  T h e  
technique used is essentially the same as that  used when there are 
three node disjoint paths from A to B or C in the original graph,  
O. If  only S t ruc tu re  2 is found for each of Al and  A2, we 
cont inue .  Note tha t  we now have  two sets of node  d i s jo in t  
pa ths  --one of Structure 2 for AI and one of Structure 2 for A2. 

Figure 5: Possible structures for Step 5 

Structure 1 

t ~ 

, 

B C 

Structure 2 Structure 3 

A1 

I 

l 
B 

A2 

\ ,q 
C 
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B C 

Structures shown are for AI. B and C 
are interchangeable. Structures for A2 
are obtained by interchanging A1 and A2. 

Step B: We determine if there are three node disjoint  
pa ths  in K', each with AI or B as one endpoint  and A2 or C as 
the other  endpoint,  or each with A2 or B as one endpoint  and  AI 
or C as the other. If neither set of node disjoint paths exists, then 
the  desired path from Ai to A2 containing B and C cannot  exist 
since the  s u b p a t h s  of this  pa th  would be one such set of  node  
disjoint paths. Again, we can use Dlnic's network flow algorithm 
to test i f  three such paths exist. 

I f  we find any such set of three node disjoint paths, 
the desired path from AI to A2 containing B and C is guaranteed 
to exist. We use the sets of node disjoint paths found so far to 
construct the desired path. In the following discussion, we assume 
that there are three node disjoint paths each with AI or B as one 
endpo in t  and A2 or (3 as the other endpoint.  A para l le l  
argument deals with the case when the three node disjoint paths 
instead go from AI or (3 to A2 or B. 

C o n s i d e r  the  two d i s jo in t  p a t h s  f rom B to C 
conta ining nei ther  AI nor A2 which are guaranteed to exist by 
Step 2. Since there are three node disjoint paths from AI or B to 
A2 or C, there  is at  least one augment ing  path  in a ne twork  
cons t ruc ted  from K'  with flow cor responding  to the  two node  
disjoint  paths between B and C. This  augmenting path results in 
th ree  node  d is jo in t  paths ,  each from A! or B to A2 or C. In 
addit ion,  we now have that  at least two of the paths must have  .B 
as an  e n d p o i n t  and  at least two must have  C as an endpo in t ,  
since a.ugmenting paths can only increase the flow into or out of  
endpoints  of flow. The  possible configurations of these paths are 
shown in Figure 6. Cases 4 and 5 require no fu r the r  discussion. 
Cases 2 and 3 can be reduce to Case ! or Case 5 by recalling that  
K '  is biconnected and using the same technique used when we 
had  three node disjoint paths from A to B. We now deal with 
Case I. 

Let us review the sets of node disjoint paths at our 
disposal. We have: (i) By (3ase I above, three node d is jo in t  
paths -- one from AI to A2 and two from B to (3, (ii) By Step 5, 
three node disjoint paths --one from Ai to B, one from. AI to C, 
and one from A2 to B or C, ( i i i )  Again by Step 5, three node 
disjoint paths -- one from A2 to E, one from A2 to C, and one 
from Ai to B or C. 

Denote the paths of (ii) above collectively by 0~. For 
each path Of (ii) above, there is some ini t ial  portion, Q.[AI,ql], 
Q[AI,q2], or O,[A2,q~], respectively, which is node disjoint from 

the disjoint paths from B' to C except at endpoint qi' q2' or q3" 

Figure 6: Configurations of node disjoint paths for Step 6 

Case i 

A; 

Case 2 Case 3 Case 4 

reduces to i reduces to 1 eliminated 
or 5 or 5 previously 

Case 5 

B 

desired path 
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Some final por!ion, Q[pk,qk ], of each of these subpaths is also 

node disjoint from the path from AI to A2 except at Pk' k-I, 2, or 

3. All configurations of the Pk'S and qk's on the paths of (i) except 

the configuration shown in Figure 7a yield a path from AI to A2 
conta in ing B and C. Figure 7b i l lustrates one successful 
configuration. I f  we have the configuration shown in Figure 7a, 
a similar ana!ysls is done for the path~i of (tii). The subpaths of 
the paths of (ii i) analogous to Q.[pk,qk ], k~ I, 2, and 3, are denoted 

R[Sk,rk]. We take into account the ways in which the R[SkX k] 
can intersect OjAl,qi] and O,[Al,q2] already found. I f  we have not 
found a path from AI to A2 containingB and C after processing 
the paths of (iii), we must have the configuration of paths shown 
in Figure 8. 

Our construction Of K'  insures that edge (AI,A2) is 
not in K'. Therefore the path from AI to A2 in (i) above is of 
length at least two. Let x be any interior node on the path from 
Ai to s~2. Node x is also in component K from which K '  was 
constructed. Therefore, there is a path from x to B which 
contains neither AI nor A2. Call th'is path, P. Let y be the closest 
node to x on P which ts also on the node disjoint paths from B to 
C, O,.[AI,ql], Q.[AI,q2], R[A2,rl], or R[A2,r2]. Let z be the. closest 
node to y on P[x,y] which is also on the path from Ai to A2. Note 
that z does not equal Ai or A2. All possible positions for z and y 
yield a path from Ai to A2 which contain~ B and C, as can be 
verified by examining Figure 9. 

The algorithm presented above relies heavily, on J. 
Hopcroft's linear time algorithm to find blconnected components 
[Ah][ILlo 1973a][Ta 1972] and Dinic's algorithm for one-commodity 
network flow [Di]. We never need to find more that a flow of 
three using Dinic's algorithm (corresponding to a set of three 
node dis,joint paths). Therefore, our use of the algorithm requires 
only l inear time. (R.E. Tar.lan and S. Even have provided a 
careful analysis of this algorithm from which we make this 
conclusion [Ev 1975] [Ta 1974].) Each step of the algor i thm 
presented above can be done in linear time and is executed at 

Figure 7: Merging sets of paths 
in Step 6 
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Figure 8: Last configuration of paths 
before completion of Step 6 
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Figure 9: Positions for node y of 
Step 6--all yield desired 
path 
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most once. Therefore, the algorithm is of linear time. A more 
detailed discussion of the t iming-of the algorithm, including 
necessary bookkeeping, can be found in [Lap]. 

V. Conclusion and Further Problems 

We have presented above a general description of 
the SHP and some methods of reducing one SHP to another in 
polynomial time. We have also presented a linear time algorithm 
to determine i f  three given nodes of an undirected graph lie on a 
common simple cycle. This problem and the two disjoint paths 
problem--given two pairs of nodes of an undirected graph, are 
there two node disjoint paths in the graph with each pair of  
nodes serving as the endpoints of one of the paths?--are basic 
problems fo r  al l  f ixed SHP's for. undirected graphs. Any 
undirected graph which has at least two edges and is not a tree of 
depth one wil l  contain a cycle of length three or two disjoint 
edges. Thus, the fixed SHP for any undirected pattern graph 
with more than two edges will contain one of the above problems 
as a subproblem unless it is a tree of depth one. 

Contributions to the solution of the two disjoint paths 
problem are found in several places. Larman and Mani [Lar] 
and Watkins [Wa] address the question: "What properties of an 
undirected graph guarantee the existence of two node disjoint 
paths between any two pairs of nodes In the graph?" Yossi 
Shiloach now claims to have solved the two disjoint paths 
problem for any undirected graph [Sh]. His solution expands 

results of Watkins for a graph G such that the complete graph on 
five nodes is homeomorphic to a subgraph of G and the node 
connectivity of G is at least four. It extends earlier results of Perl 
and Shiloach for planar graphs [Perl]. 

For directed graphs, polynomial time algorithms for 
the most basic fixed SHP's are still open problems. The two 
disjoint paths problem is equivalent to finding a cycle containing 
two given node of a directed graph. (See Figure 10.) S. Even and 
M. Oarey have obtained some results concerning edge disjoint 
cycles [Ev 1977]. However, the problem of determining whether 
two given nodes of a directed graph lie on a common simple cycle 
remains open. The only fixed SHP for directed graphs which we 
do know how to solve in polynomial time is that for a pattern 
graph which is a tree of depth one, since this problem can be 
modeled as a single commodity network flow problem. 

We see that SHPs encompass a large number of 
natural  problems in the area of algorithms on graphs.  T h e  
complexity of most of these problems remains open; our results 
'here represent  only the initial steps towards resolving these 
questions. For example, the reductions outlined in Section III are 
of somewhat limited use and stronger reductions are desirable. 
We would like to be able to know when we can add an edge or a 
node to a pattern graph or further specify a node mapping, and 
then be able to modify an existing algori thm to solve the new 
problem. Most of all, we would like to know whether the SHP 
for every pattern graph H has a polynomial-time algorithm for tts 
solution. 

Figure i0: Equivalence of two fixed SHP's for directed graphs 

If in G one wants: then add: 

c 
new e d g e s -  N 

o 
S 

new nodes 

T 
B A -l -% 

--- /new ~ " -q3 e d g e s  ~ 

and look for: 

T 

If in G one wants: 
S 

then: 

Split S into S 1 and S 2 such 

that the outgoing edges of S are 

edges of S 1 and the incoming edges 

of S are the edges of S 2. Split 
T similarly. 

and look for: ISl 
T 1 T 2 

- 49  - 



References 

[Ah3 Aho, A., Hopcroft, J., UIIman, J., The Design and 
Analysis of Computer Algorithms, Addison-Wesley 
Publishing Co., Reading, Mass., 1974. 

[Be] Berge, Claude, The Theory of Graphs and its 
Applications, John Wiley & Sons, Inc., New York, 1966. 

[Di] Dinic, E.A., "Algorithm for Solution of a Problem of 
Maximum Flow in a Network with Power Estimation," 
Soviet Mathematics Doklady, Vol. II, No. 5, 1970, 
pp. 1277-1280. 

[Ev 1977] Even, S. private communication. 

[Ev 1976] Even, S., ltai, A., Shamir, A., "On the Complexity of 
Timetable and Multi-commodity Flow Problems," 
SIAM |ournal on Computing, Vol. 5, No. 4, Dec. 1976, 
pp. 691-703. 

[Ev 1975] Even, S., Tarjan, R.E., "Network Flow and Testing 
Graph Connectivity," SIAM |ournal on Computing, 
Vol. 4, No. 4, Dec. 1975, pp. 507-518. 

[Ge] Geller, Dennis, "Forbidden Subgraphs," Proof 
Techniques in Graph Theory, Frank Harary, ed., 
Acedemtc Press, New York, 1969, pp. 37-47. 

[Ha 1971] Harary, Frank, Graph Theory, Addison-Wesley 
Publishing Co., Reading, Mass., 1971. 

[Ha 1973] Harary, Frank, "On the History of the Theory of 
Graphs," New Directions in the Theory of Graphs, 
Frank Harary, ed., Acedemic Press, New York, 1973, 
pp. 1-17. 

[Ho 1973a] Hopcroft, J.E., Tarjan, R.E., "Algorithm 447: Efficient 
Algorithms for Graph Manipulation," Communications 
of the ACM s Vol. 8, No. 6, June 1973, pp. 372-378. 

[Hu] Hu, T.C., Integer Programming and Network Flows, 
Addison-Wesley Publishing Co., Reading, Mass., 1969. 

[Hunt] Hunt, H.B., Szymanski, T.G., "Dichotomization, 
Reachability, and the Forbidden Subgraph Problem," 
Proceedings of the Eighth Annual ACM Symposium 
on Theory of Computing, Association for Computing 
Machinery, New York, 1976, pp. 126-134. 

[Lap] LaPaugh, A., "The Subgraph Homeomorphism 
Problem," Massachusetts Institute of Technology, 
Laboratory for Computer Science TM 99, Feb. 1978. 

[Lar] Larman, D., Mani, P., "On the Existence of Certain 
Configurations within Graphs and the I-Skeletons of 
Polytopes," Proceedings of the London Math. Soc., 
Vol. 20, No. 3, 1970, pp. 144-160. 

[Peril 

[Rog] 

[Sh] 

.[Ta 1972] 

[Ta 1974] 

[Wa] 

Perl, Y., Shiloach, Y., "Finding Two Disjoint Paths 
Between Two Pairs of Vertices in a Graph," Journal of 
the ACM, Vol. 25, No. I, Jan. 1978, pp. I-9. 

Rogers, H., Jr., Theory of Recursive Functions and 
Effective Computability, McGraw-Hill Book Co., New 
York, 1967. 

Shiloach, Y., private communication. 

Tarjan, R. E., "Depth First Search and Linear Graph 
Algorithms," SlAM Journal on Computing, Vol I, 
No. 2, June 1972, pp. 146-160. 

Tarjan, R.E., "Testing Graph Connectivity," 
Proceedings of the Sixth Annunal ACM Symposium 
on Theory of Computing, Association for COmputing 
Machinery, New York, 1974, pp. 185-195. 

Watkins, Mark, "On the Existence of Certain Disjoint 
Arcs in Graphs," Duke Mathematical Journal, VoL 35, 
1968, pp. 231-246. 

- 5 0 -  


