
THE SUBGRAPH HOMEOMORPHISM PROBLEM

Andrea 5. LaPaugh and Ronald L. Rivest '~
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract

We i n v e s t i g a t e the p rob lem of f i n d i n g a
homeomorphlc image of a "pattern" graph H in a larger input
graph (3. We view this problem as finding specified sets of edge
disjoint or node disjoint paths in (3. Our main result is a linear
time a lgor i thm to determine if there exists a simple cycle
containing three given nodes in (3; here H is a triangle, i'4o
polynomial time algorithm for this problem was previously
known. We also discuss a variety of reductions between related
versions of this problem and a number of open problems.

I. Introduction

The subgraph homeomorphism problem (SHP) is to
find a horneomorphic image of a "pattern" graph H in an input
graph (3. The images of certain nodes of H, which are nodes of
(3, may be specified a priori and the images of the edges of H,
which are paths in (3, may be required to be node-disJoint or
edge-disJoint. Graphs G and H are either both directed or both
undirected. Examples are finding a Kuratowski subgraph (K 5 or
K3, 3) in a non-planar graph, finding certain kinds of network
flows, f ind ing Hamil tonian cycles, f inding a simple cycle
containing given nodes of (3, and finding a.set of disjoint paths
connect ing certain nodes of C3. Subgraph homeornorphism
problems also arise in the study of programming schema, since
many schema properties are characterized by the presence or
teachability of certain substructures [Hunt].

We summarize our research on the SHP as follows.
We observe that the SHP is b/P-complete if both H and (3 are
given as input; this follows from the Harnilitonian circuit
problem for node-disjoint SHPs and from the multi-commodity
integral network flow problem for edge-disjoint SHPs. We
therefore consider the various SHPs derived by fixing H. The
main open question for such SHPs is, "For every pattern graph
H, is there a polynomial time algorithm which, given an input
graph (3, will determine whether there is a homeomorhpic image
of I-I occurring in (3?" We can neither find a fixed H whose SHP
is NP-¢ornplete nor demonstrate that every H has a polynomial-
t ime algorithm for its SHP. We therefore concentrate on the
p rob lem of d e t e r m i n i n g which pat tern g raphs H have
polynomial-time algorithms. These problems turn out to be
surprisingly difficult, even for very simple graphs H.

'~ This research was supported in part by NSF grant MC76-14294.

The main result of this paper is a l inear- t ime
a lgor i thm which determines if there exists a simple cycle
containing three given points of an undirected input graph (3.
This problem is an instance of the SHP where the pattern graph
is a cy,:le of length three (a triangle). Although thisproblem has
a simple pattern graph, no polynomial time algorithm was
previously known. A linear time algorithm for another SHP with
simple pattern graph-- the two disjoint paths problem for
undirected graphs--was recently found by ¥. Shiloach. A third
such problem--finding a cycle in a directed graph containing two
given nodes--is still an open problem.

In Section II, we present definitions and a general
discussion of the subgraph homeornorphisrn problem. In
Section IlI we briefly sketch some reductions relating various
versions of the SHP and in Section IV we present the linear time
algoritlhrn for the triangle problem. Section V is dedicated to a
discussion of open problems and other work in the area.

II. Ba,:kground

We assume the reader is familar with standard graph
and network flow concepts [Ah][Hu]. Let H and (3 be two
graphs, b o t h directed or both undirected. A subgraph
homeomorphism is formally defined as a pair of one-to-one
mappings, (v,a), the first from nodes of H to nodes of (3; the
second from edges of H to simple paths of (3. We require that a
path in (3 which corresponds to edge (x,y) in H go from v(x) in (3
to v(y) in (3. The graph H is called the pattern graph. If the
image of the edges of H is a set of paths which are node disjoint
up to endpoints , the horneornorphism is a node dis joint
homeom0rphisrn. We say that H is node disjoint horneomorphic
to a subgraph of (3, denoted H <N (3. If the set of paths is edge
disjoint, then H is edge disjoint horneornorphic to a subgraph of
(3, denoted H <E G.

We should .note here that an a l t e rna te , bu t
equivalent, definition of node disjoint homeomorphism has been
used hJistorically. In the alternate definition, H -<N (3 if nodes can
be inserted along the edges of H to yield a new graph H' which is
isomorphic to a subgraph of (3 [Ha 1973]. We prefer our
definition since defining a homeomorphism in terms of paths of
(3 allows one to conceptualize the subgraph horneomorphism
problem in terms of .finding paths in G and to readily use the
body of path-finding algorithms already in the literature.

The most general subgraph horneomorhp i sm
problem--given as input graphs (3 and H, is H homeornorphic to
a subgraph of G?--is hip complete for both node disjoint and
edge d~isjoint homeomorphisms, and both directed and undirected
graphs. For node disjoint homeomorphisms, this follows from the

- 4 0 -

Hami l ton ian Circuit problem. Given the question, "Does G
contain a Hamil tonian circuit?" we construct H such that the
number of nodes in H is the same as the number of nodes in G,
and the edges of H connect the nodes in a cycle, We then ask, "Is
H homeomorphic to a subgraph of G?" This will be the case i f
and only i f G contains a Hamiltonian circuit.

For edge disjoint homeomorphism, we use the result
of Even, ltai, and Shamir that the two commodity integral
network flow problem for unit edge capacities is NP-complete
[Ev 1976]. Suppose we are given a directed network, N, with
sources s I and s 2, sinks t I and t 2, and all edge capacities equal to
one. W e s h o w how to reduce the quest ion, "Are there
simultaneous integral flowsfrom s i to t I and s 2 to t 2 of values k I
and k 2, respectively?" to an edge disjoint SHP for directed
graphs. The question is equivalent to asking whether there is a
set of k I + k 2 edge disjoint paths in N such that k i go from s ! !o t l

and k 2 go from s 2 to t 2. Divide each edge o~t of s i or s 2 into two
edges by inserting one new node on each edge. Now each edge
disjoint path from s I or s 2 must have a distinct second node. We
can model the k I + k 2 edge disjoint paths by a pattern graph, H,

which has two source nodes, c I and c 2, two terminal nodes, d I and

d2, k I distinct length two paths from c I to d 1, and k 2 distinct
length two paths from c 2 to d 2. The paths from c 2 to d 2 are node
disjoint from the paths from c I to d I. I f we can modify the present

network, producing a network N', to Insure that c ! maps to s I, c 2

maps to s 2, d i maps to tl, and d 2 maps to t 2, then H is edge
disjoint homeomorphic to a subgraph of N' i f and only i f the
desired flow exists in the original network, N. Let the original
network have n nodes. T o insure the desired node mapping, we
add 4n new nodes to each of H and N' and edges from each of
these new nodes to c I and s i, respectively. Similarly, we connect

3n additional new nodes to c 2 and s 2, 2n additional new nodes to

d I and t !, and n additional new nodes to d 2 and t 2. Node c I must
map to s I, since s I is the only node in N' with indegree at least 4n.

(Self-loops are not counted.) Node c 2 must map to s 2, since s I and
s 2 are the only nodes in N' with indegree at least 3n and s I

corresdponds to c I. Continuing this reasoning, d I must map to t I
and d 2 must map to t 2. We have found a pattern graph, H, with
10n + 4 + k ! . k 2 nodes and a modification of network N, N', such
that H s E N' i f and only i f there are integral flows of two

commodities in N with values k ! and k 2.
Given the above NP-completeness results, we focus

on the solution of problems where the pattern graph H is fixed.
A graph G and possibly, a partial or tot~al specification of the
mapping from nodes of H to nodes of G are given as input. An
example of a node disjoint homeomorphism problem is given in
Figure !. An algorithm to solve such a problem may depend on
the pattern graph and the subset of nodes of the pattern graph
on which the node mapping will be specified. We measure the
time required by an algorithm to solve the proble m on input G as
a function of the size of G, I.e. the number of nodes in G plus the
number of edges in G.

The variety of properties characterized by subgraph
homeomorphisms and the appl icat ions of these propert ies
motivate our interest in efficient algorithms for solving the SHP
for f ixed pattern graphs. Ultimately, we would like to know i f all
subgraph homeomorphism problems with fixed pattern graphs
can be solved in time polynomial in the size of the input graph.
This question was in fact proposed by Hunt et. al. In relaUon to
programming schema and their substructures [Hunt]. The
question appears to be quite diffficult. We have concentrated

on two research areas in the hope of learning more about the
answer:

i) Methods of reducing one SHP to another.
i) The solution of the SHP for particular pattern
g r a p h s , p a r t i c u l a r l y f o r n o d e d i s j o i n t
homeomorphism (since edge disjoint homeomorphism
p r o b t e m s are r e d u c i b l e to node d i s j o i n t
homeomorphism problems as discussed in the next
section.)
Our polynomial time algorithm for finding a cycle

containing three given nodes of a graph is our contribution to the
second line of research above. Other contributions are discussed
in Section Y.

Ill. Reductions

The reductions which we wil l present are of two
types: those which relate edge disjoint SHP's to node disjoint
SHP's and those which reduce a node dis jo int SHP for a
part icular pattern graph to a node disjoint SHP for another
pattern graph. Each reduction takes a pattern graph, H, an input
graph G, and a partial specification of the node mapping. It
pl'oduces a pattern graph, H', and a set ofgraphs, G', with
corresponding partial specifications of the node mapping. The
pattern graph H is homeomomphic to a subgraph of G i f and
only i f H' is homeomorphic to a subgraph of one of the graphs in
the set G'. The construction of H' depends only on H and is
independent of G. All constructions will take at most polynomial
time in the sizes of H and G. Finally, the number of graphs in
the set G' is at most polynomial in the size of G. Note that the
reductions we are using correspond to the notion of Tu r i ng
reducibi l i ty [Rog]. Given an instance of the SHP for pattern
graph H, we may not be able to find just one instance of the SHP
for pattern graph H' whose solution corresponds to the solution of
the first SHP. However, we can use a give n procedure to solve
the SHP for pattern graph H' as a subroutine, to solve the SHP
for each graph in G', and thereby determine whether a
homeomorphic itnage of H exists in G.

To simplify the statement of reduction results, we use
the term fixed SHP when the node mapping is known a priori.

I l l . I Edge Dis jo in t Homeomorphism versus Node D i s j o i n t
Hom, eomorphism

Within the reductions which relate node disjoint
homeomorphism to edge disjoint homeomorphism, we have the
following lemmas:

Lemma I: Any fixed node disjoint SHP for directed
graphs is reducible to a fixed edge disjoint SHP for directed
graphs.

Proofi The construction used is analogous to that for
changing vertex capacities to edge capacities in network flow
problems [Ta 19"/4]. Suppose we have a pattern graph, H, and a
input graph, G. The reduction is accomplished by replacing each
node, x, in G by two nodes, HEAD(x) and TAIL(x). A directed
edge is added from HEAD(x) to TAIL(x). All edges of G Into x
become edges into HEAD(x), and all edges of G out of x become
edges out of TAIL(x). We now have a new directed graph, G'.
A new pattern graph, H', is constructed analagously. If, in the
original problem, node h of H w a s mapped to node g of G, then
the node HEAD(h) of H' maps to HEAD(g) of G', and TAIL(h)
maps to TAIL(g). A straightforward argument left to the reader
proves H <N G i f and only i f H' <E G'.

- 4 1 -

Figure i: Example of a node disjoint SHP

Fixed:

2e

nut

e c
d

with partial specification:

v(1) = b
v(2) = e

Solution 1 :

~ a

z z ~

e C
d

Solution 2:

~ a ~ xb

e ~_ _ _ ~ ~c
d

v(3) = c
(1,3) -- <(b,c)>
(3,2) -- <(c,d) , (d,e)> mapping of
(2,1) -- <(e,a), (a,b)> edges in H

v(3) = d
(1,3) -- <(b,c) , (c,d)>
(3,2) -- <(d,e)>
(2,].) -- <(e,f),(f,b)>

In this example, the node mapping, v, is partially specified.

~ indicates a node whose image or inverse image under v is known.

mapping of
edges in H

42 -

Lemma 2: Any edge d is jo in t S H P for d i r ec ted
(undirected) graphs is reducible to a node disjoint S H P for
directed (undirected) graphs.

Proof: The reduction replaces each node in the input
graph, G, by a "switch". Let the nodes on a path other than the
endpoints of the path be called interior nodes. Edge dis joint
paths i.n G containing the same interior node pass through node
disjoint pathswithin the switch corresponding to that node.

When a f ixed S H P is b e i n g c o n s i d e r e d , no
modification to the pattern graph is necessary. The input graph
is modif ied using switches as follows. In undirected graphs ,
switches are cliques the size of the degree of the corresponding
node. In directed graphs, switches are bipartite graphs with one
set of nodes the size of the indegree of the corresponding node
and o n e set o f nodes the size of the o u t d e g r e e of t h e
corresponding node. All possible edges from nodes of the
indegree set to nodes of the outdegree set are present in the
switch. Each edge to a node, x, in the original input graph now
goes to a distinct node in the switch for x. In the directed case,
edges into x be~;ome edges into a node of the indegree set and
edges out of x become edges out of a node of the outdegree set. If
node x of the input graph corresponds to a node, bx, in the

pattern graph, then there is a distinct node, x ' , in the modified
input g raph in addit ion t 9 the switch for x. In the new node
mapping, h x maps to x'. In addition to the edges between nodes

of the switch for x, there is an edge connecting node x' to each
node in this switch. In the directed case, these edges are directed
from nodes of the indegree set and to nodes of the outdegree set.

When the subgraph homeomorphism problem is not
fixed, more care need be taken so that we will not create an
instance of the pattern graph within a switch. Therefore , the
switches are required to have nodes of fixed small degree while
the "original" nodes of both the pattern graph and the input
g raph are guaranteed to have larger degree by adding extra
adjacent nodes. Suppose we have a directed edge disjoint SHP.
Consider a node y of the input graph, G. Let y have indegree
INy and outdegree OUTy. To create the switch for y, insert

OUT.y nodes "close to" y on each edge into y and INy nodes

"close to" y on each edge out of y. Each original edge into y is
connected to all original edges out of y by adding an edge from
each inserted node on the incoming edge to an inserted node on
an outgoing edge. Each inserted node is used for exactly one
interconnection. Therefore, nodes inserted on incoming edges
h a v e i n d e g r e e one and ou tdegree two; nodes inser ted on
outgoing edges have indegree two and outdegree one. Each edge,
(u,t), in G has become a path from u, through the IN u nodes

inserted near u followed by the O U T t nodes inserted near t, to t.

A path in the original graph, G, which uses a node y as an
interior node can bypass y in the modified input graph by using
an interconnecting edge in the switch for y. To insure that nodes
of the pattern graph d o not map to inserted nodes of the new
input graph, we do the following: For each node of the pattern
graph and each node of the original input graph we add three
nodes to the pattern graph and the new input graph, respectively.
A new edge is directed to ea~:h new node from the node for which
it was added. In the resulting pattern graph, all original nodes
have outdegree at least three. In the resulting input graph, all
nodes which were nodes in the o r ig ina l inpu t g r a p h h a v e
outdegree at least three. All inserted nodes still have outdegree
one or two, and, therefore, cannot correspond to nodes of the
original pattern graph.

Given an undirected edge disjoint SHP, we construct
the new pattern graph and input graph in the same manner as

above. We insert d x - I nodes on each edge to a nodex of G,

where d x is the degree of x, and make the interconnections. Each

inserted node will have degree three. Therefore, we add four new
nodes and edges for each node of the pattern graph and each
node of the or iginal input graph to insure that nodes of the
original pattern graph map to nodes of the original input graph.
Figure 2 illustrates the construction used for und|rected graphs.

I I I . 2 R e d u c t i o n s a m o n g N o d e D i s j o i n t S u b g r a p h
Homeomorphism Problems

Since we are not measuring the time taken by an
algorithm as 'a function of the size of the pattern graph, we can
solve any SHP for a particular pattern graph in polynomial time
if we can solve the f ixed $ H P for the pa t te rn g r a p h in
polynomial time. This is accomplished by solving the fixed S l i P
for each node mapping consistent with any previously g iven
partial specification of the mapping. This technique results in an
a lgor i thm which is polynomial in the size of the input graph ,
where the order of this polynomial may be the size of the vertex
set of the pattern graph. This reduction is not very appealing for
two reasons. First, the exponent may be large. Second, the
reduction yields no simplification of the pattern graph itself. On
the other hand, the two reductions discussed below do simplify
the pattern graph but can only be used when certain subgraphs
exist within the pattern graph. The reductions are presented in
terms of directed graphs, but completely analogous reductions
exist for the undirected case.

Reduction I: The first reduction is applicable when H
contains, a path of length k>l from one node, called the tail node
of the pa th , to ano the r node, called the head node. T h e
correspo0dence between the tail and head nodes in H and nodes
of the input graph, G, must be known. Also, all interior nodes on
this path must have indegree one and outdegree one, and their
correspondence to nodes in G must be unspecified. Number the
interior nodes of the path in H from I through k-i, beginning at
the tail node. We delete the first k-2 interior nodes on the path
in H, producing a new pattern graph H'. In G, we find all k-I
length paths such that (i) the tail node of each path corresponds
to the tail node in H, and (ii) the tail node of each path is the
only node on the path which is known to correspond to a node in
H. For each such path, we delete the k-2 interior nodeg from G

and make the head node correspond to the k-I st interior node on
the path in H. Then H <-N G if and only if there is a graph, G',

derived from G by the above method, such that H' -<N G'. Since

k is a constant with respect to the size of G, the path enumeration
can be done in time polynomial in the size of G. The reduction
for each path takes only constant time. Figure 3 illustrates the
reduction for a particular path in G.

Reduction 2:. The second reduction is appl icable
when H contains a node, called a parent node, which is adjacent
to k>0 nodes, called leaf nodes. The leaf nodes must have no
other nodes adjacent to them. The correspondence of the parent
node to a node in the input graph, G, must be known, and the
correspondence of the leaf nodes to nodes in G must be unknown.
Then, in G, we may assume that the nodes corresponding to leaf
nodes.are adjacent-to the node corresponding to the parent node
by edges of the appropriate direction. For each possible image set
in G of the leaf nodes in H, we delete the leaf nodes in H and the
image set in G to produce two new graphs, H' and O'. I f for any
such H' and G', H' -<N G', then H -<N G. Figure 4 illustrates the
reduction.

- 4 3 -

Figure 2: Construction for Lemma 2

in H:

X

in H':

new nodes

in G:

\
¢

du=2 t =3

in G':

new new
nodes r~.uu ~' , - I ~ ~ nodes

d u is the degree of node u; d t is the degree of node v.

G' and H' are the graphs produced by the reduction.

Figure 3: Illustration of Reduction 1

}[: tai~ L i I i 2 i 3 head
node node /

H': t~il .~'-~head "- "
node 13 node

G' for path using Ul, u 2, and u3:

v(i 3)
v(tai~ node) /

)(;) v (head node)

v(head node)

indicates a node whose image or inverse image
under node mapping v is known.

- 44 -

Flour e 4: Illustration of Reduction 2

}{:

parent ~)~/~~
n°de/l~. ~

leaf nodes

H':

parent~/~
node

G:

Yl

~ 2
r(parent node)

Y2

G' for possib~= imam= set
x 1

>~rent

/x 3 -Y3

(x2,Yl,Y2}:

node)

indicates a node whose image or inverse image under the node mapping, v,
is known.

The two special purpose reductions just presented are
only useful i f we know how to solve the SHP for the resulting
pattern graph, H'. Dinic's algorithm for single commodity
network flow problems [Di] provides polynomial time algorithms
for some SHP's, for example: any fixed SHP when the pattern
graph is a tree of depth one (directed or undirected). However,
for fixed SHp's, such simple pattern graphs as a cycle o f length
three or two disjoint edges do not lend themselves to single
commodity network flow formulation. In the next section, we
outline a linear time algorithm to solve the fixed SHP when the
pattern graph is an undirected cycle of length three.

IV. A Linear Time Al~;orithm for the Triangle Problem

We now present a linear time algorithm for the
fo l lowing problem: given an undirected graph, G, and three
nodes of G, determine whether the three nodes lie on a common

simple cycle, and construct that cycle if it exists. We attack the
problem by breaking (3 into components and looking fo r paths
which must exist in these components i f the cycle is to exist in G.
We build up sets of node disjoint paths known to be in G unti l
we can piece together the desired cycle from these paths or declare
that the cycle does not exist. The algorithm is rather lengthy and
involves mu~:h case analysis. Some details have been omitted due
to space and readibi l i ty considerations. The algori thm was
originally presented in [Lap], where all details can be found.

Let the three specified nodes of the graph'G be A, 13,
and C. We assume that G is biconnected since A, B, and C must
be in the same bic0nnected component i f they lie On the same
cycle. We also assume that none of the edges (A,B), (A,C), or
(C,13) are in G. I f one of them, say (A,C), is in G, the problem is
reduced to finding a path from A to C which contains 13. This

can be done in l inear time as a unit vertex and edge capacity
single commodity network flow problem with source B and
sinks A and C.

I f G contains three node disjoint paths, each with A
as one endpoint and one of 13 or C as the other endpoint (with
renaming of the nodes i f necessary), then a cycle can be
constructed by piecing together parts of these paths with parts of
other paths which must exist by the biconnectivity of G. Three
such node disjoint paths can be found by merging nodes 13 and C
in G into one node, denoted BC, and applying Dinic's network
flow algorithm to the resulting graph with source 13C and sink A.
When B and C are merged, each edge to/from 13 or C becomes
an edge to/from BC. (Duplicate edges are removed.)

It" G contains three node disjoint paths, each with A
as one endpoint and one of 13 or C as the other endpoint, we can
always find three node disjoint paths from A such that two have
13 as the .other endpoint and one has C as the other endpoint (?r
vitae versa). To see this, suppose we have three node disjoint /
paths from A to 13. There must be a path, R, from C to A which
does not contain]3, by the blconnectivity of G. Some in i t ia l
portion of this path, R[C,z], is node disjoint from the three paths
between A a.nc~ B except at z. (The notation "p[u,t]" denotes the
port ion of a path p from node'u to node t.) Using this in i t ia l
portion and the portion of the path it intersects from z to A gives
a path from A t o C which is node dis joint from the two
remaining paths between A and 13.

Now assume that two of the paths found have 13 as
one endpoint and one has C as an endpotnt (or vice versa). Call
these paths PI' P2' and P3 respectively. Since O is biconnected,
we can find two node disjoint paths from 13 to C. Call these paths
04 and 0.2. Define x I to be the closest node to C on Qi[C,13]
which Is also on PI[A,B] or P2[A,13]. Define x 2 on O~ similarly.
Both x I and x 2 may equal 13, but at most one equals A, since 04

- 45 -

and 0--2 are node disjoint . Let y be the closest node to A on

P3[A,C] which is also on Ql[C,Xl] or Q2[C,x2]. Since x I (or x2) is

on P3 only if x I = A (or x 2 = A), and y is on P$, y can equal one

of x I or x 2 only if y is equal to A. Wi thou t loss of genera l i ty ,

assume y is on QI- Then y cannot equal x 2. If x 2 is on P2' the

pa th composed of subpaths PI[A,B], P2[B,x2] , O~[x2,C] , QI[C,y],

and P3[Y,A], in that order, is a simple cycle containing A, B, and

C. If x 2 is on Pl' subpaths P2[A,B] and PI[B,x 2] are used instead

of PI[A,B] and P2[B,x2].
If G does not contain three node disjoint paths from

A to B and C, then we do the following:

Step I.: We find a node cutset of size two which
separates A from B and C and such that this cutset cannot be
separated from B and C by removing any other two nodes of G.
If this cutset also separates B from C, there is no cycle containing
A, B, and C, and we are done.

T h e required cutset can be found using information
provided by Dinic's network flow algorithm. Given a flow from a
source node, s, to a terminal node, t, Dinic's algorithm proceeds by
f ind ing an augment ing path along which flow can be increased
while mainta in ing the edge and node capacity restrictions on the
flow. For networks with unit edge and node capacities, as in our
application, the augmenting path can use edges not used by the
p resen t flow, and edges used by the present flow but in the
opposite direction to the flow. The augmenting path will contain
an in t e r io r node. on a pa th of present flow only if at least one
edge incident on that node in the augmenting path is used by a
path of present flow in the opposite direction. Upon termination
of the algorithm, there are no augmenting paths to t. However,
we know to which nodes there remain augmenting paths from s.

For our application, A is the terminal node, and B
and C are merged into one source node, BC. If we are executing
Step I, we can find exactly two node disjoint paths from A to B or
C, corresponding to a flow of 2 from BC to A. Call the paths of
flow from BC to A, PI and P2. Suppose the set of nodes to which
there are augment ing paths from source BC upon termination of
Dinic ' s a l g o r i t h m includes a node on PI. Let AI be the closest
such node to A on PL Otherwise, let AI be the node adjacent to
B C on Pi. Define A2 on P2 similarly. T he set {AI,A2} is a outset
separa t ing A from B and C in G. This can be seen by noting that
any p a t h f rom A to B or C which does not conta in AI or A2
would d e f i n e an a u g m e n t i n g p a t h f rom BC to some n o d e
(possibly A) closer to A on PI than AI or closer to A on P2 than
A2.

Suppose there are two nodes different from AI, A2, B
and C which separate AI and A2 from B and C in G. T h e n one
of these nodes must appea r on PI[BC,AI] and the o the r mus t
appea r on P2[BC,A2]. However, either AI is adjac;ent to BC, or,
g i v e n f lows a l o n g P i [BC,AI] and P2[BC,A2] , t h e r e is a n
augment ing path to AI. This augmenting path increases the flow
into Al while leaving the flow to A2 unchanged. T h e new flow
corresponds to three node disjoint paths in G--two from B or C to
AI, and one from B or C to A2. Thus, two nodes cannot separate
B and C from AI and A2.

Step 2: We now consider only that component K of G
w.hich contains B and C when nodes AI and A2 are removed. (If
B and C are not in one component, the cycle does not exist.) We
h a v e a path in G from AI to A2 containing A which lies outside
K, T o complete the cycle, we would like to find a path from AI to
A2 conta ining g and C in either order whose interior nodes are
in the component K. If both of edges (AI,B) and (A2,C) or both

of edges (AI,C) and (A2,B) are in G, we are done. Any path from
B to C in component K will complete the desired cycle.

If nei ther of the above pairs of edges is in G, we test
if B and C are biconnected in K. If B and C are not biconnected
in K, we can determine if a path from AI to A2 containing B and
C exists. Let x be a node separating B and C in K. (Remember
t h a t edge (B,C) doesn ' t exist.) Removing x separates K in to
components. Let K B denote the component containing B and

K C denote the component containing C. Any path from AI to A2

conta in ing B and C must consist of a path from AI (or A2) to x
conta in ing B whose interior nodes are all in K B, and a path from

A2 (respectively AI) to x containing C whose interior nodes are all
in K C. T h e existence of these pa ths is easily de t e rmined by

solving appropr ia te network flow problems.
If B and C are biconnected in K, we continue.

Step 3: To component K, we add AI, A2, a n d all
edges of G which go from AI or A2 to nodes of K. Cal l t he
result ing subgraph of G, K'. Due to our choice of AI and A2 as
the "nearest" cutset of size two to B and C, there are two cases for
each of AI and A2. The cases for AI are:

(a) There are three node disjoint paths in the new
graph, K', such that two of the paths have AI as one endpoin t
a n d e i t h e r B or C as the o t h e r e n d p o i n t . T h e t h i r d p a t h
connects A2 with one of B and C.

(b) T h e only possible paths from AI to B or C which
do not contain A2 are edges (AI,B) and (AI,C). At least one of
these edges is an edge of K'.

Cases (a) and (b) are not mutually exclusive, but if (a)
does riot hold, (b) must hold. T h e cases for A2 a.re a n a l o g o u s
with the roles of AI and A2 interchanged. If it is not the case
tha t (a) holds for both AI and A2, we can reduce the problem of
f ind ing a path from AI to A2 containing B and C to at most two
instances of a problem of the form: "Is there a path in K ' from
A2 to B containing C but not Al?" (This is the question used if
(AI,B) exists; B and C are interchanged for the second question if
(AI,C) exists. Obviously, i r n e i t h e r path exists, the cycle doesn't
exist e i ther .) If the new g r a p h does contain bo th sets of node
disjoint paths, i.e. (a) holds for both Ai and A2, we continue.

Step 4: The new graph, K', may not be biconnected,
regardless of whether or not the component K from which it was
constructed is biconnected.

Claim: If K ' is not biconnected, B and C are the
only possible articulation points.

Proof : O b s e r v e t h a t (i) AI a n d A2 c a n n o t be
art iculat ion points of K', since K' was formed by adding AI and
A2 to a component of G resulting from the removal of AI and A2.
(ii) Any articulation point of K' must separate AI from A2 in K'.
Otherwise, the articulation point is also an articulation point of
G, but G is biconnected. (iii) There are two node disjoint pa ths
in K ' from B to C which contain neither AI nor A2. (iv) T h e r e
are two node disjoint paths in K' from A| to B or C. (v) T h e r e
are two node disjoint paths in K' from A2 to B or C.

Given observations (iii)-(v) above, we can construct a
path in K' from AI to A2 which does not contain node x, where x
is any node in K' other than Al, A2, B and C. The details of the
construction are left to the reader and are available in [Lap].

If K' is not biconnected, it is simple to split K ' into its
biconnected components and determine if the required subpa ths
of a p a t h f rom AI to A2 c o n t a i n i n g B a n d C ex is t in t h e
appropr ia te components. If K' is biconnected, we continue.

- 4 6 -

Step 5: All sets of three node disjoint paths satisfying
Case (a) of S tep 3 mus t h a v e S t r u c t u r e I, S t r u c t u r e 2, or
S t ruc tu r e 3, as shown in Figure 5. Since K ' is b i c o n , e c t e d ,
S t ruc tu re 3 can be reduced to Structure i or S t ruc ture 2 by a
method similar to that used on the original graph, G. to reduce
three node disjoint paths from A to B to three node disjoint paths
with two from A to B and one from A to C. If S t ruc tu re I is
found for either AI or A2, we can piece together the desired path
from AI to A2 containing B and (3 using the three disjoint paths
of S t r u c t u r e I a n d o t h e r p a t h s known to exis t in K'. T h e
technique used is essentially the same as that used when there are
three node disjoint paths from A to B or C in the original graph,
O. If only S t ruc tu re 2 is found for each of Al and A2, we
cont inue . Note tha t we now have two sets of node d i s jo in t
pa ths --one of Structure 2 for AI and one of Structure 2 for A2.

Figure 5: Possible structures for Step 5

Structure 1

t ~

,

B C

Structure 2 Structure 3

A1

I

l
B

A2

\ ,q
C

I !

B C

Structures shown are for AI. B and C
are interchangeable. Structures for A2
are obtained by interchanging A1 and A2.

Step B: We determine if there are three node disjoint
pa ths in K', each with AI or B as one endpoint and A2 or C as
the other endpoint, or each with A2 or B as one endpoint and AI
or C as the other. If neither set of node disjoint paths exists, then
the desired path from Ai to A2 containing B and C cannot exist
since the s u b p a t h s of this pa th would be one such set of node
disjoint paths. Again, we can use Dlnic's network flow algorithm
to test i f three such paths exist.

I f we find any such set of three node disjoint paths,
the desired path from AI to A2 containing B and C is guaranteed
to exist. We use the sets of node disjoint paths found so far to
construct the desired path. In the following discussion, we assume
that there are three node disjoint paths each with AI or B as one
endpo in t and A2 or (3 as the other endpoint. A para l le l
argument deals with the case when the three node disjoint paths
instead go from AI or (3 to A2 or B.

C o n s i d e r the two d i s jo in t p a t h s f rom B to C
conta ining nei ther AI nor A2 which are guaranteed to exist by
Step 2. Since there are three node disjoint paths from AI or B to
A2 or C, there is at least one augment ing path in a ne twork
cons t ruc ted from K' with flow cor responding to the two node
disjoint paths between B and C. This augmenting path results in
th ree node d is jo in t paths , each from A! or B to A2 or C. In
addit ion, we now have that at least two of the paths must have .B
as an e n d p o i n t and at least two must have C as an endpo in t ,
since a.ugmenting paths can only increase the flow into or out of
endpoints of flow. The possible configurations of these paths are
shown in Figure 6. Cases 4 and 5 require no fu r the r discussion.
Cases 2 and 3 can be reduce to Case ! or Case 5 by recalling that
K ' is biconnected and using the same technique used when we
had three node disjoint paths from A to B. We now deal with
Case I.

Let us review the sets of node disjoint paths at our
disposal. We have: (i) By (3ase I above, three node d is jo in t
paths -- one from AI to A2 and two from B to (3, (ii) By Step 5,
three node disjoint paths --one from Ai to B, one from. AI to C,
and one from A2 to B or C, (i i i) Again by Step 5, three node
disjoint paths -- one from A2 to E, one from A2 to C, and one
from Ai to B or C.

Denote the paths of (ii) above collectively by 0~. For
each path Of (ii) above, there is some ini t ial portion, Q.[AI,ql],
Q[AI,q2], or O,[A2,q~], respectively, which is node disjoint from

the disjoint paths from B' to C except at endpoint qi' q2' or q3"

Figure 6: Configurations of node disjoint paths for Step 6

Case i

A;

Case 2 Case 3 Case 4

reduces to i reduces to 1 eliminated
or 5 or 5 previously

Case 5

B

desired path

- 4 7 -

Some final por!ion, Q[pk,qk], of each of these subpaths is also

node disjoint from the path from AI to A2 except at Pk' k-I, 2, or

3. All configurations of the Pk'S and qk's on the paths of (i) except

the configuration shown in Figure 7a yield a path from AI to A2
conta in ing B and C. Figure 7b i l lustrates one successful
configuration. I f we have the configuration shown in Figure 7a,
a similar ana!ysls is done for the path~i of (tii). The subpaths of
the paths of (ii i) analogous to Q.[pk,qk], k~ I, 2, and 3, are denoted

R[Sk,rk]. We take into account the ways in which the R[SkX k]
can intersect OjAl,qi] and O,[Al,q2] already found. I f we have not
found a path from AI to A2 containingB and C after processing
the paths of (iii), we must have the configuration of paths shown
in Figure 8.

Our construction Of K' insures that edge (AI,A2) is
not in K'. Therefore the path from AI to A2 in (i) above is of
length at least two. Let x be any interior node on the path from
Ai to s~2. Node x is also in component K from which K ' was
constructed. Therefore, there is a path from x to B which
contains neither AI nor A2. Call th'is path, P. Let y be the closest
node to x on P which ts also on the node disjoint paths from B to
C, O,.[AI,ql], Q.[AI,q2], R[A2,rl], or R[A2,r2]. Let z be the. closest
node to y on P[x,y] which is also on the path from Ai to A2. Note
that z does not equal Ai or A2. All possible positions for z and y
yield a path from Ai to A2 which contain~ B and C, as can be
verified by examining Figure 9.

The algorithm presented above relies heavily, on J.
Hopcroft's linear time algorithm to find blconnected components
[Ah][ILlo 1973a][Ta 1972] and Dinic's algorithm for one-commodity
network flow [Di]. We never need to find more that a flow of
three using Dinic's algorithm (corresponding to a set of three
node dis,joint paths). Therefore, our use of the algorithm requires
only l inear time. (R.E. Tar.lan and S. Even have provided a
careful analysis of this algorithm from which we make this
conclusion [Ev 1975] [Ta 1974].) Each step of the algor i thm
presented above can be done in linear time and is executed at

Figure 7: Merging sets of paths
in Step 6

7a: failing configuration

Al=Pl=

P3

A2

7b:

P2 B

ql / B or C
q2 f i B or C
q3 ~ B or C

one succe_ssfu l c o n f i g u r a t i o n

Pl

P3

A1 B e'-

] # |

I -

A2 C
i n d i c a t e s d e s i r e d pa th

Figure 8: Last configuration of paths
before completion of Step 6

A l = p ~ B

,

Q[AI,~ rl

~ r2

A2=Sl=S2 C

rl' r2' ql' and q2 are not equal to
B or C.

Figure 9: Positions for node y of
Step 6--all yield desired
path

A1

A2

,,'P[z,y] 'l
"

L

Y

,~B

\',

r I

'r 2

pl

A indicates a possible position for
for y. In addition, y may equal ql'
q2' rl' r2' B, or C. One solution

is indicated by

48 -

most once. Therefore, the algorithm is of linear time. A more
detailed discussion of the t iming-of the algorithm, including
necessary bookkeeping, can be found in [Lap].

V. Conclusion and Further Problems

We have presented above a general description of
the SHP and some methods of reducing one SHP to another in
polynomial time. We have also presented a linear time algorithm
to determine i f three given nodes of an undirected graph lie on a
common simple cycle. This problem and the two disjoint paths
problem--given two pairs of nodes of an undirected graph, are
there two node disjoint paths in the graph with each pair of
nodes serving as the endpoints of one of the paths?--are basic
problems fo r al l f ixed SHP's for. undirected graphs. Any
undirected graph which has at least two edges and is not a tree of
depth one wil l contain a cycle of length three or two disjoint
edges. Thus, the fixed SHP for any undirected pattern graph
with more than two edges will contain one of the above problems
as a subproblem unless it is a tree of depth one.

Contributions to the solution of the two disjoint paths
problem are found in several places. Larman and Mani [Lar]
and Watkins [Wa] address the question: "What properties of an
undirected graph guarantee the existence of two node disjoint
paths between any two pairs of nodes In the graph?" Yossi
Shiloach now claims to have solved the two disjoint paths
problem for any undirected graph [Sh]. His solution expands

results of Watkins for a graph G such that the complete graph on
five nodes is homeomorphic to a subgraph of G and the node
connectivity of G is at least four. It extends earlier results of Perl
and Shiloach for planar graphs [Perl].

For directed graphs, polynomial time algorithms for
the most basic fixed SHP's are still open problems. The two
disjoint paths problem is equivalent to finding a cycle containing
two given node of a directed graph. (See Figure 10.) S. Even and
M. Oarey have obtained some results concerning edge disjoint
cycles [Ev 1977]. However, the problem of determining whether
two given nodes of a directed graph lie on a common simple cycle
remains open. The only fixed SHP for directed graphs which we
do know how to solve in polynomial time is that for a pattern
graph which is a tree of depth one, since this problem can be
modeled as a single commodity network flow problem.

We see that SHPs encompass a large number of
natural problems in the area of algorithms on graphs. T h e
complexity of most of these problems remains open; our results
'here represent only the initial steps towards resolving these
questions. For example, the reductions outlined in Section III are
of somewhat limited use and stronger reductions are desirable.
We would like to be able to know when we can add an edge or a
node to a pattern graph or further specify a node mapping, and
then be able to modify an existing algori thm to solve the new
problem. Most of all, we would like to know whether the SHP
for every pattern graph H has a polynomial-time algorithm for tts
solution.

Figure i0: Equivalence of two fixed SHP's for directed graphs

If in G one wants: then add:

c
new e d g e s - N

o
S

new nodes

T
B A -l -%

--- /new ~ " -q3 e d g e s ~

and look for:

T

If in G one wants:
S

then:

Split S into S 1 and S 2 such

that the outgoing edges of S are

edges of S 1 and the incoming edges

of S are the edges of S 2. Split
T similarly.

and look for: ISl
T 1 T 2

- 49 -

References

[Ah3 Aho, A., Hopcroft, J., UIIman, J., The Design and
Analysis of Computer Algorithms, Addison-Wesley
Publishing Co., Reading, Mass., 1974.

[Be] Berge, Claude, The Theory of Graphs and its
Applications, John Wiley & Sons, Inc., New York, 1966.

[Di] Dinic, E.A., "Algorithm for Solution of a Problem of
Maximum Flow in a Network with Power Estimation,"
Soviet Mathematics Doklady, Vol. II, No. 5, 1970,
pp. 1277-1280.

[Ev 1977] Even, S. private communication.

[Ev 1976] Even, S., ltai, A., Shamir, A., "On the Complexity of
Timetable and Multi-commodity Flow Problems,"
SIAM |ournal on Computing, Vol. 5, No. 4, Dec. 1976,
pp. 691-703.

[Ev 1975] Even, S., Tarjan, R.E., "Network Flow and Testing
Graph Connectivity," SIAM |ournal on Computing,
Vol. 4, No. 4, Dec. 1975, pp. 507-518.

[Ge] Geller, Dennis, "Forbidden Subgraphs," Proof
Techniques in Graph Theory, Frank Harary, ed.,
Acedemtc Press, New York, 1969, pp. 37-47.

[Ha 1971] Harary, Frank, Graph Theory, Addison-Wesley
Publishing Co., Reading, Mass., 1971.

[Ha 1973] Harary, Frank, "On the History of the Theory of
Graphs," New Directions in the Theory of Graphs,
Frank Harary, ed., Acedemic Press, New York, 1973,
pp. 1-17.

[Ho 1973a] Hopcroft, J.E., Tarjan, R.E., "Algorithm 447: Efficient
Algorithms for Graph Manipulation," Communications
of the ACM s Vol. 8, No. 6, June 1973, pp. 372-378.

[Hu] Hu, T.C., Integer Programming and Network Flows,
Addison-Wesley Publishing Co., Reading, Mass., 1969.

[Hunt] Hunt, H.B., Szymanski, T.G., "Dichotomization,
Reachability, and the Forbidden Subgraph Problem,"
Proceedings of the Eighth Annual ACM Symposium
on Theory of Computing, Association for Computing
Machinery, New York, 1976, pp. 126-134.

[Lap] LaPaugh, A., "The Subgraph Homeomorphism
Problem," Massachusetts Institute of Technology,
Laboratory for Computer Science TM 99, Feb. 1978.

[Lar] Larman, D., Mani, P., "On the Existence of Certain
Configurations within Graphs and the I-Skeletons of
Polytopes," Proceedings of the London Math. Soc.,
Vol. 20, No. 3, 1970, pp. 144-160.

[Peril

[Rog]

[Sh]

.[Ta 1972]

[Ta 1974]

[Wa]

Perl, Y., Shiloach, Y., "Finding Two Disjoint Paths
Between Two Pairs of Vertices in a Graph," Journal of
the ACM, Vol. 25, No. I, Jan. 1978, pp. I-9.

Rogers, H., Jr., Theory of Recursive Functions and
Effective Computability, McGraw-Hill Book Co., New
York, 1967.

Shiloach, Y., private communication.

Tarjan, R. E., "Depth First Search and Linear Graph
Algorithms," SlAM Journal on Computing, Vol I,
No. 2, June 1972, pp. 146-160.

Tarjan, R.E., "Testing Graph Connectivity,"
Proceedings of the Sixth Annunal ACM Symposium
on Theory of Computing, Association for COmputing
Machinery, New York, 1974, pp. 185-195.

Watkins, Mark, "On the Existence of Certain Disjoint
Arcs in Graphs," Duke Mathematical Journal, VoL 35,
1968, pp. 231-246.

- 5 0 -

