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Estima ting  a  Probability Using 
F inite Memory 

F. THOMSON LEIGHTON, MEMBER, IEEE, AND RONALD L. RIVEST 

Abstract-Let { X, }z 1 be a sequence of independent Bernoulli random 
variables with probability p that Xi = 1 and probability 4 = 1 - p that 
X, = 0 for all i 2 1. Time-invariant finite-memory (i.e., finite-state) esti- 
mation procedures for the parameter p are considered which take X,, . 
as an input sequence. In particular, an n-state deterministic estimation 
procedure is described which can estimate p with mean-square error 
O(logn/n) and an n-state probabilistic estimation procedure which can 
estimate p with mean-square error 0(1/n). It is proved that the 0(1/n) 
bound is optimal to within a constant factor. In addition, it is shown that 
linear estimation procedures are just as powerful (up to the measure of 
mean-square error) as arbitrary estimation procedures. The proofs are 
based on an analog of the well-known matrix tree theorem that is called 
the Markov chain tree theorem. 

I. INTRODUCTION 

L ET { Xi}gl be  a  sequence of independent Bernoulli 
random variables with probability p  that Xi = 1  and  

probability 4  = 1  - p  that Xi = 0  for all i 2  1. Estimating 
the value of p  is a  classical problem in statistics. In 
general, an  estimation procedure for p  consists of a  se- 
quence of estimates { e,}z,, where each e, is a  function of 
{ Xi}iCl. When  the form of the estimation procedure is 
unrestricted, it is well-known that p  is best estimated by 

1  * 
et= 7  ,FK* 

I-1 

As an  example, consider the problem of estimating the 
probability p  that a  coin of unknown bias will come up  
heads. The  optimal estimation procedure will, on  the tth 
trial, flip the coin to deterrhine X, (X, = 1  for heads and  
X, = 0  for tails) and  then estimate the proportion of heads 
observed in the first t trials. 

The  quality of an  estimation procedure may be  mea-  
sured by its mean-square error a’(p). The  mean-square 
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error of an  estimation procedure is defined as 

where 

f~t(z-4 = E((e, -PI’) 
denotes the expected square error of the tth estimate. For 
example, it is well-known that u:(p) = pq/t and  u*(p) 
= 0  when et = (l/t)E:=,Xi. 

In this paper, we consider time-invariant estimation 
procedures which are restricted to use a  finite amount  of 
memory.  A time-invariant finite-memory estimation proce- 
dure consists of a  finite number  of states S = (1; . . , n}, a  
start state S, E { 1, * . *, n}, and  a  transition function 7  
which computes the state St at step t from the state St-, at 
step t - 1  and  the input X, according to 

St = T(S,-1, 4). 

In addition, each state i is associated with an  estimate qli 
of p. The  estimate after the tth transition is then given by 
et = qs,. For simplicity, we will call a  finite-state estima- 
tion procedure an  “FSE.” 

As an  example, consider the FSE shown in F ig. 1. This 
FSE has n  = (s + l)(s + 2)/2 states and  simulates two 
counters: one  for the number  of inputs seen, and  one  for 
the number  of inputs seen that are ones. Because of the 
finite-state restriction, the counters can count up  to s = 
O(G) but not beyond. Hence all inputs after the s th 
input are ignored. On  the tth step, the FSE estimates the 
proportion of ones seen in the first m in(s, t) inputs. This 
is 

1 min(s, t) 

et = m ini,, t> F1  Xi. 

Hence the mean-square error of the FSE is u*(p) = pq/s 
= O(l/ 6). 

In [31], Samaniego considered probabilistic FSE’s and  
constructed the probabilistic FSE shown in F ig. 2. Prob- 
abilistic FSE’s are similar to nonprobabilistic (or deter- 
m inistic) FSE’s except that a  probabilistic FSE allows 
probabilistic transitions between states. In particular, the 
transition function 7  of a  probabilistic FSE consists of 
probabilities 7ijk that the FSE will make a  transition from 
state i to state j on  input k. For example, 7320  = 2/(n - 1) 
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Fig. 1. (s + l)(s + 2)/2-state deterministic FSE with mean-square error a2(p) = pq/s. States are represented by circles. 
Arrows labeled with 4 denote transitions on input zero. Arrows labeled with p denote transitions on input one. Estimates are 
given as fractions and represent proportion of inputs seen that are ones. 

Fig. 2. Probabilistic n-state FSE with mean-square error u2( p) = p~‘( n - 1). States are represented by circles in increasing 
order from left to right (e.g., state 1 is denoted by leftmost circle and state n is denoted by rightmost circle). State i estimates 
(i - l)/(n - 1) for 1 I i I n. The estimates are shown as fractions within circles. Arrows labeled with fractions of 4 denote 
probabilistic transitions on input zero. Arrows labeled with fractions of p denote probabilistic transitions on input one. For 
example, probability of changing from state 2 to state 3 on input 1 is (n - 2)/( n - 1). 

in Fig. 2. So that r is well-defined, we require that 
Cy,irijk = 1 for all i and k. 

Samaniego [31] and others have shown that the mean- 
square error of the FSE shown in Fig. 2 is u*(p) = 
pq/(n - 1) = 0(1/n). In this paper, we prove that this 
method is the best possible (up to a constant factor) for an 
n-state FSE. In particular, we will show that for any 
n-state FSE (probabilistic or deterministic), some value of 
p exists for which u*(p) = fJ(l/n). Previously, the best 
lower bound known for u*(p) was G(l/n*). The weaker 
bound is due to the “quantization problem,” which pro- 
vides a fundamental lim itation on the achievable perfor- 
mance of any FSE. Since the set of estimates of an n-state 
FSE has size n, there is always a value of p (in fact, there 
are many such values) for which the difference between p 
and the closest estimate is at least 1/2n. This means that 
the mean-square error for some p must be at least Q(l/n*). 
Our result (which is based on an analog of the matrix tree 
theorem that we call the Markov chain tree theorem) 

proves that this bound is not achievable, thus showing that 
the quantization problem is not the most serious conse- 
quence of the finite-memory restriction. 

It is encouraging that the nearly optimal FSE in Fig. 2 
has such a simple structure. This is not a coincidence. In 
fact, we will show that for every probabilistic FSE with 
mean-square error u*(p), there is a linear probabilistic 
FSE with the same number of states and with a mean- 
square error that is bounded above by u*(p) for all p. (An 
FSE is said to be linear if the states of the FSF can be 
linearly ordered so that transitions are made only between 
consecutive states in the ordering. Linear FSE’s are the 
easiest FSE’s to implement in practice since the state 
information can be stored in a counter, and the transitions 
can be effected by a single increment or decrement of the 
counter.) 

We also study deterministic FSE’s in the paper. Al- 
though we do not know how to achieve the O(l/n).lower 
bound for deterministic FSFs, we can come close. In fact, 
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we will construct an  n-state deterministic FSE that has 
mean-square error O(log n/n). The  construction uses the 
input to deterministically simulate the probabilistic transi- 
tions of the FSE shown in F ig. 2. 

The  remainder of the paper  is divided into sections as 
follows. In Section II, we present some background material 
on  Markov chains and  give a  simple proof that the FSE 
shown in F ig. 2  has mean-square error 0(1/n). In Section 
III we construct an  n-state deterministic FSE with mean-  
square error O(log n/n). The  Q(l/n) lower bound  for 
n-state FSE’s is proved in Section IV. In Section V, we 
demonstrate the universality of linear FSE’s. In Section VI, 
we mention some related work and  open  questions. For 
completeness, we have included a  proof of the Markov 
chain tree theorem in the Appendix. 

II. BACKGROUNDTHEORYOFMARKOVCHAINS 

An n-state FSE acts like an  n-state first-order stationary 
Markov chain. In particular, the transition matrix P defin- 
ing the chain has entries 

Pij = ‘ijlP + ‘ijO 

where rijk is the probability of changing from state i 
to state j on  input k in the FSE. For example, pj3 = 
2p/(n - 1) + q(n - 3)/(n - 1) for the FSE in F ig. 2. 

From the definition, we know that the mean-square 
error of an  FSE depends on  the lim iting probability that 
the FSE is in state j given that it started in state i. (This 
probability is based on  p  and  the transition probabilities 
7jjk.) The  long-run transition matrix for the corresponding 
Markov chain is given by 

This lim it exists because P is stochastic (see [8, Theorem 
21). The  ijth entry of p  is simply the long-run average 
probability pij that the chain will be  in state j given that it 
started in state i. 

In the case that the Markov chain defined by P is 
ergodic, every row of p  is equal  to the same probability 
vector 7r = (ni a.. r,) which is the stationary probability 
vector for the chain. In the general  case, the rows of P 
may vary, and  we will use r to denote the S,th row of p. 
Since So is the start state of the FSE, vi is the long-run 
average probability that the FSE will be  in state i. Using 
the new notation, we can express the mean-square error of 
an  FSE as 

‘“(PI = iI Tii(Vi - P12. 
i=l 

Several methods are known for calculating long-run 
transition probabilities. For our purposes, the method 
developed by Leighton and  Rivest in [21] is the most 
useful. This method is based on  sums of weighted arbores- 
cences in the underlying graph of the chain. We  review the 
method in what follows. 

Let V= {l;.., n  } be  the nodes of a  directed graph G , 
with edge  set E = {(i, j)lpij #  O}. This is the usual 

directed graph associated with a  Markov chain. (Note that 
G  may contain self-loops.) Define the weight of edge  (i, j) 
to be  pij. An edge  set A c E is an  arborescence if A 
contains at most one  edge  out of every node, has no  cycles, 
and  has maximum possible cardinality. The  weight of an  
arborescence is the product of the weights of the edges it 
contains. A node  which has out-degree zero in A is called 
a  root of the arborescence. 

Clearly, every arborescence contains the same number  of 
edges. In fact, if G  contains exactly k m inimal closed 
subsets of nodes, then every arborescence has (V] - k 
edges and  contains one  root in each m inimal closed subset. 
(A subset of nodes is said to be  closed if no  edges are 
directed out of the subset.) In particular, if G  is strongly 
connected (i.e., the Markov chain is irreducible), then 
every arborescence is a  set of IT/( - 1  edges that form a  
directed spanning tree with all edges flowing towards a  
single node  (the root of the tree). 

Let &‘(V) denote the set of arborescences of G , dj(V) 
denote the set of arborescences having root j, and  djj(V) 
denote the set of arborescences having root j and  a  
directed path from i to j. (In the special case i = j, we 
define djj(V) to be  dj(v).) In addition, let I]&‘(V)]], 
]]&j(V)]], and  ]]&‘ij(V)(] denote the sums of the weights of 
the arborescences in d(V), dj(V), and  dij(V), respec- 
tively. 

The  relationship between steady-state transition prob- 
abilities and  arborescences is stated in the following theo- 
rem. The  result is based on  the well-known matrix tree 
theorem and  is proved in [21]. For the sake of complete- 
ness, we have provided a  sketch of the proof in the 
Appendix. 

The  Markov Chain Tree Theorem: Let the stochastic 
n  x n matrix P define a  finite Markov chain with long-run 
transition matrix p. Then  

p,, = IIdij(v)lI 
” Il-ol(~)ll ’ 

Corollary: If the underlying graph is strongly connected, 
then 

pij = Ildj(v)ll 
IW(Oll * 

As a  simple example, consider once again the probabilis- 
tic FSE displayed in F ig. 2. Since the underlying graph is 
strongly connected, the corollary means  that 

I14(v)ll 
?Ti = IpqV)(l * 

In addition, each di(V) consists of a  single tree with 
weight 
n-1 n-2 n  - (i- 1) i 
-P’- *** n-l n-l P n-l P .- n-l 4 

i+l n-l .- 4  . . . - 
n-l n-l 4, 
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and thus 

Summing over i, we find that 

Il.qV)ll = i (7: ;) (;y-l;;:lp i-lqn-i 
i=l 

= (n-l)! (p+q)“-l 

(n - 1),-l 

= (n - 9  
(n - l)n-l 

and  thus that 
n-l 7ri = i ) i _  1  pi-‘q”-‘. 

Interestingly, this is the same as the probability that i - 1  
of the first n  - 1  inputs are ones and  thus the FSE in F igs. 
1  and  2  are equivalent (for s = n  - 1) in the long run! The  
FSE in F ig. 2  has fewer states, however, and  mean-square 
error a2( p) = pq/( n  - 1) = 0(1/n). 

The  Markov chain tree theorem will also be  useful in 
Section IV, where we prove a  lower bound  on  the worst-case 
mean-square error of an  n-state, FSE and  in Section V, 
where we establish the universality of linear FSE’s. 

III. AN IMPROVED DETERMINISTIC FSE 

In what follows, we show how to simulate the n-state 
probabilistic FSE shown in F ig. 2  with an  0( n  log n)-state 
deterministic FSE. The  resulting m-state deterministic FSE 
will then have mean-square error O(log m /m). This is 
substantially better than the mean-square error of the FSE 
shown in F ig. 1, and  we conjecture that the bound  is 
optimal for deterministic FSE’s. 

The  key idea in the simulation is to use the randomness 
of the inputs to simulate a  fixed probabilistic choice at 
each state. For example, consider a  state i which on  input 
one  changes to state j with probability l/2, and  which 
remains in state i with probability l/2. (See F ig. 3(a).) 

(b) 
Fig. 3. simulation of (a) probabilistic transitions by  (b) deterministic 

transitions. 

Such’s situation arises for states i = (n + 1)/2 and  j = (n 
+ 1)/2 + 1  for odd  n  in the FSE of F ig. 2. These transi- 
tions can be  mode led by the deterministic transitions shown 
in F ig. 3(b). 

The  machine in F ig. 3(b) starts in state i and  first checks 
to see if the input is a  one. If so, state 2  is entered. At this 
point, the machine examines the inputs in successive pairs. 
If 00  or 11  pairs are encountered, the machine remains in 
state 2. If a  01  pair is encountered, the machine returns to 
state i, and  if a  10  pair is encountered, the machine enters 
state j. Provided that p  #  0,l (an assumption that will be  
made  throughout the remainder of the paper), a  01  or 10  
pair wiII (with probability 1) eventually be  seen, and  the 
machine will eventually decide to stay in state i or move to 
state j. Note that, regardless of the value of p  (0 < p  < l), 
the probability of encounter ing a  01  pair before a  10  pair 
is identical to the probability of encounter ing a  10  pair 
before a  01  pair. Hence the deterministic process in F ig. 
3(b) is equivalent to the probabilistic process in F ig. 3(a). 
(The trick of using a  biased coin to simulate an  unbiased 
coin has also been  used by von Neumann in [26] and  
Hoeffding and  Simons in [15].) 

It is not difficult to general ize this technique to simulate 
transitions with other probabilities. For example, F ig. 4(b) 
shows how to simulate a  transition which has probability 
(3/8)p. As before, the simulating machine first verifies 
that the input is a  one. If so, state a, is entered and  
remaining inputs are divided into successive pairs. As 
before, 00  and  11  pairs are ignored. The  final state of the 
machine depends on  the first three 01  or 10  pairs that are 
seen. If the first three pairs are 10  10  10,lO 10  01, or 10  01  

(‘-9 
Fig. 4. Simulation of (a) probabilistic transitions by  (b) deterministic 

transitions. 
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10 (in those orders), then the machine moves to state j. 
O therwise, the machine returns to state i. Simply speaking, 
the machine interprets strings of 01’s and  lo’s as binary 
numbers formed by replacing 01  pairs by zeros and  10  
pairs by ones and  decides if the resulting number  is bigger 
than or equal  to 101  = 5. Since 01  and  10  pairs are 
encountered with equal  probability in the input string for 
any p, the probability that the resulting number  is five or 
bigger is precisely 3/8. 

In general, probabilistic transitions of the form shown in 
F ig. 5  (where x is an  integer) can be  simulated with 3k 
extra deterministic states, each with the same estimate. 
Hence when n  - 1  is a  power of two, the n-state prob- 
abilistic FSE in F ig. 2  can be  simulated by a  deterministic 
FSE with 6( n  - 1) log (n - 1) = 0( n  log n) additional 
states. When  n  is not a  power of two, the deterministic 
automata should simulate the next largest probabilistic 
automata that has 2” states for some a. This causes 
at most a  constant increase in the number  of states 
needed  for the simulation. Hence, for any m , there is an  
m-state deterministic automata with mean-square error 
O(log m /m). 

Fig. 5. General  probabilistic transition. 

IV. THE LOWER BOUND 

In this section, we show that, for every n-state prob- 
abilistic (or deterministic) FSE, there is a  p  such that the 
mean-square error of the FSE is Q(l/n). The  proof is 
based on  the Markov chain tree theorem and  the analysis 
of Section II. 

From the analysis of Section II, we know that the 
mean-square error of an  n-state FSE is 

j=l 

iI lld&j(v)II(~j -PI” 
= j=l 

Il-@v)ll 
where Ildsd(V)ll and Ild(V)ll are weighted sums of 
arborescences in the underlying graph of the FSE. In 
particular, each Il.dsd(V)ll is a  polynomial of the form 

fi( p, q) = i aijpiP1qnei, 
i=l 

and  Ild(V)ll is a  polynomial of the form 

g(p, q) = i aipi-lqn-i 
i=l 

where a, = Cyxlaij and  aij 2  0  for all 1  I i, j I n. The  
nonnegativity of the aij follows from the fact that every 
edge  of the graph underlying the FSE has weight pij = 
rijlp + T ijoq, where rijl and  rijo are nonnegative. Since 
every arborescence in the graph has m  I n  - 1  edges, 
every term in the polynomial for Ildsd(V)ll has the form 
aprqs, where r + s = m . Mu ltiplying by (p + q)n-l-m = 1  
then puts &(p, q) in the desired form. The  identity for 
g(p, q) follows from the fact that Ild(V)ll = 
q=lII~saj(~/)lI* 

From the preceding analysis, we know that 

g  $  aijpi-‘q*-‘( qj - p )’ 

O2(p) = ‘=I i=l n 

C  aipi-lqn-i 

i=l 

where ai = Cy-laij and  aij 2  0  for 1  I i, j < n. In what 
follows, we will show that 

n 

[=o’tl 2  aijP n+i-lq2n-i( ~j _ p)2 dp 

1 
2Q - 

i i/ 
1  * 

n  C aiP n+i-lq2n-idp 

p=oi=1 

for all atj 2  0  and  nj. Since the integrands are always 
nonnegative, we will have thus proved the existence of a  p  
(0 < p  < 1) for which 

t 2  ai jpn+i-1q2n-i( l j  - p )’ 

j=l is1 

1 n  
2  fi ; C  aipn+i-1q2n- i .  

i i i=l 

Dividing both sides by p”q” proves the existence of a  p  
for which 

5  i aijpi-lq”-i(l)j - p)” 2  Q  i i aipi-lqn-i 

j-1 i=l i i i=l 

and thus for which 02(p) 2  Q(l/n). 
The  proof relies heavily on  the following well-known 

identities: 

and  

J lpi(l 
0 

for all 1. 

ilPY1 - P)jdP = @  +y; 1), 

P>j(P - d2dP 2 
(i + l)!(j + l)! 

(I +j + 3)!(i +j + 2) 
(**> 
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The proof is now a straightforward computation: 
n 

/b=O;l F  aijP 
n+i-lq2n-i(qj _ p)2 dp 

-1 

= e 2 aijSbP.fiwl (1 - p)‘“-‘( p - TQ)~ dp 
j-1 i=l 

n aij(n + i)!(2n - i + l)! 
2 ,$ iFl (3n + 2)!(3n + 1) by (**I 

n ai(n + i)!(2n - i + l)! 
= iFl (3 n + 2)!(3n + 1) 

n (n + i)(2n - i + 1) a,(n + i - 1)!(2n - i)! 

= i?l (3n + 2)(3n + 1)2 (3n)! 

2n(n + 1) n a,(n + i - 1)!(2n - i)! 
c ’ (3n + 2)(3n + 1)’ i=i (3n)! 

e a,Jbp”+‘-‘(1 - p)2”-i dp by (*) 
i=l 

Proof This is just a special case of the general theo- 
rem [12, Theorem 161 that an s th power mean is greater 
than an rth power mean if s > r. The lemma also follows 
from Cauchy’s inequality [12, Theorem 61, or it can be 
proved using the observation that f(x) = (X - P)~ is a 
convex function. 

Let $ = (l/ai)CyCIaijqj for 1 I i I n. From Lemma 
1, we can conclude that 

e a,p’-lq”-‘( p - $)’ 

u’(p) 2 i-1 
5 aipi-lqn-i 

i=l 

for 0 I p I 1. This ratio of sums is similar to the mean- 
square error of a linear FSE which never moves left on 
input one and never moves right on input zero. For 
example, the mean-square error of the linear FSE in Fig. 6 
can be written in this form by setting 

a, = u1 *** ui-lui+l **- U” 
forlliln. 

= fl i /b-o ,$Iaip.ii-1q2n-i dp. 
i i t= 

It is worth remarking that the key fact in the preceding 
proof is that the long-run average transition probabilities 
of an n-state FSE can be expressed as ratios of (n - l)- 
degree polynomials with nonnegative coefficients. This fact 
comes from the Markov chain tree theorem. (Although it is 
easily shown that the long-run probabilities can be 
expressed as ratios of (n - l)-degree polynomials, and as 
infinite polynomials with nonnegative coefficients, the 
stronger result seems to require the full use of the Markov 
chain tree theorem.) The remainder of the proof essentially 
shows that functions of this restricted form cannot accu- 
rately predict p. Thus the limitations imposed by re- 
stricting the class of transition functions dominate the 
limitations imposed by quantization of the estimates. 

V. UNIVERSALITY OF LINEAR FSE’s 

In Section IV, we showed that the mean-square error of 
any n-state FSE can be expressed as 

$ k  aijpi-‘q”-‘( qj - p)” 

,,2cp) = J=l i=l n 

C aipi-lqn-i 

i=l 

where a, = C&laij and aij 2 0 for 1 I i, j I n. In this 
section, we will use this fact to construct an n-state linear 
FSE with mean-square error at most 02(p) for all p. We 
first prove the following simple identity. 

Lemma 1: If a,; . . , a,, are nonnegative, then 

i ajt77j -P)” 2 a(71 -P)” 
j=l 

for all p and nl; **, 
(l/a)Cy,lajVj. 

n, where a = C&laj and 9 = 

~l-l.dp (l-u,+ 

Fig. 6. Universal linear FSE. 

G iven a nonnegative set { ai}dl, it is not always possi- 
ble to find sets { z.+};:~ and { ui}7=2 such that 0 I ui, ui I 
1 and a, = ui . . - ui-iui+i ** * u, for all i. Two possible 
difficulties may arise. The first problem is that ai might be 
larger than one for some i. This would mean that some uj 
or uj must be greater than one, which is not allowed. The 
second problem involves values of ai which are zero. For 
example, if a, # 0 and a, # 0, then each ui and ui must 
be nonzero. This would not be possible if a, = 0 for some 
i,l < i < n. 

Fortunately, both difficulties can be overcome. The first 
problem is solved by observing that the mean-square error 
corresponding to the set { cai}yCI is the same as the 
mean-square error corresponding to { ai};==, for all c > 0. 
By setting 

ai+l 
u.= - 

I a, ’ 
ui+l = 1 if a, 2 ai+l, 

ui = 1, ai ui+i = - 
ai+l 

if ai+l 2 ai, 

and 

we can easily verify that the mean-square error of the FSE 
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shown in F ig. 6  is 

k caipielqnmi( p - ~1:)~ f aipiM1qnei( p - q:)2 
i-l 

n  
=  i=l 

n  

i=l i=l 

provided that ai > 0  for 1  I i I n. This is because 

r+l 
- . . . - 

‘i 

=can(u’ ) 

( 
%  

u,-1 

) 

ai ail-1 
- . . . - 

ai+l 
( 

an 
) 

= cai. 

If a, = . *. = ajel = 0  and  ak+l = . ** = a,, = 0  but 
a, #  0  for j I i I k, then the preceding scheme can be  
made  to work by setting u1  = * . * = uj-i = 1, uk = * . * 
= u,-1 = 0, u2  = . . . = Uj = 0, uk+l = . . . = un  = 1, 

ai+l 
u.= - I , ‘i+l = 1  if a, 2  ai+l for j I i 5  k - 1, 

ui 

ui = 1, ai ui+l = - if ai+l 2  a, for j I i I k - 1, 
ai+l 

and 

c= 
uj *** U&1 

ak 

To  overcome the second problem then, it is sufficient to 
show that if aj #  0  and  ak #  0  for some FSE, then a, #  0  
for every i in the range j I i I k. From the analysis in 
Sections II and  IV, we know that a, #  0  if and  only if an  
arborescence exists in the graph underlying the FSE which 
has i - 1  edges weighted with a  fraction of p  and  n  - i 
edges weighted with a  fraction of 4. In Lemma 2, we will 
show that, given any pair of arborescences A and  A’, one  
can construct a  sequence of arborescences A,, . . . , A, such 
that A, = A, A, = A’, and  Ai and  Ai+i differ by at most 
one  edge  for 1  I i < m . Since every edge  of the graph 
underlying an  FSE is weighted with a  fraction of p  or q  or 
both, this result will imply that a  graph containing an  
arborescence with j - 1  edges weighted with a  fraction of 
p  and  n  - j edges weighted with a  fraction of q, and  an  
arborescence with k - 1  edges weighted with a  fraction of 
p  and  n  - k edges weighted with a  fraction of q, must also 
contain an  arborescence with i - 1  edges weighted with a  
fraction of p  and  n  - i edges weighted with a  fraction of 
q  for every i in the range j < i I k. This will conclude the 
proof that for every n-state FSE with mean-square error 
a’(p), there is an  n-state linear FSE with mean-square 
error at most a2( p) for 0  I p  5  1. 

Lemma 2: G iven a  graph with arborescences A and  A’, 
a  sequence of arborescences A,, . .;, A, exists such that 
A, = A, A, = A’, and  Ai+l can be  formed from Ai for 
1  I i < m  by replacing a  single edge  of Ai with an  edge  
of A’. 

Proof: G iven Ai, we construct Ai+l as follows. F irst 
we identify an  edge  e  = (u, u) from the set A’ - Ai. Next, 
we consider the graph A$ = A, + e, which must contain 
either two edges directed out of u, or a  directed cycle, or 
both. We  claim that it is possible to have chosen e  so that 
at most one  of these cases arise by choosing e  to be  
directed out of a  root of Ai if possible (so we get only a  
cycle), or else by choosing the edge  e  = (u, u) from A’ - Ai 
with u  as near  (in A’) to a  root of A’ as possible. In the 
latter case, u  and  all its successors have as out-edges their 
edges from A’, and  the root of Ai that u  leads to is a  root 
of A’, so that no  cycles can arise by adding the edge  e. We  
assume such an  appropriate choice of e  has been  made.  If 
u  has out-degree two in A;, we create Ai+l by deleting 
from A{ the other edge  out of u  (which of necessity 
cannot belong to A’, since A’ is an  arborescence). If A: 
contains a  cycle, we create Ai+l by deleting from A; an  
edge  in the directed cycle which does not belong to A’. 
(There must be  such an  edge, since A’ contains no  cycles.) 
This process terminates because the number  of edges in 
common between Ai and  A’ increases by one  at each step. 

VI. REMARKS 

The  literature on  problems related to estimation with 
finite memory is extensive. Most of the work thus far has 
concentrated on  the hypothesis testing problem [3], [6], 
[14], [33], [34], [36]. Generally speaking, the hypothesis 
testing problem is more tractable than the estimation 
problem. For example, several constructions are known for 
n-state automata which can test a  hypothesis with long-run 
error at most 0( (Y”), where (Y is a  constant in the interval 
0  < (Y < 1  that depends only on  the hypothesis. In ad- 
dition, several researchers have studied the time-varying 
hypothesis testing problem 151, [18], [19], [24], [29], [37]. 
Allowing transitions to be  time-dependent  greatly en- 
hances the power of an  automata. For example, a  four-state 
time-varying automata can test a  hypothesis with an  arbi- 
trarily small long-run error. 

As was ment ioned previously, Samaniego [31] studied 
the problem of estimating the mean  of a  Bernoulli distri- 
bution using finite memory, and  discovered the FSE shown 
in F ig. 2. Hellman studied the problem for Gaussian 
distributions in [13] and  discovered an  FSE which achieves 
the lower bound  implied by the quantization problem. 
(Recall that this is not possible for Bernoulli distributions.) 
Hellman’s construction uses the fact that events at the tails 
of the distribution contain a  large amount  of information 
about the mean  of the distribution. The  work on  digital 
filters (e.g., [27], [28], [30]) and  on  approximate counting of 
large numbers [lo], [23] is also related to the problem of 
finite-memory estimation. 

We  conclude with some questions of interest and  some 
topics for further research: 

1) Construct an  n-state deterministic FSE with mean-  
square error o(log n/n) or show that no  such con- 
struction is possible. 

2) Construct a  truly optimal (in terms of worst-case 
mean-square error) n-state FSE for all n. 
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3) 

4) 

5) 

Consider estimation problems where a  prior distri- 
bution on  p  is known. For example, if the prior 
distribution on  p  is known to be  uniform, then the 
n-state FSE in F ig. 2  has expected (over p) mean-  
square error @(l/n). Prove that this is optimal (up 
to a  constant factor) for n-state FSE’s. 
Consider mode ls of computation that allow more 
than constant storage. (Of course, the storage should 
also be  less than logarithmic in the number  of trials 
to make the problem interesting.) 
Can the amount  of storage used for some interesting 
mode ls be  related to the complexity of representing 
p?  For example, if p  = a/b, then log a + log b bits 
m ight be  used to represent p. Suppose that the FSE 
may use an  extra amount  of storage proportional to 
the amount  it uses to represent its current predic- 
tion. 
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APPENDIX 

Proof of the Markou Chain Tree Theorem 

The Markov chain tree theorem was originally proved in [21] 
but was never published, so for completeness, we will sketch the 
proof in this Appendix. The proof is based on the matrix tree 
theorem (e.g., see [2]) and thus is similar to a number of deriva- 
tive results in the literature. In fact, Corollary 1 is also proved in 
[17] and [35], although the result is not as well-known as one 
might expect. We  commence with some elementary definitions 
and lemmas. 

It is well known that the states of any Markov chain can 
be decomposed into a set T  of transient states and sets 
4, 4,. * ., B,,, of minimal closed subsets of states. For any 
subset of states W  G V, define c(W) to be the number of 
minimal closed subsets of states contained in W . For example, 
every arborescence has ]Y] - c(V) edges. The following lemma 
states a simple but important fact about c(W). 

Lemma Al: If U and W  are disjoint subsets of V and if there 
are no edges from W  to U in E, then c(U U W) = c(U) + c(W). 

Proof: Every minimal closed subset in U or W  is a minimal 
closed subset in U U W . Thus c(U U W) 2 c(U) + c(W). If a  
closed subset of U U W  contains nodes in both U and W , then 
the portion of the subset in W  is also closed (since there are no 
edges from W  to U). Thus the original subset is not minimal, 
implying that c(U U W) I c(U) + c(W). Thus c(U U W) = 
c(U) + c(W), as claimed. 

Given any subset of nodes W  z V, define an arborescence 
from W  to be an acyclic subgraph of G = (V, E) for which the 
out-degree of nodes in W  is at most one and for which the 
out-degree of nodes in V - W  is zero. Let d’(W) denote the set 
of arborescences from W  with r edges, djr( W) denote the set of 
arborescences from W  with root j and r edges, and &$( W) 

denote the set of arborescences from W  with root j, a  path from 
i to j and r edges. (If i = j, then .EpG( W) is defined to be 
djr(W).) As we are particularly interested in arborescences 
with IWI - c(W) edges, we use Z%‘(W), di( W), and dij( W) to 
denote the sets &lwI-c(w)( W), &jwl-c(w)( W), and 
~&$yl-‘(~)( W), respectively. For example, dij( W) denotes the 
set of arborescences from W  with root j, a  path from i to j, and 
1 W I - c(W) edges. 

Notice that the definitions for d(V), dj(V), and dij(V) 
provided here are equivalent to those given in Section II. This is 
because every maximum arborescence has [VI - c(V) edges. Also 
notice that dj( W) and dij( W) may be empty for some W . This 
happens when node j is not contained in a minimal closed subset 
of W  and/or when there is no path from i to j in G. When W  is 
nonempty, d(W) is nonempty. In general, d’(W) will be 
empty precisely when r > I W I - c(W). 

The weight of an arborescence from W  and the ]]1]] notation 
are defined as in Section II. Using Lemma Al, we easily establish 
the following identities. 

Lemma A2: Let U and W  be disjoint subsets of V such that 
there are no edges from W  to U. Also let i, i’ E U and j, j’ E W  
be arbitrary vertices. Then 

IWsl(UU W II = IlJ4~)II~Il4wll 

I14i(uu w)Il=l14(“>ll*lld(w)II 

IIdjCuu w>Il=ll,sl(u)II~II~(w)II 

I14i’(uu w)II = l14i’(“)II * Ild(w)II 

llJ$W U  VII = Il4W ll. Il~yW )lI 
I”EW 

I14j(uu w)II = C l14jt(u>ll. Ildj’j(w)ll. 

Proof: The union of an arborescence from U with IUI - 
c(U) edges and an arborescence from W  with ] W I - c(W) edges 
is an arborescence from U U W  with IUI - c(U) + IWI - c(W) 
= IU U W I - c(U U W) edges. (No cycles can be formed in the 
union since there are no edges from W  to U.) Conversely, an 
arborescence from U U W  with IU U W I - c(U U W) edges can 
have at most IUI - c(U) edges from nodes in U and at most 
IWI - c(W) edges from W . Hence the arborescence can be 
uniquely expressed as the union of an arborescence from U with 
IUI - c(U) edges and an arborescence from W  with IWI - c(W) 
edges. Thus Ild(U U W)ll = Ild(U)ll 1  p’(W)ll. The remaining 
identities can be similarly proved. 

At first glance, it is not at all clear why sums of weighted 
arborescences should be related to long-run transition probabili- 
ties. Nor will the connection be made clear from our proof, which 
relies on the matrix tree theorem. In fact, both quantities are 
related to sums of weighted paths in the chain. We  refer the 
reader to [21] for a  longer but more enlightening proof. 

Let X be an arbitrary real-valued n  x n  matrix. We let C,(X) 
denote the n  X n  matrix obtained from X by replacing its kth 
column by a length n vector of ones. We  let Dij(X) denote the 
(n - 1) X (n - 1) matrix obtained from X by deleting its i th 
row and jth column. If A and B are sets, we also let DAB(X) 
denote the matrix obtained from X by deleting all rows in A and 
all columns in B. The following lemma contains some simple 
identities for the determinants of these matrices. (The determi- 
nant of a  matrix X is denoted by IX].) 
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Lemma A3: Let X be an II X n stochastic matrix. Then 

IG(X)l= PqX)l forlli,jln 

lDij(X)I = (-l)‘+j]oii(x)] forlIi,jSn 

Ic/c(x>l = It lDiitx)l forlsksn. 
i=l 

Proof The proof is straightforward. 

A general version of the matrix tree theorem [l] can be stated 
as follows. 

Matrix Tree Theorem: Let the n X n matrix X have entries 
xii, where 

xij = -yij for i f j, 

and 

xii = -yj, + i y,,. 
k=l 

Define an associated graph G with V = (1,. . . , n  } and E = 
{(i, j)ly,, f 0} having weight y,, on edge (i, j). Let B c V, i, 

FEY-Bandr=n-IBI.Then 

and 
lb,.(X)I = lP”(Y- B)II 

(-l>i’jl~~+j,,+i(X)I=lI~~-l(~-B- {j))ll. 
Proof: See [l]. 

We  now proceed with the proof of the Markov chain tree 
theorem, starting first with the case that the Markov chain M  is 
irreducible (Corollary 1). In this case each row of p  is equal to 
the vector n which is defined as the unique solution to 

k*l 

The vector n is the stationary probability vector for M  if M  is 
aperiodic. 

Since P is stochastic, the defining conditions on s can be 
combined to read 

“C,( I - P) = Ck 

where I denotes the identity matrix and ck denotes the vector 
having a one in column k and zeros elsewhere. This equation 
uniquely defines rr, for any k, 1  I k _< n. 

We  now use Cramer’s rule to solve for 77: 

I’kk(I - p, I 

nk= Jck(I- P)J . 

Note that Lemma A3 implies that ]C,(I - P)] = ]C,(l - P)I 
even if k # 1, so the denominators of the equations for the rrk are 
all the same. A simple application of the Matrix tree theorem to 
the evahation of ]& (1 - P)] then completes the proof for 
irreducible Markov chains. 

We  now generalize our result to include all Markov chains. As 
before, partition the states of M  into a set T  of transient states, 
and sets B,,. . ., B,,, of minimal closed subsets of states. 

We  let Pk denote the ] B,I X ] B, ] submatrix of P giving the 
transition probabilities within B,, Q denote the ITI X ITI matrix 
of transition probabilities within T, and R, denote the ] B,J X ITI 
matrix of transition probabilities from B, to T. By appropriate 

reordering the rows and columns of P we have 

‘Q R, R, s.1 R,\ 
0  PI 0 ... 0  

P= 0 0 P2 **’ 0 . 
0  0 0 *-. 0  

\o 0 0 *-. P, 

It is well-known that p then has the following form: 

IO u, u, . * 1  u,’ 
0 Fl 0  -** 0  

F= 0 0 pz . . . 0  
0 0 0 ... 0  
0 0 0 *-. p, 

where pk is the long-run transition matrix for Pk, 

and 

u, = NRk Pk 

N=(I+Q+Q”+-)=(1-Q)-‘. 

Here nij is the average number of times M  will visit state j, 
when M  starts in state i. The matrix N always exists [16, Lemma 
IIIA.l]. In fact, we will show in what follows that 

n,, = ll4,(T- {j>)ll 
‘J IW(T)II ’ 

By definition, 

nij = ((I - Q)-‘)ij 

= (-l)‘+jlDji(l - Q>l 
I‘I- Ql 

= (-l)‘+jlDY-T+(j),V-T+(i)(l- p)I 
I%.,.-.(~- P)I 

= IlJ$j(T- (j>)ll 
II@ ‘(T) II 

by the matrix tree theorem. 
Clearly, both Fij and ]]dij(V)]] are zero unless i, j E B, (one 

of the closed subsets), or i E T  (the set of transient states) and 
j E B,. In the former case, pij = ( Fk),j. From the analysis of 
irreducible chains, this means that ijij = Il~ij(Bk)ll/ll~(Bk)ll 
and thus that pij = ]]&ij(V)]]/]]sP(V)]]. 

If i E T  and j E B,, then (using Lemma A2) 

jij = (NR~F~)~~ 

= “c”* “eT IP%(T - { V)ll II4j(Bk)II 
lW’(T) II * ll4v(P’Hll . IId(Bk)ll 

Il4j(TU Bk)II ’ 
= IW’(T’J BdlI 

Il4j( v) II 
= IlJ-G~)II . 

This concludes the proof of the Markov chain tree theorem. 
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