
On Permutation Operations in Cipher Design ∗

Ruby B. Lee, Z. J. Shi and Y. L. Yin

Princeton University

Department of Electrical Engineering

B-218, Engineering Quadrangle

Princeton, NJ 08544, U.S.A.

Email: {rblee,zshi,yyin}@princeton.edu

Ronald L. Rivest

M.I.T.

CSAIL

545 Technology Square

Cambridge, MA 02139, U.S.A.

Email: rivest@theory.lcs.mit.com

M.J.B. Robshaw

Information Security Group

Royal Holloway

University of London

Egham, Surrey, TW20 0EX, U.K.

Email: m.robshaw@rhul.ac.uk

Abstract

New and emerging applications can change the mix of
operations commonly used within computer architectures.
It is sometimes surprising when instruction-set architecture
(ISA) innovations intended for one purpose are used for
other (initially unintended) purposes. This paper consid-
ers recent proposals for the processor support of families
of bit-level permutations. From a processor architecture
point of view, the ability to support very fast bit-level per-
mutations may be viewed as a further validation of the ba-
sic word-orientation of processors, and their ability to sup-
port next-generation secure multimedia processing. How-
ever, bitwise permutations are also fundamental operations
in many cryptographic primitives and we discuss the suit-
ability of these new operations for cryptographic purposes.

1. Introduction

To support new user requirements such as digital mul-
timedia processing and secure information processing, the
basic operations supported within new generation proces-
sors might evolve. For a general-purpose microprocessor, it
is desirable that any added instructions have multiple uses,
rather than being specific to only one algorithm or to one
application. Since secure communications and networking
have become critical features of many applications, it would
seem to be advantageous for the architectural and crypto-
graphic communities to explore the following questions.
Are there instruction-set architecture (ISA) innovations that
may occur in a widespread way that might also be used ben-
eficially in the design of cryptographic algorithms? Alter-
natively, are there desirable instructions, perhaps motivated
by the design of cryptographic algorithms, that might also
be useful for other emerging applications? To begin explor-
ing these questions, this paper examines recently-proposed

∗This work was supported in part by NSF CCR-0105677.

bit permutation operations from the perspective of cipher
design and cryptanalysis. In addition to studying the cryp-
tographic properties of such permutation operations in iso-
lation, we consider their role in the design of new ciphers.

The contributions of this paper are as follows. We exam-
ine the cryptographic properties of bit-level permutations
in the construction of new ciphers or in strengthening ex-
isting ciphers. In particular, we study the cryptographic
properties of the group operation GRP [13, 23], as well as
OMFLIP [13, 27] which were recently identified for possi-
ble inclusion in future processor architectures. We consider
the properties of GRP and OMFLIP and consider how their
inclusion within a cryptographic design might change the
properties of the scheme. As a detailed example, we con-
sider the implications of incorporating the GRP operation
into a block cipher and discuss some of the issues that arise.
Provided care is taken, it may be possible for the support
of new operations to lead to new designs offering higher
performance and reduced energy consumption; something
which would be particularly important for constrained envi-
ronments like hand-held devices. In Section 2, we motivate
the study of permutation operations from both an architec-
tural and cryptographic viewpoint. In Section 3, we pro-
vide our design goals and detailed definitions of bit permu-
tation operations. We also give results on the implementa-
tion complexity of GRP. In Section 5, we analyze the cryp-
tographic properties of GRP and, as an example, in Sec-
tion 6.2 we explore how one might use GRP in a variant of
the block cipher RC5 [20]. Section 7 concludes the paper.

2. Motivation for new permutation operations

Bit-level permutation operations are very important from
both an architectural and cryptographic point of view.

Architecturally, the ability to support very fast bit-level
permutations may be the next step in the evolution of word-
oriented processors to support new multimedia and secure
information processing workloads. Bit level computation

is used in Huffman encoding and decoding, for example,
and general-purpose processors are optimized for word-
oriented computation. Hence, their instruction set architec-
ture (ISA) provides limited support for the manipulation of
data items smaller than a word. Currently, only simple bit-
level operations like logical operations and shifts are im-
plemented in microprocessors. For multimedia processing,
processor architectures have already incorporated the con-
cept of subword parallelism [11, 12] where subwords are
typically 8-bit pixels or 16-bit audio samples. A subword-
parallel instruction performs the same operation on multi-
ple pieces of data (subwords) packed in one or more reg-
isters [11]. Subword-parallel arithmetic operations can ef-
ficiently exploit the data parallelism in processing images,
video, graphics and audio. Subword-parallel instructions—
first introduced to accelerate multimedia in PA-RISC mi-
croprocessors [11, 12]—have now been added to all mi-
croprocessors [6, 8, 11, 12, 18, 19]. These ISA additions
have swept the microprocessor industry in a matter of five
years, demonstrating that new architectural features will be
added to processors if they provide significant performance
or other advantages at a very low cost. Subword permuta-
tion operations are often necessary to rearrange subwords
into proper positions in registers so that subsequent oper-
ations can be applied to all subwords in parallel. As we
decrease the size of the subword, we increase the difficulty
of achieving all possible permutations since the number of
items to be permuted increases significantly. Nevertheless,
recent work [13, 23, 26, 27] has examined architectural so-
lutions that can achieve any arbitrary permutation of both
single-bit and multi-bit subwords packed in a register.

Cryptographically, bit-level operations are useful in the
design of many algorithms, particularly block ciphers,
stream ciphers, and hash functions. The design of the block
cipher DES [16] is an important landmark in this regard.
The security of many of these algorithms relies on what
Shannon termed confusion and diffusion [22] which are typ-
ically attained by a judicious combination of simple opera-
tions. Bit-level permutations naturally provide certain ef-
fects which are not easily obtained through word-level op-
erations. However, bit-level permutations tend to be slow
on current programmable processors, since they have to be
emulated using other instructions. While all processors im-
plement add, subtract, logical, memory load and shift oper-
ations, the only bit-level permutations that might be rou-
tinely supported in microprocessors are bitwise rotations
which form a very small subset of all possible bit-level
permutations. Some processors support fixed bitwise ro-
tations where the amount of rotation is specified at compile
time; even fewer processors support data-dependent rota-
tions (DDR) where the rotation amount is only available at
execution time. DES [16] uses bit-level permutations which
are very fast in special-purpose hardware, but inherently

slow in software. While the few fixed permutations in DES
can be sped up using table lookup techniques in software,
it is not feasible to do this for all possible data-dependent
permutations. In [27] the use of OMFLIP to speed up the
performance of fixed permutations within DES is explored.

More recent proposals for hash functions and encryp-
tion functions—including the new AES [17]—have demon-
strated a move away from bit-level operations and toward a
mix of word-oriented operations such as arithmetic and log-
ical operations, as well as some form of table lookup accom-
plished with memory load instructions. Much of this, how-
ever, might be due to the currently poor support for bit-level
permutations; currently no processors implement more gen-
eral purpose bit-wise permutation instructions. Neverthe-
less, the role of bit-wise permutations remains fundamental
and it is interesting to consider whether increased support
for bit-level permutation operations might not encourage
their use in new cipher designs.

Finally, another interesting application of bit-level per-
mutations is in the obfuscation of data [3] within tamper-
resistant chips. The use of keyed bit-level permutations
can provide a mechanism to enhance the resistance of such
hardware deployments to so-called “probing attacks”. It
would be interesting to consider the applications of the tech-
niques we discuss in this paper to this particular problem.

3. Design goals for new permutation operations

A permutation operation for our architectural and cryp-
tographic needs should ideally satisfy the following goals:

• Goal 1: Be general-purpose and flexible. The new per-
mutation operation should be general-purpose, rather
than specific to a given algorithm. For example, the
permutation operation might have uses in applications
as diverse as multimedia applications, sorting applica-
tions, and cryptography.

• Goal 2: Be easy to implement. The new permuta-
tion operation should be easy to implement in a va-
riety of processors, from high-performance micropro-
cessors down to the simplest processors suitable for
small information appliances and even smart cards.
Since many of these processors have simple architec-
tures, the new operation should ideally require no more
than two source registers, and write to one destination
register upon completion of execution. Ideally, the la-
tency through the functional unit should allow the op-
eration to execute in a single cycle. On the other hand,
if the direct hardware support for the operation is not
available, other instructions should be able to emulate
the operation efficiently.

• Goal 3: Have good cryptographic properties. The new
permutation operation should have good cryptographic

2

properties, and be resistant to common cryptanalytic
attacks as well as not opening new weaknesses.

To help judge how successful such new operations might
be, we will use the data-dependent rotation (DDR) as a
means for comparison. This operation has been used in the
block cipher RC5 [20] and it has been widely studied from
a cryptographic perspective. Like all the permutations con-
sidered in this paper, the action of DDR is not fixed. Instead,
the bits of a control register are used to specify the permu-
tation to be applied to the bits in the data register. One po-
tential weakness of DDR is that only the lower lg(w) bits of
the w-bit control register are used to effect the permutation,
where lg(w) is the logarithm to the base two of w. For con-
venience, lg(w) is used to denote log2(w) in this paper. The
potential weakness of DDR has been used to mount certain
theoretical attacks on RC5 and so it seems that new permu-
tation operations with more control bits might potentially
be cryptographically useful.

4. Permutation Operations: GRP and OMFLIP

The general form of a permutation operation will be
written as Z = X • Y where the bits (or subwords) of
X are permuted according to the value of bits (or sub-
words) of Y . The data-dependent rotation (DDR) typi-
cally denoted as Z = X <<< Y takes two operands X
and Y , generating a result Z where all are w-bit words.
The word X is rotated left by the amount specified in the
lower lg(w) bits of Y . Several new permutation instruc-
tions such as PPERM [13], GRP [13, 23], CROSS [13],
OMFLIP [13, 27], and BFLY [26] have been proposed for
arbitrary bit-level permutations. However, we will restrict
our attention to GRP and OMFLIP in this paper.

4.1. Definition of GRP

The GRP operation will be written as Z = X � Y where
the bits in X are divided into two groups depending on
whether the corresponding bit in Y is 0 or 1. The two groups
of bits are then placed next to each other in Z . The bits with
a control bit of 0 are placed at the left end; the bits with a
control bit of 1 at the right end. Fig. 1 shows an example of
an 8-bit GRP operation. Since the control bits of x0, x2, x5,
x6 are 0, these four bits are placed at the left end in Z . The
bits x1, x3, x4, x7 are placed at the right since their control
bit has the value 1.

If the GRP operation is used in a cryptographic algo-
rithm, the inverse operation, UNGRP for ungroup, may
be needed for decryption. Here we give programmatic
definitions of GRP and UNGRP. Let X = xw−1 . . . x0,
Y = yw−1 . . . y0, and Z = X � Y = zw−1 . . . z0 be w-
bit words.

X

Y

Z b c f h a d e g

a b c d e f g h

1 0 0 1 1 0 1 0

���������
�

��
�

��

������

������

�������
	

	

���������

Figure 1. An 8-bit GRP operation

GRP �

j = 0;
for (i = 0; i < w; i = i + 1)

if (yi = 1){
zj = xi;
j = j + 1;}

for (i = 0; i < w; i = i + 1)
if (yi = 0){

zj = xi;
j = j + 1;}

UNGRP

j = 0;
for (i = 0; i < w; i = i + 1)

if (yi = 1){
zi = xj;
j = j + 1;}

for (i = 0; i < w; i = i + 1)
if (yi = 0){

zi = xj;
j = j + 1;}

4.2. Definition of OMFLIP

The OMFLIP operation will be written as Z = X�(·,·)Y .
It is based on concatenating an omega stage with a flip
stage which we will now describe. In an omega or a flip
stage, w input bits are divided into w/2 pairs. The two bits
in a pair are mapped to two output positions, the destina-
tion order being determined by a single control bit. Conse-
quently w/2 control bits are needed for w/2 data pairs in an
omega or a flip stage.

At the input of an omega stage, bits i and (i + w/2),
0 ≤ i < w/2, form a pair and they are mapped to the two
bit positions 2i and (2i + 1). At the input of a flip stage,
bits 2i and (2i + 1), 0 ≤ i < w/2, form a pair which
is mapped to positions i and i + w/2. Clearly, a flip
stage can be viewed as the inverse of an omega stage. The
OMFLIP operation Z = X �(a0,a1) Y uses two stages in
an omega-flip network to permute the data bits X with Y
specifying the control bits for the two stages. The subscript

3

(a0, a1) represents a two-bit encoding (with omega being
represented by 0 and flip by 1) that specifies which stages
are used; they could be (omega, omega), (flip, flip),
(omega, flip), or (flip, omega). Fig. 2 shows an 16-
bit omega-flip network that has two omega stages and two
flip stages. It can be used to perform 16-bit OMFLIP
operations. A 16-bit OMFLIP operation can use any two
stages in the network to permute bits and pass through the
other two. Actually, each stage in such a network has pass-
through paths, which allow bits to go through a stage with-
out any position changes. But the pass-through paths are
not shown in the figure for illustrating better the paths that
are essential to an omega or a flip stage.

The programmatic definition of OMFLIP is given be-
low. Let X = xw−1 . . . x0, Y = yw−1 . . . y0, and Z =
X �(a0,a1) Y = zw−1 . . . z0 be w-bit words.

OMFLIP �(a0,a1)

j = 0;
for (i = 0; i < 2; i = i + 1)

if (ai = 0){
for (j = 0; j < w

2 ; j = j + 1)
z2j = xj;
z2j+1 = xj+ w

2
;

if (yj+ iw
2

= 1)
swap(z2j, z2j+1);

} else {
for (j = 0; j < w

2 ; j = j + 1)
zj = x2j+1;
zj+w/2 = x2j+1;
if (yj+ iw

2
= 1)

swap(zj, zj+ w
2
); }

4.3. Basic properties of GRP and OMFLIP

GRP can be used to simulate any bit permutation of a w-
bit word with at most lg(w) steps [23]. It can also be used
for multi-bit subword permutations and is useful for multi-
media processing. It can achieve any one of m! permuta-
tions of m subwords in at most lg(m) instructions, where
m is the number of subwords. Here m = w/k, where w
is the number of bits in a word, and k is the number of bits
in a multi-bit subword. In addition, GRP is very useful for
accelerating sorting algorithms, and can achieve a speedup
of 10 or more when sorting a small set of integers [24].

OMFLIP has similar properties to GRP in terms of per-
forming permutations of bits or multi-bit subwords that are
stored in one word (or register). It can perform an arbi-
trary permutation of w bits with at most lg(w) steps and
an arbitrary permutation of m multi-bit subwords with at
most lg(m) steps. Any one of the w! permutations can be

INPUT

OUTPUT

omega

flip

flip

omega

Figure 2. A 16-bit omega-flip network

achieved by simulating a full omega-flip network, which
consists of lg(w) omega stages followed by lg(w) flip
stages. Since an OMFLIP instruction performs the opera-
tion of two of these stages, a sequence of lg(w) OMFLIP
instructions can achieve any arbitrary w-bit permutations.

Both GRP and OMFLIP are general-purpose permuta-
tion primitives useful in multimedia and security applica-
tions; hence, they satisfy Goal 1.

4.4. Implementation of GRP and OMFLIP

Both GRP and OMFLIP are easy to add to a typical pro-
cessor since each requires reading only two source registers
and writing one result register. This fits typical processor
datapaths, instruction formats, and pipeline organizations.
Other implementation issues like execution latency and size
of the functional unit required are discussed below.

A hardware implementation of GRP given in [25] sug-
gests that it takes slightly longer than a typical ALU (Arith-
metic Logical Unit) latency. Since the latter is often used
to determine the cycle time of a processor, this means that
a GRP operation will execute in one or two cycles, depend-
ing on the aggressiveness of the processor cycle time in the
design with respect to the latency of the ALU. When imple-
mented in a processor, the GRP functional unit may also be
used to perform some other operations such as DDR. In a
processor design where a GRP operation takes two cycles to
complete, the GRP functional unit can easily be pipelined,
if desired, so that a new GRP instruction can start every
cycle. While the functional unit implementing a GRP oper-
ation is more complicated than an ALU, it is simpler than
that needed for a MULTIPLY operation. On some proces-
sors such as Itanium [5], the multiplications of large inte-

4

gers are intended to be performed with floating-point units,
by first transferring the operands to floating-point registers,
performing the multiplication, and transfer the result back.
Hence, the cost of the MULTIPLY operation becomes even
higher when it is mixed with other operations that are per-
formed with integer units. Furthermore, a GRP operation
takes only 1-2 cycles of execution latency compared to the
3-7 cycles needed by a MULTIPLY operation.

A hardware implementation of an OMFLIP instruction
is much simpler than for GRP, and also simpler than for
an ALU. An OMFLIP instruction will have a latency no
longer than a typical ALU, and hence it can execute in a
single cycle. Since the number of stages in an OMFLIP
functional unit is fixed no matter how big w is, the size and
latency advantages of the OMFLIP functional unit over the
GRP functional unit increases as the number of bits, w, to
be permuted increases.

OMFLIP definitely satisfies Goal 2 in terms of ease
of implementation. GRP’s implementation complexity is
higher, but it has a latency much smaller than that of a
MULTIPLY operation, with a smaller functional unit size.
Indeed, GRP may be a simpler alternative than MULTIPLY
for cryptography purposes. Hence, Goal 2 is reasonably
well satisfied for both GRP and OMFLIP. In the next sec-
tion, we show that GRP has better cryptographic properties
than OMFLIP.

5. Cryptographic properties of permutations

We now discuss the cryptographic properties of permuta-
tion operations in the context of cipher design and analysis,
and the satisfaction of Goal 3. We first give a brief overview
of cryptographic algorithms and the role of bitwise permu-
tations as a contribution to their security.

It is typical to classify cryptographic algorithms accord-
ing to the way they use key information [15]. Public key al-
gorithms use two keys; one is kept secret and the other—as
the name implies—is made public. Such algorithms are not
our concern here. Other algorithms require that the two par-
ticipants in a cryptographic exchange share the same secret
key. Encryption is provided by block ciphers and stream
ciphers and authentication based on secret key techniques
can be provided by message authentication codes. Finally,
a class of algorithms known as hash functions are entirely
keyless.

While public key algorithms are based on difficult prob-
lems in number theory and have a rich mathematical struc-
ture, secret-key algorithms and hash functions tend to be
more ad hoc in design. The process to establish the new
AES [17] was notable for the wealth of new design and
analysis techniques that were discussed at great length. The
fields of stream ciphers, message authentication codes, and
hash functions have not had comparable exposure, though

many of the same design principles can often be applied in
one way or another.

Indeed, the basic ideas of confusion and diffusion [22]
that are so prominent in block cipher designs also appear
elsewhere. Confusion might be viewed as a process by
which small amounts of complex interaction are introduced
locally, while diffusion can be viewed as the process by
which this complexity is spread from being solely a local
phenomenon. By alternating primitive functions that pro-
vide confusion and diffusion, the hope is that the final algo-
rithm will exhibit globally complex, and cryptographically
strong, behavior.

The common way to provide the diffusive elements of
this process is to use a bitwise permutation, and the success
of a cipher design can depend in a fundamental way on the
properties of the permutation that is used.

5.1. GRP and OMFLIP as cryptographic primitives

There are many different ways of using a bitwise per-
mutation in a cipher design. Frequently the permutation is
fixed, as is the case in DES [16], and so it is straightforward
to account for the behavior of the permutation in analysis.
However, some recent designs have introduced the possi-
bility of using a permutation that is variable and depends
on the value of the data being encrypted. We have already
mentioned one good example of this, the data-dependent
rotation DDR. The operations we consider here, GRP and
OMFLIP, might be viewed as being complementary to the
DDR operation. With this in mind, we consider the role
of these permutations in relation to some specific attacks
on block ciphers. More particularly, we will consider their
effect on two important kinds of block cipher attacks; dif-
ferential cryptanalysis [1] and linear cryptanalysis [14].

5.1.1 Differential and linear cryptanalysis

For differential cryptanalysis, the basic idea is that two
plaintexts are chosen with a certain difference between
them; the difference is typically measured by exclusive-or
but for some ciphers an alternative measure can be more
useful. These two plaintexts are enciphered to give two ci-
phertexts, and it is hoped that the difference between the
outputs has a specific value with a better-than-average prob-
ability. Depending on the cipher and the analysis, the be-
havior of such differences and their evolution can be useful
in deriving certain bits of the key. For linear cryptanaly-
sis, the basic idea is to find relations among certain bits of
plaintext, ciphertext, and the key that hold with a probabil-
ity p �= 1/2 (i.e., there is a bias of |p − 1/2| > 0). Such a
relation is called a linear approximation. As in differential
cryptanalysis, we seek to exploit such non-ideal behavior
and it may be possible to identify linear approximations that
reveal information about the key.

5

An important feature that determines the possible suc-
cess of differential and linear cryptanalysis is the speed with
which the complexity of a difference or linear approxima-
tion increases as we try and keep track of such close re-
lations during the encryption process. For a good block
cipher, the differences between related texts and the rela-
tion between bits of the same text should both become very
complicated very quickly so that by the time the encryption
process is concluded any statistical variations are smoothed
out and there is no unusual behavior left for the cryptan-
alyst to exploit. The process by which this is achieved is
often loosely referred to as the avalanche of change and the
spread of change and the spread of effect and influence is
often influenced by the role of permutations within the ci-
pher design.

5.1.2 Differential and linear properties

Here we consider the differential and linear properties of
GRP, OMFLIP and DDR. There are many differential char-
acteristics and linear approximations for a given permuta-
tion operation, each holding with different associated prob-
abilities. The most useful ones are typically those that are
both simple and which hold with relatively large probabili-
ties. The properties on DDR are mostly results that can be
found in [4, 9], while the properties for GRP and OMFLIP
are new results. The results in this paper are necessarily
preliminary results and concentrate on some of the simplest
forms of cryptanalysis. In Section 5.3 we take account of
some more advanced considerations.

For differential cryptanalysis, we need to consider a pair
of inputs and their corresponding output. Specifically, for
i = 1, 2, let Zi = Xi • Yi. We define the differences in
the input and output to be ∆X = X1 ⊕ X2, and ∆Y =
Y1 ⊕ Y2, and ∆Z = Z1 ⊕ Z2. A differential character-
istic of the permutation operation Z = X • Y is a triplet
(∆X , ∆Y) → ∆Z , together with the probability p that the
given triplet holds when the inputs are chosen at random.
We let es denote the w-bit word which is zero except for a
single one in bit position s. In our preliminary investiga-
tion, we will restrict our attention to single-bit differences
and approximations.

The following differential characteristics of a permuta-
tion operation are often useful (we use ∆ to denote a gen-
eral difference which may be zero). The aim is to keep track
of any changes induced during encryption and to keep the
evolution of differences as simple as possible.

(A) (es, 0) → et

(B) (0, et) → ∆
(C) (es, et) → ∆

Since Z is a permutation of the bits in X , we know that type
(A) characteristics exist and their probabilities are easy to

Table 1. The propagation of differences
across DDR, GRP, and OMFLIP.

Type (A) Type (B) Type (C)
(es, 0) → et (0, et) → ∆ (es, et) → ∆

p = 1
w

HWT(∆) = 0 E(HWT(∆)) = 1
DDR ∀s, t lg(w) ≤ t lg(w) ≤ t

E(HWT(∆)) = w
2

E(HWT(∆)) = w
2

0 ≤ t ≤ lg(w) − 1 0 ≤ t ≤ lg(w) − 1

p ≤ E(HWT(∆)) = w
4

E(HWT(∆)) = w
4

GRP (1
2

+ 1
2w) ∀s, t ∀s, t

∀s, t

OMFLIP p ≤ 1
4

HWT(∆) ≤ 2 HWT(∆) ≤ 3
∀s, t ∀s, t ∀s, t

compute. The more interesting characteristics are type (B)
and type (C) which depend on the input difference in the
control bits Y . For these, we will compare the diffusion
effect by computing the expected Hamming weight of the
output difference ∆Z . The three types of characteristics of
different permutation operations and their associated prob-
abilities or Hamming weights are shown in Table 1. There,
E(HWT(∆) denotes the expected value of HWT(∆), the
Hamming weight of ∆, when inputs are chosen at random.

In linear cryptanalysis, we aim to exploit a linear relation
among certain bits of the inputs and outputs. Specifically,
if Γ and X are two binary vectors of length w, then their
inner product, denoted by Γ · X , is the parity of the bits
in X specified by the non-zero entries in Γ. A linear ap-
proximation of the permutation Z = X • Y is therefore a
triplet (ΓX , ΓY , ΓZ) together with the probability p that the
equation (ΓX ·X)⊕(ΓY ·Y) = (ΓZ ·Z) holds on random in-
puts. The bias b of the linear approximation is defined to be
|p−1/2|. For example, (ΓX , ΓY , ΓZ) = (2w−1, 0, 2w−1)
is a linear approximation that holds with probability p = 1
for any permutation operation, since the parity of all the bits
in Z is always equal to the parity of all the bits in X ; this
approximation has a bias b = 1/2. We will consider re-
stricted forms to the linear approximations, depending on
whether any control bits Y are involved in the approxima-
tion. When Y is not involved, the simplest approximation
takes the form of (es, 0, et). This will be denoted type (L)
and intuitively, the bias of such a linear approximation mea-
sures how uniformly the permutation moves the bits around
(e.g. whether there is a bit position that tends to be fixed).
When Y is involved, the simplest approximation, denoted
with type (M), takes the form of (es, eu, et). The bias of
these approximations measures if the destination position
of a bit in X highly depends on a single bit in Y . Ideally,
the destination position of a bit in X depends on many bits
in Y , and these bits are equally important to determining
the position. The maximum bias for these approximations
are listed in Table 2.

6

Table 2. The propagation of linear approxima-
tions across DDR, GRP, and OMFLIP.

Type (L) Type (M)
(es, 0, et) (es, eu, et)

|b| ≤ 1/(2w) |b| ≤ 1/(2w)
DDR Max. with Max. with

s = t = 0 s = t = u = 0

|b| ≤ (1/4 + 1/2w+1) |b| ≤ (1/4 + 1/2w+1)
GRP Max. with Max. with

s = t = 0 s = t = u = 0

|b| ≤ 1/8 |b| ≤ 1/8
OMFLIP Max. with Max. with

s = t = 0 s = t = u = 0

5.2. Comparison between DDR, GRP, and OMFLIP

Even though all three permutations might appear to be
doing the same thing—i.e. shifting bits—we see that the
cryptographic properties can be very different. In Table 1
we see that GRP has differential properties that are gener-
ally similar to DDR, but suggest a better diffusive effect
when there is a difference in any bit of the control word;
i.e. for differentials of types (B) and (C). This might be
interesting, since one potential weakness for DDR is that
there is no bit-level diffusive effect when there is no dif-
ference in the lower lg(w) bits of the control word. This
might be exploited by the cryptanalyst as we will see in Sec-
tion 6.1. Unfortunately the differential properties of OM-
FLIP for these simple characteristics are not too good; in
all cases the diffusive effect is very limited. Turning to lin-
ear approximations, we see that for both GRP and OMFLIP,
the maximum bias is quite large compared to that achieved
with DDR when the word size w is sufficient large. Taken
together these results suggest that OMFLIP is unlikely to
bring any additional advantages over those provided by
GRP and DDR; that GRP will perhaps not be particularly
resistant to linear cryptanalysis on its own; but that GRP
might complement DDR by providing additional resistance
to differential cryptanalysis in the areas where diffusion us-
ing DDR might be controlled by an adversary. We will ex-
amine this combination of DDR and GRP in Section 6.2.

5.3. Additional considerations

We have to caution the reader that the results presented in
Section 5.1.2 are basic results. They merely provide some
evidence that one permutation might be better than another.
It is quite natural to focus on single bit differences and ap-
proximations since they are typically the ones that are easier
to handle in a cryptanalytic attack. However, when we in-
troduce a new primitive operation we need to consider other
issues as well.

As an example of this, we might consider two-bit dif-
ferences and their propagation across the GRP permutation.
We consider two triplets (X1, Y1, Z1) and (X2, Y2, Z2)
with the following form, where we use {−b−} to denote a
(w − 2)-bit string of some unknown value, and {−0−} to
denote a (w − 2)-bit string of zeros. Let X1 = {10 − b−},
Y1 = {01 − c−}, X2 = {01 − b−}, and Y2 = {10 − c−}.
Then ∆X = {11 − 0−} and ∆Y = {11 − 0−}, yet
∆Z = {00 − 0−}. We have two two-bit input differences
effectively producing the same output! This is quite an un-
usual effect, and additional analysis is required to fully ap-
preciate the consequences of such bit-level interactions 1.

Another interesting consideration is the distribution of
the permutations generated by these operations since there
are some interesting links here with the shuffling of a deck
of cards [7]. While DDR can only be used to generate a
small fraction of bit-wise permutations, all of the resultant
permutations are equally likely. When we turn to the GRP
operation, however, while all permutations can conceivably
be generated, in a single GRP operation there is a slight bias
to the generation of the identity permutation; the probability
for the identity permutation is n/2n for n bits while that for
other permutations is 1/2n. The implications of this for the
suitability of GRP is unclear, but it suggests that a cautious
approach needs to be taken.

On a more positive note, it is important to note there are
also some constructive properties of permutations such as
GRP that we have not explored. For instance, we have not
considered the ability of GRP to change the “neighborhood”
of bits in achieving any one of wpermutations. Such prop-
erties may provide some additional cryptographic and ar-
chitectural advantages when compared to the DDR permu-
tation.

6. An illustrative example for cipher design

Analysis in Section 5.1 demonstrated certain interesting
properties of GRP. First, GRP uses all w bits of the control
word, rather than only lg(w) bits as in DDR. Second, GRP
appears to have properties that are complementary to DDR
in terms of differential attacks; a difference in any bit of
the control word should produce a large difference in the
output. In this section, we will explore whether we can take
advantage of these properties.

6.1. The block cipher RC5

When considering the possible impact of DDR and other
permutations in cryptographic algorithms, a natural starting
point is the block cipher RC5 [20]. This was designed to

1Preliminary study suggests that it could be difficult to use such differ-
ence propagations, but no general statements can be made in this regard.

7

be extremely simple and this means that the effect of in-
troducing DDR can be reasonably well measured. We give
a very brief description of RC5. The initial secret key is
used to generate a set of round keys S[·] that will be used
in encryption. The 2w-bit input to RC5 is divided into two
words L0 and R0, each w bits long. The encryption process
consists of 2r iterations of a simple round function. Each
iteration is called a “half-round” and two iterations form a
full round in RC5. The 2w-bit ciphertext output from RC5
is given by L2r||R2r.

RC5 Encryption

L1 = L0 + S[0];
R1 = R0 + S[1];
for (i = 2; i ≤ 2r; i = i + 1) {

Li = Ri−1

Ri = ((Li−1 ⊕ Ri−1) <<< Ri−1) + S[i] }

Since its publication, RC5 has come under considerable
scrutiny [2, 9, 10, 21] especially with regards to its exten-
sive use of DDR. While no practical attack on RC5 has
been found, studies provide some interesting theoretical at-
tacks, mostly based on the fact that the “rotation amounts”
used in the DDR will not depend on all bits of the con-
trol word. Therefore, it is interesting to consider whether
the GRP operation might be used to complement the DDR
operation that is already used in RC5. In [9] three types
of single-bit characteristics are used to form a three-half-
round characteristic that can be iterated for as many rounds
as needed. In [10] these characteristics were used in a more
general way while [2] considered more general character-
istics. However, all this work on RC5 helped to motivate
the choice of differential characteristics that were studied in
Section 5.1.

6.2. A role for GRP in an RC5-variant

There are many possible ways to incorporate GRP into
the round function of RC5. As a motivational example, we
have chosen a way that incurs a minimal change to the orig-
inal round function. This might make it easier to leverage
the existing security analysis of RC5. We propose the fol-
lowing straw-man proposal for a round function for a RC5
variant that we refer to as RC5-GRP.

RC5-GRP Encryption

L1 = L0 + S[0];
R1 = R0 + S[1];
for (i = 2; i ≤ 2r; i = i + 1) {

Li = Ri−1

T = ((Li−1 ⊕ Ri−1) <<< Ri−1) + S[i]
Ri = T � Ri−1 }

Table 3. Single-bit characteristics for GRP.
Char. Prob. Prob.

when w = 32
(es, 0) → et p ≤ 1/2 2−1

(es, es) → es p = 1/2w−1 2−31

(0, es) → 0 p = 3w−1

22w−2 2−12

The round function of RC5-GRP is the same as that
of RC5 except that the new operation GRP is performed
at the end of the round, updating the value of R i (again)
using Ri−1. Thus the variable Ri−1 that controls DDR
is also used to control GRP. In [9], three single-bit
characteristics—types (A), (B), and (C) from Table 1—
were used in the differential attack on RC5. When analyz-
ing the security of RC5-GRP, we still use these three char-
acteristics for DDR. In order to form an iterative character-
istic across three half-rounds as in [9], a specific character-
istic for GRP is needed to follow each of the characteristics
for DDR. These characteristics for GRP are summarized in
Table 3. (One can see that these are special cases of the
characteristics for GRP from Table 1.)

When w = 32, the total differential probability of the
three characteristics for GRP in Table 3 is 2−1−31−12 =
2−44. It appears that adding GRP could have a significant
effect on a specific class of one-bit differential characteris-
tics. However, by considering the more sophisticated two-
bit characteristics in Section 5.3, it seems we might need
to be more cautious and there appears to be a two-bit dif-
ferential characteristic over two half-rounds of RC5-GRP
that holds with probability around 2−16. The resistance of
RC5 to linear cryptanalysis is likely to be inherited by RC5-
GRP, but with regards to more advanced differential attacks
the full extent of any increased resistance still needs to be
quantified.

According to [2] RC5 requires 18 rounds to be secure
against advanced differential cryptanalysis. Based on our
analysis on the reduction in differential probabilities for
GRP, it would be interesting to know whether ten rounds
(twenty half-rounds) of RC5-GRP would offer sufficient se-
curity. If this were the case, we might provide the follow-
ing performance comparison between RC5 and RC5-GRP.
RC5 has four basic operations in each half-round, while
RC5-GRP has five. We will assume that all the operations
are well-supported and that each operation (including the
GRP operation implemented in processor hardware) takes
one cycle. In this case, the total execution cycles for RC5
will be (18× 2× 4) + 4 = 148 cycles. The cycles required
for RC5-GRP would be (10 × 2 × 5) + 4 = 104 cycles.
Hence, for equivalent security, RC5-GRP would be faster
than RC5. Also, since RC5-GRP requires only 66% of the
computation cycles required for RC5, this will result in a
significant reduction in energy consumption, prolonging the

8

battery life of secure mobile devices. While this almost cer-
tainly not the final word in the analysis of RC5-GRP, it does
illustrate our larger point that low-level support of bit-level
permutations might lead to simple enhancements of existing
algorithms and the design of more efficient ciphers.

7. Conclusion

In this paper, we proposed the study of new computer
processor features that might have interesting cipher design
implications. As a first step, we analyzed bit-level permu-
tation operations and presented new results on the charac-
terization of the permutation operations GRP and OMFLIP.
We began to explore the cryptographic potential for the low-
level support of bit-level permutations, and provided some
basic initial analysis. This suggests that other proposals
in the future may lead the way to increased performance
and reduced energy consumption, an aspect of algorithm
design that is increasingly important for battery-powered
hand-held devices and sensors. However there remain sig-
nificant open problems for future work. Some are specific
to the particular permutation operations we have considered
here, others are of a more general nature. However, we hope
that the results and ideas in this paper serve as an initial
step in establishing a continuing dialog between the com-
puter architecture and the cryptographic communities. This
may lead to architectural and algorithmic innovations that
would be immensely useful, not just for cryptographic ap-
plications, but in supporting the increasingly rapid evolution
to pervasive networks and ubiquitous computing.

References

[1] E. Biham and A. Shamir. Differential cryptanalysis of the
data encryption standard. In Proceedings of Eurocrypt ’98,
LNCS(1403), pages 85–99. Springer-Verlag, January 1998.

[2] A. Biryukov and E. Kushilevitz. Improved cryptanalysis of
RC5. In Proceedings of Eurocrypt ’98, LNCS(1403), pages
85–99. Springer-Verlag, 1998.

[3] E. Brier, H. Handschuh, and C. Tymen. Fast Primitives
for Internal Data Scrambling in Tamper Resistant Hardware.
In Proceedings of CHES 2001, LNCS(2162), pages 16–28.
Springer-Verlag, 2001.

[4] S. Contini and Y. L. Yin. On Differential Properties of Data-
Dependent Rotations and their use in MARS and RC6. In
Proceedings of Second AES Conference, 2000.

[5] M. Cornea, J. Harrison, and P. T. Tang. Scientific Computing
on Itanium-based Systems. Intel Press, 2002.

[6] K. Diefendorff, P. K. Dubey, R. Hochsprung, and H. Scales.
AltiVec Extension to PowerPC Accelerates Media Process-
ing. IEEE Micro, 20(2):85–95, April 2000.

[7] C. Grinstead and J. Snell. Introduction to Probability. Amer-
ican Mathematical Society, Providence, Rhode Island, 1994.

[8] Intel Corporation. IA-64 Application Developers Architec-
ture Guide. Intel Press, May 1996.

[9] B. Kaliski and Y. L. Yin. On differential and linear crypt-
analysis of RC5. In Advances in Cryptology – CRYPTO’95,
LNCS(963), pages 171–184. Springer-Verlag, 1995.

[10] L. R. Knudsen and W. Meier. Improved differential at-
tacks on RC5. In Advances in Cryptology – CRYPTO’96,
LNCS(1109), pages 216–228. Springer-Verlag, 1996.

[11] R. B. Lee. Accelerating multimedia with enhanced micro-
processors. IEEE Micro, 15(2):22–32, April 1995.

[12] R. B. Lee. Subword parallelism in MAX-2. IEEE Micro,
16(4):51–59, August 1996.

[13] R. B. Lee, Z. Shi, and X. Yang. Efficient permutation
instructions for fast software cryptography. IEEE Micro,
21(6):56–69, December 2001.

[14] M. Matsui. First experimental cryptanalysis of the
Data Encryption Standard. In Advances in Cryptology
– CRYPTO’94, LNCS(839), pages 1–11. Springer-Verlag,
1994.

[15] A. Menezes, P. van Oorschot, and S. Vanstone. The Hand-
book of Applied Cryptography. CRC Press, 1996.

[16] National Institute of Standard and Technology. Data En-
cryption Standard (DES). FIPS 46-2, December 1993.

[17] National Institute of Standard and Technology. Advanced
Encryption Standard (AES). FIPS 197, November 2001.

[18] S. Obeman, G. Favor, and F. Weber. AMD 3Dnow! Tech-
nology: Architecture and Implementations. IEEE Micro,
19(2):37–48, April 1999.

[19] A. Peleg and U. Weiser. MMX Technology Extension to the
Intel Architecture. IEEE Micro, 16(4):10–20, August 1996.

[20] R. L. Rivest. The RC5 encryption algorithm. In Proceed-
ings of Fast Software Encryption, LNCS(1008), pages 86–
96. Springer-Verlag, 1995.

[21] A. A. Selcuk. New results in Linear Cryptanalysis of RC5.
In Proceedings of the 5th Workshop on Fast Software En-
cryption, LNCS (1372), pages 1–16. Springer-Verlag, 1998.

[22] C. E. Shannon. Communication theory of secrecy systems.
Bell System Technical Journal, 28(4):656–715, 1949.

[23] Z. Shi and R. B. Lee. Bit permutation instructions for accel-
erating software cryptography. In Proceedings of the 11th
International Conference on Application-Specific Systems,
Architectures and Processors, pages 138–148, July 2000.

[24] Z. Shi and R. B. Lee. Subword sorting with versatile per-
mutation instructions. In Proceedings of the International
Conference on Computer Design (ICCD 2002), pages 234–
241, September 2002.

[25] Z. Shi and R. B. Lee. Implementation complexity of bit
permutation instructions. In Proceedings of the Asilomar
Conference on Signals, Systems, and Computers, November
2003.

[26] Z. Shi, X. Yang, and R. B. Lee. Arbitrary bit permutations in
one or two cycles. In Proceedings of the 14th International
Conference on Application-Specific Systems, Architectures
and Processors, pages 237–247, June 2003.

[27] X. Yang and R. B. Lee. Fast subword permutation instruc-
tions using omega and flip network stages. In Proceedings
of the International Conference on Computer Design (ICCD
2000),, pages 15–22, September 2000.

9

