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I._Introduction

In this paper we present three new two-layer channel routing algorithms that are provably
good in that they never require more than 24-1 horizontal tracks where 4 is the channel density,
when each net connects just two terminals. To achieve this result we use a slightly relaxed (but
still realistic) wiring model in which wires may run on top of cach other for short distances as
long as they arc on different layers. Two of our algorithms will never use such a "parallel run”
of length greater than 24-1 and our third algorithm will require overlap only at jog points or cross
points, Since in this wiring model at least d/2 horizontal wracks are required, these algorithms
produce a routing requiring no more than four times the best possible number-of horizontal
tracks. The second algorithm also has the property that it uses uses at most 4a contacts, where n
is the number of nets being connected.
1. _The Model

The (infinilé) channel of width ¢ consists of (1) the set V of grid points (x,y) such that the
integers x and y satisfy the conditions 0<y<r+1 and -00Kx{8, (2) the sct P of poly segments
consisting of all unit length line segments connecting pairs of adjacent grid points which do not
both have y=0 or y=1+1. (3) the set M of metal segments which is isomorphic to but disjoint
from P. The channel (V,P, AN thus forms a multigraph with vertex-set ¥ and cdge-set PUAM. If
two vertices are adjacent in this graph they are connected by precisely two edges - one of type
poly and onc of type metal.  We define track ¢ of the channel (},P A7) to be the subgraph
composed of all grid points in 1 with y-coordinate equal to i, and all segments of PUM which
connect pairs of these grid points.

A wire I consists of a sequence of distinet grid points separated by segments which connect
them:
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Here py....p, arc the grid points and s; connects p,, to p;. Each s; may be of cither type, poly or
metai, and we define the sets of poly segments and metal segments of wire B as foliows:
2y = A{s; | s€P}.

MOy = {5, s €M}

Similarly, the contaet points CUHY) is defined to be the set of grid points where M starts, ends or

changes layers:
COPy = Lo, U e HOCRkand tpets ) # pe o
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(type(s)=poly if s€P(V) and ype(s)=metal if s,€ M)

We say that two wires W, and W, are compatible if there does not exist a pair of segments
sEW, and sj€ W, such that s; and 5; are incident on a common grid point and typc(si):typc(sj).
Notice that two compatible wires may “"overlap" by connccting to common grid points with
segments of different type, as illustrated in Figure 1.
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Figure 1.

Many previous channel routing algorithms employ a more restricted wiring model in which
no such "overlap” is permitted. We do not know how to prove our current results without
making use of a modest amount of overlap. The current model is certainly a realistic two-layer
model, although it does permit wirings which are susceptible to "cross-talk” via the capacitive
coupling of long overlapping wircs. Our wirings will not have any long sections of overlapping
wires - the longest such section will have length at most the width of the channel.

A net N, = (p,9;) is an ordered pair of integers specifying an entry (x-)coordinate p; and an
exit coordinate g, A net is said to be rising if qLp, falling if pRq, and trivial if p=q; A
channel routing problem is sitnply a set of n nets, for some integer n, such that no two nets have a
common cntry coordinate or a common exit coordinate. A solution to a channel routing problem
consists of an integer ¢ and a set of 5 compatible wires Wi... W, in the channel of width ¢, such
that W, begins at grid point (p,1+1) and ends at grid point (qf{J). The optimal widih for a
channel routing problem is defined to be the least integer ¢ such that the problem has a solution
in a channel of width +

For any real number x, we say that a net Ni= (p,q) "crosses x" if cither p<x<g; or 4;2x<$p,;
The channel density of a channcl routing problem is defined to be the maximum over all x€R of
the number of nets crossing x. It is simple to show that a problem has optimal width at least /2
if it has density 4

HI A Provably Good Channel Routing Algorithm

Let (‘RP:{N,,....NH} denote any channel routing problem.  We assume without loss of
generality that 1<p,q,<m for all 1<i<n and some integer m. Thus the nets NECRP specify
end-points which lic within some m "columns” of the channel.  We will now describe a
polynomial time algorithm which is guaranteed to compute a soluticn to CRP having channel
idth exactly 1=2d-1, where d is the channel density of CRP. Since /2 is a lower bound on the
optimal channel width for CRP, this algorithm will never generate a solution with channel width
more than four times oplimal.

Algorithm 1,

This algorithm procecds colwnn by colunm routing all nets which cross j in sten 1. The
L ) ¢ R
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solution generated will have the properties that t=24-1, there will be at most d wires passing from
column j to column j+1 for any j, and for some j there will be at least d such wires. Further,
wires will pass from a column j to column j+1 only on the odd-numbered tracks; there will be
no horizontal scgments on the even-numbered tracks. In addition, if there are k nets which cross
Jj then there will be exactly & horizontal segments connecting columns j and j+1. These segments
will all lie on distinct odd-numbered tracks and they may be of either type, poly or metal,
independently.  Finally, if exactly r of the k nets which cross j are rising and fare falling (so that
r+f=k). then between columns j and j+1:

(1) The top-most r odd tracks will be devoted to wire segments for the r rising nets,
(2) The "middle" d-rf odd tracks will be empty, and

(3) The bottom-most f odd tracks will be devoted to wirec segments for the f falling nets.

It now remains to demonstrate that this set of invariant properties can be maintained as the
algorithm procceds from column to column. If a column contains a trivial net, the net is wired
straight across the column using the even numbered tracks to change layers as necessary. No
other wiring is nceded in such a column.

If a falling net N;=(p,j) enters column j from column j-1 on track ¢, the algorithm drops a
vertical connection from grid point (j,¢,) down to grid point (;0). The algorithm then "closes up
ranks” in column j so that all the empty odd tracks are in the middle of the channel. Figure 2
illustrates how such a wiring can be generated. Rising nets with entry coordinate j are handled
similarly.

Finally, any rising net N;=(p,/) is routed in column j with a vertical connection from grid
point (70) up to grid point (j7, ), where £, is the top-most odd track which would be empty (ie.
contain ne horizontal scgment between grid points (/,2,) and (+1.£,)) if net N; were not present.
Similarly any falling net is routed down to the lowest odd track that would otherwise be empty.
If both of these situations occur in the same column, a modest amount of "overlap” is required as
indicated in Figure 3. However, the situation of Figure 3 is the only place where overlap is

needed.
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Figure 2. Figure 3.
Theorem 1

Alrorithnt 1 is quaraniced to corgpone @ solition to CRP having channel width no e than
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four times optimal.
Proof:
The proof of Theorem 1 follows directly from the above discussion.

At this point it should also be clear that the running time of Algorithm 1 is bounded by a
polynomial in m, the number of columns which must be processed. In practice, however, we only
need process columns having index equal to some nct entry or exit coordinate. Thus with the
appropriate output representation, Algorithm 1 is O(d-n) for a channel routing problem containing
n nets and having density 4.

Although Algorithm 1 never generates a solution with channel width more than four times
optimal, it docs generate solutions containing as many as d-n contact points. Further, it generates
solutions containing overlapping parallel runs as long as length 24-1. In the remainder of this
paper we present algorithms which cope with these two problems independently.

1V. Bounding the Number of Contacts

In this section we will describe a polynomial time algorithm which, like Algorithm 1, is
guaranteed to compute a solution to CRP having channel width no more than four times optimal,
but unlike Algorithm 1 requires no more than 4n total contact points. This new algorithm
employs the same basic approach as Algorithm 1 and thus its description will be facilitated by

simply noting the differences between the two algorithms.

Algorithm 2.

Similar to Algorithm 1, this algorithin proceeds column by column routing all nets which cross
Jinstep j. Further, a sclution generated by Algorithm 2 will have esscnti;xlfy the same properties
as a solution gererated by Algorithm 1 with only two significant exceptions. The first of these
exceptions is that all horizontal segments belonging to wires of falling nets (with the possible
exception of the top-most such segment in cach column) will be of type metal. A similar
property will hold for rising nets and poly horizontal segments. The second significant exception
is that for each column j there may be at most one distinct horizontal segment which is associated
with a falling net and connects columns j and j+1 while lying on an even-numbecred track,
Further, the net of such a segment will not have exit coordinate cqual to j+1 and the odd-
numbered track immediately below the segment will be cmpty between columns j and j+1. A
similar property will also hold relative to rising nets.

The maintenance of this new set of invariant properties requires a somewhat different set of
wiring rules from those employed by Algorithm 1. Consider the case where a falling net
N;=(p,j) cuters column j from column j-1 on track ¢ s in the previous algorithm, a vertical
connection is dropped from grid point (j,r)) down to grid point (j0). Notice, however, that at
most one contact point will be required along this connection since all segments whizh must be
crossed will have the same type. The algorithm must now “"close up-ranks” so that all blank
columns remain in the middle of the channel. It should be clear that the wechnigue employed by
Algorithm 1 in solving this problem can be of no use here. However, the problem can be easily
solved by dropping a vertical connection from the wp-most track containing a falling, net which

crosses 7 down o grid point (A1), as shown in Figure da. The only problem that occurs is
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when the net to be dropped has exit coordinate cqual to -+ /' In this case, however, the
algorithm simply drops the next lower net (if any) as shown in Figure 4b. Rising nets with entry
coordinate j are handled similarly and all other cases are handled as in Algorithm 1.
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Figure 4.
Theorem 2:
Algorithm 2 is guaranteed to compute a solution to CRP with channel width no more than
four times optimal and with no more than 4a total contact points.

Proof:
The proof of Theorem 2 follows from the above discussion and a more detailed case analysis

of the wiring rules applied within each column.
Finally, we note that Algorithm 2 has time complexity O(d-#n) for a channel routing problem
containing n nets and having density d.

Y. Reducing Overlap
Let us now assume that we wish to compute a solution to CRP which has minimal channel

width and no segment overlap. In this section we will describe a polynomial time algorithm
which is guaranteed to compute a solution to CRP having channel width no more than four times
optimal and requiring only "corner overlap”. However, the number of contact points required by
this algorithm will be O(d'n) rather than O(n).

Algorithm 3.

This algorithm proceeds track by track rather than column by column. The processing at each
step involves a pair of adjacent tracks, i and i+1, such that i is odd. Furthermore, the algorithm
proceeds bottom-up beginning with tracks 1 and 2. At each step the algorithm extends all
existing wires across both track 7 and track /+1, in such a way that the density of the subproblem
between tack i+1 and the top of the channcl decreases. This reduction in density will result
from horozontal wire extension along the odd-numbered track. Once. again the final solution will
have the propeities that r=24-1 and there will be horizontal wire scgments lying only on odd-
numbered tracks: the even-numbered tracks will be used solely for layer changes along vertically
running wires.

When the algorithim begins processing a pair of tracks i and i+ 1, there will exist exactly n
distinct vertical segments connecting a grid point in track i1 tw a grid point in track i, Further,
each of these scgments will belong to a distinet wire. Since track /-1 is even-numbered and thus
used sofely for layer changes, we note that the type, poly or metal, of cach of these segments can

alwiys be assigned as a function of he horizonial routing in track 7 We will now describe the
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procedure for routing nets across track i
The processing of track / is performed in either a lefi-to-right or a right-1o-left fashion
depending on how track i-2 was processed. The precessing direction for track i/ is initially set to
be the opposite of that for track -2,
Let us assume that track i is to be processed in a left-to-right fashion; an analogous procedure is
employed for the right-to-left case.  Further, assume that column J; is the left-most column
containing a vertical segment connecting grid point (j,.i-1) 1o grid point (j,-i} and belonging to a
rising net Ny =(p.q,) for which PJy Thus net N, requires extension to the right. If no such
column exists then track i is processed in a right-to-left fashion.
Now let W, denote the wire associated with net N,. Note that W, ends at grid point GpD. The
algorithm then simply extends wire W, horizontally to the right from grid point (9 untl it
reaches either column by (the entry coordinate of net N or a column J, containing the terminus
of a wire W for a net N,=(p,q,) with popy (e W is a wire which must be cxtanded farther
right than W)
In the laticr case wire W, ends at column J, and wire W is extended to the right in a manner
similar to the extension of W,. In the former case wire ¥, ends at column 2, and the algorithm
scarches to the right for the first wire requiring some extension.
Let column J; denote the left-most column (if any) such that j321’k and the point (/50 is the
terminus of a wire W, for a net N.=(pyq) with p*jy Thus wire W requires some horizontal
extension; either to the right or to the left. Further, if j>p, then N, must additionally be a rising
net so that W, requires extension to the right. The wire W_is then the next wire to be extended.
The only difference in the manner of extension cccurs when N, happens to be a falling net. In
this case W_is extended to the right only until it reaches a column Jg4 such that the point (pd) is
not the terminus of a wire for a net with entry coordinate equal to j, This will allow W o
extend to the left, without gencrating segment overlap, when track i+2 is processed.
Once the processing of track 7 has been completed, all wires are extended vertically across
track i+1 and the horizontal processing of track i+2 begins. The entire procedure for tracks i
and i+1 is iltustrated in Figure 5. Notice that a wire W for a net N=(p,g) is never extended
horizontally once its termminus lies in column p. Therefore, Algorithm 3 terminates when no
further horizontal extension is necessary.
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Theorem 3

Algarithin 3 is guaranteed (o compute a solution to CRP with channel width no more than
four times optimal and requiring only "corner overiap”.
Proof:

It follows directly from the above discussion that Algorithm 3 will always gencrate a solution
in which the only type of overlap is corner overlap. The upper bound on channel width then
iollows from the obscrvation that the density between track i and the top of the channel is strictly
decreasing as the algorithrn proceeds and ¢ increases.

We now point out that Algorithm 3, like the previous two algerithms, has time complexity
O(d1). Unlike the previous two algorithms, however, this algorithm may generate wires which
are nea-monotonic {i.e. weave back and forth across the channel), thus resulting in increased total
wire fength.

We have presented three channel routing aigorithms which are guaranteed to compute a wiring
requiring no more than four times the optimal channel width. Furthermore, one of these
algorithms requires only a small number of contact cuts and another requires only a minimal

ainount of overlap.  However, many open questions still remain:

1) Can the upper bound be improved (e.g. to 3d/2)?

2) Can this bound be proved in more restricted wiring models (e.g. the model of
{D7EN?

(3) Can this bound be proved for multi-terminal nets?

4) Can both the number of contact cuts and the amount of overtap be simultancously
minimized?
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