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ABSTRACT

Networks of the future will be characterized by a variety
of computational devices that display a level of dynamism
not seen in traditional wired networks. Because of the dy-
namic nature of these networks, resource discovery is one
of the fundamental problems that must be faced. While re-
source discovery systems are not a novel concept, securing
these systems in an efficient and scalable way is challenging.
This paper describes the design and implementation of an
architecture for access-controlled resource discovery. This
system achieves this goal by integrating access control with
the Intentional Naming System (INS), a resource discovery
and service location system. The integration is scalable, effi-
cient, and fits well within a proxy-based security framework
designed for dynamic networks. We provide performance
experiments that show how our solution outperforms exist-
ing schemes. The result is a system that provides secure,
access-controlled resource discovery that can scale to large
numbers of resources and users.
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1. INTRODUCTION

Resource discovery is one of the fundamental challenges
that must be faced in the context of pervasive computing.
While resource discovery is vital to enabling operation in
pervasive networks, their unpredictability and dynamism
give rise to problems of security. As a resource provider, we
want to guarantee that foreign users that enter our environ-
ment will not be able to act maliciously. Similarly, as a user
in a foreign environment, we want to know what resources
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we are able to use and which ones we can trust. Such access
restrictions are easily handled in fixed networks as foreign
users can simply be denied admission to the network. But
the fundamental notion behind pervasive computing gives
rise to the idea of resources and users of varying privileges in-
teracting in the same environment {2]. While several systems
[6, 12, 8] propose resource discovery solutions for dynamic
environments, they do not consider how the integration of
security protocols influences scalability and performance.

Resource discovery systems are typically implemented in
the network layer, below security, allowing networks to over-
lay any desired security protocol. An access control frame-
work can be layered over a resource discovery protocol, but
these two protocols seem to have different goals. The prob-
lem is that the best criteria-matching resource (e.g., “the
nearest, least-loaded printer”) may not necessarily be a re-
source to which a user has access.

The primary focus of this paper is to address the issue of
resource discovery in a pervasive computing environment.
More specifically, this paper presents a system that inte-
grates access control with resource discovery in order to en-
able scalable and efficient operation. This paper describes a
resource discovery system that is scalable and efficient and
is designed to elegantly integrate with a larger proxy-based
security system [4].

The proxy-based security system uses a distributed SPKI/
SDSI protocol [11] which allows for private, encrypted com-
munication between heterogeneous lightweight devices in a
pervasive computing environment. In this architecture, each
resource has an associated trusted software proxy whose pri-
mary function is to execute commands on behalf of the re-
source it represents. Proxies store certificates and other se-
cure information for the resource they represent: Two se-
curity protocols are utilized: a computationally-inexpensive
protocol for resource-proxy communication and a sophisti-
cated SPKI/SDSI access control framework layered over a
key-exchange protocol for resource authorization between
proxies.

The architecture presented in this paper makes four key
contributions:

e A scalable model for resource discovery based on the
Intentional Naming System [1] that integrates access-
control information with service information.

o Integration of access-controlled resource discovery with
a proxy-based security infrastructure to provide secure
and authentic communication in a pervasive comput-
ing environment.
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Figure 1: This figure illustrates the conflict experienced
by a resource discovery system in an access-controlled
environment. How does Edward find the closest, acces-
sible copy of schedule.doc without performing an exhaus-
tive search?

e Implementation of resource lookup that makes access
control decisions while finding the best resource.

e Design of lightweight, efficient access control lists.

We summarize the resource discovery problem in terms
of a simple scenario in Section 2. Section 3 details our sys-
tem architecture and describes how we have developed an
access-controlled resource discovery system. We present the
advantages and performance evaluation of our system in Sec-
tion 4. We conclude the paper in Section 5.

2. THE PROBLEM RESTATED

The problem that this paper solves is that of how to scale
a system of resources that are protected by access control.
The following scenario illustrates this problem.

2.1 A Simple Scenario

The scalability and performance of resource resolution is
especially pertinent when dealing with networks whose state
is highly dynamic. It is very plausible that a user will not
know exactly what resources are available, nor will the user
know which he is authorized to use. As a simple example,
consider an environment which treats all devices in the net-
work as resources in a peer-to-peer application. Figure 1
illustrates the following scenario:

Edward, a manager at a large software firm, arrives in
the morning at a conference with his location-aware device.
Upon arriving and coming online, Edward wants to down-
load his personalized conference schedule for the given day.
At this conference, there are two tracks: one for managers
and one for software developers. Thus, the users in the
system are divided into two groups, K4 managers and Kg
developers. All the users already at the conference have a
document, schedule.doc, in their repository, but the doc-
ument is track-specific. That is, the copy of schedule.doc
that members of K4 managers have is different than the
copy that members of Kp developers have. When Ed-
ward comes online, he wants to synchronize his copy of
schedule.doc by getting the latest version. The confer-
ence is spread out over several buildings and the users are
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spatially far apart. Because the physical area of the confer-
ence is large, there is no central repository for the schedules.
Instead, schedule distribution and synchronization happen
peer-to-peer. As a member of K4 managers, Edward must
get the document from another member of his group. Mem-
bers of K4 managers do not have access to the schedules
of members of Kg developers, and vice versa. Edward
would also like to get the schedule from the geographically
closest user, in order to minimize his delay and make the
synchronization process as fast as possible.

2.2 Problems

This scenario creates a conflict of interests. Not only must
Edward find the closest user, but he must also find a user
that is in his group (a resource to which he has access). A
simple resource discovery system could easily tell Edward
the location and identity of the closest user. This problem
has been solved many different ways [1, 13, 9]. But, how does
Edward know if the physically-closest user is a member of
his group? And, if this user is not a member of his group,
where exactly is the closest member of Edward’s group? It
would be tremendously inefficient for Edward to repeatedly
contact members that are not in his group. One only has to
consider an environment with a large number of members
to see the magnitude of this problem. Mobility of the users
only further complicates the issue. The only way in which a
resource discovery system can identify the closest, accessible
resource is to know ahead of time Edward’s identity and
authorizations.

2.3 A Naive Solution

We describe a nalve solution to the problem that will be
used as a baseline of comparison in terms of performance
(cf. Section 4).

In attempting to discover the geographically-closest user,
Edward will query the resource discovery system through
his personal proxy. The proxy will tell the resource discov-
ery system to “find me the closest user”. Ideally, Edward
would like to contact the closest, accessible user, but this
resource discovery system does not know anything about
Edward’s identity or authorizations. In response to the
query, the resource discovery system will return a list of
the geographically-closest users to Edward’s proxy. At this
point, Edward’s proxy does not know which of the resources
in the list are accessible to him. The only reasonable way
for the proxy to proceed is to sequentially iterate through
the resources in the list in the hope that they are accessible.
The proxy must engage in some sort of authorization check
in order to determine if the user has access to the resource.
As long as a contacted resource fails, the proxy will have to
repeat the process.

This approach can be inefficient and surely is not scalable.
If a given user has access to every resource in the network,
then the efficiency of access control is not an issue. But,
in most heterogeneous environments, users are assumed to
be diverse and access privileges will exhibit the same differ-
ences. In Edward’s scenario, if he is not close to any users of
his group, he would have to iterate through many inaccessi-
ble resources before finally finding a match. Edward is faced
with executing a process on the order of O(n) if there are n
other resources in the network. The results of Section 4 will
illustrate this point.



3. SYSTEM ARCHITECTURE

In order to gain scalability and efficiency, the resource
discovery system needs to know about access control priv-
ileges so that it can return the best resource to which a
user has access. Thus, a better approach would be to give
the resource discovery system knowledge about the access
control lists that protect the resources and the user’s autho-
rizations. We require that the designed system be secure,
efficient, scalable, and robust. In order to meet our goals,
the Intentional Naming System (INS) [1] was selected. The
solution presented here uses several modifications to inten-
tional naming that enables access control decisions to be
made while finding the best resource. Before detailing our
solution, we summarize INS as a standalone resource dis-
covery system.

3.1 Intentional Naming Overview

Intentional Naming System (INS) is a resource discovery
and service location system intended for dynamic networks.
INS provides users with a layer of abstraction so that appli-
cations do not need to know the availability or exact name
of the resource for which they are locking. A simple example
of a user’s request in INS is to find the nearest, least-loaded
printer. DNS would require the user to know the exact name
of the resource, such as pulp.lcs.mit.edu.

INS uses a simple language based on expressions called
name specifiers, which are composed of an attribute and
value. An attribute is simply a category by which a resource
can be classified. For example, a camera in the system
can be described by its resolution, battery-life, and/or
available-memory. An INS name, or intentional name, is
a hierarchy of these atomic name specifiers. An example of
an INS name is [service=camera [resolution=640x480]
[battery-life=87%] [available-memory=56mbl] to
describe a camera with the specified properties.

INS is comprised of a network of Intentional Name Re-
solvers (INRs) that serve client requests for resources and
maintain information about the searchable meta data of
each resource. Data is represented in the form of a dy-
namic name-tree, which is a data structure used to store the
correspondence between name specifiers and the destination
resource. The structure of a name-tree strongly resembles
the hierarchy of a name specifier. Name-trees consist of al-
ternating levels of attributes and values, with multiple val-
ues possible at each attribute. A particular name specifier is
resolved by traversing the tree, making sure to visit all the
corresponding attribute-value pairs of the target resource.
Each leaf value in the name-tree has a pointer to a name-
record, which holds the physical location of the resource.
The structure of a name tree is shown in Figure 2.

3.2 Security Integration with INS

The solution presented here uses several modifications to
intentional naming that enable access control decisions to
be made while finding the best resource. While INS does
allow for a security framework to be layered over it, we
have already seen how a system can benefit from integrat-
ing access control decisions with resource discovery. INS
is extended in the following three ways to provide access-
controlled resource discovery: (1) implementation of a real-
time maintenance of the access control lists in the INS name
resolvers, (2) introduction of a certificate-based authoriza-
tion step during resolution of an INS request, and (3) design
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of a lookup algorithm that prunes the possible name records
by eliminating resources based on a user’s identity and au-
thorizations.

In the following sections, the key extensions of INS are
presented. Finally, we will return to the scenario that is dis-
cussed above to see how this new system integrates access-
control information and INS knowledge to efficiently return
the best, accessible resource.

3.2.1 Storage of ACLs in INS

Assuming that resources have the ability to inform INS
of the access control lists that protect them, how can these
lists be properly stored in the INS knowledge base so that
they can be referenced when making resource decisions?

An access control list is simply treated as an additional
attribute that defines a resource. One can specify a camera
based on its resolution, say; similarly, an access control list
is just another way to classify the camera. In order to store
ACLs as attribute-value pairs, a new type of attribute was
introduced. Previously, all attributes were treated as search-
able, in that they were used as a dimension along which a
resource can be explicitly queried. But, when a user makes
a request for a resource, the user cannot specify the ACL
attribute-value pair in the query. Nor do we want the ACLs
being represented as additional branches in the name-tree.
So, in order to store ACLs, the concept of a hidden attribute
was defined. INS attributes are now defined as searchable
or hidden, with the only hidden attribute being that of the
ACL. When advertising its service profile, a resource will
advertise its ACL like any other searchable attribute, but
the name resolvers are responsible for denoting the ACL as
a hidden attribute and storing it on the name-record for the
particular resource.

Storing ACLs as attribute-value pairs is advantageous be-
cause we do not change the manner in which data is stored
and we do not have to radically alter the way in which
queries are handled (ref. Section 3.2.2). The structure of
the name-tree remains the same, while the hidden attributes
are stored directly on the name-records for each resource.

3.2.2 Lookup algorithm and ACL propagation

[1] describes the LOOKUP-NAME algorithm that INS uses
to retrieve name-records for a given name-specifier. This al-
gorithm operates by pruning attribute branches of the name-
tree that fail to match the given search criteria, ultimately
arriving at a subset of all the name-records that contains the
possible matching resources. This algorithm works well with
the way name-trees are organized in INS. But, left alone,
this algorithm fails to work with hidden attributes such as
ACLs.

Due to the transparency that is required, users will not
explicitly construct queries with ACL name-specifiers. One
option for determining a user’s accessible resources would
be as follows. First, the LOOKUP-NAME algorithm would
be run to completion, arriving at a list of criteria-matching
resources. At this point, INS would have a handle to the
name-records for each of the matching resources. We could
proceed by iterating through these possible name-records
and checking whether the user making the request is on the
ACL. While this approach will save us considerably over
the approach of contacting each of the resources for access
decisions, it still is inefficient. A closer inspection of the
LOOKUP-NAME algorithm reveals additional ways in which
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Figure 2: This shows how ACLs are propagated from
the leaf nodes up the INS tree to the root of the data
structure. At each intermediate value-node in the tree,
an ACL is stored and is computed by taking the logical
OR (V) of the ACLs at all of the child nodes.

this process can be optimized.

We designed a modified algorithm, LOOKUP-NAME-AC,
that eliminates potential name-records while pruning S, the
set of all possible name-records. The LOOKUP-NAME-AC al-
gorithm operates under some assumptions on the state of
the INS name-tree. In order for the algorithm to terminate
successfully, the algorithm assumes that each value node in
the name-tree contains an intermediate ACL. This inter-
mediate ACL is computed to be the logical OR (V) of the
intermediate ACLs stored at all of the value nodes that are
its children in the INS name-tree. Beginning at the value-
nodes that contain pointers to name-records, intermediate
ACLs are computed. For these leaf nodes, the intermedi-
ate ACL is simply the ACL of the name-record to which it
points. After computing the ACLs at these leaf nodes, the
intermediate ACLs for the parent nodes are computed all
the way up the name-tree. OR’ing (V) multiple access con-
trol lists happens at the “entry” level. That is, the result of
the logical OR (V) of two ACLs is a new ACL with every
entry that exists in either of the two ACLs. For example, if
acl, = [e1, e2, es] and acly = [e1, e2, eq, €5], then:

o))

where the notation acl = [es,...,ex] indicates that e1,...,en
are entries of the ACL. Figure 2 illustrates how ACLs are
propagated up the INS name-tree from the leaf nodes.

The modified algorithm is similar to its predecessor, ex-
cept now it eliminates candidate records based on whether
the user is included in intermediate ACLs. This new algo-
rithm takes the user’s identity and authorization rules as
arguments. For each name-specifier in the INS query, INS
will prune branches that do not match the search criteria
and that do not contain the user in their intermediate ACLs
through a series of recursive calls. When the algorithm
terminates, it returns only the relevant, accessible name-
records. By taking the OR of the ACLs, we enable access
control decisions to be made while INS is locating the proper
name-record, eliminating the need to iterate through inac-
cessible resources and branches of the tree. This simplifies
the task of the lookup algorithm as well as potentially reduc-

acle V acly = [e1, e2, €3, €4, €5),
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ing the amount of the name-tree that needs to be traversed.
This algorithm terminates without the need to backtrack
and does not ever check a given ACL more than once. The
additional cost of this algorithm is clearly in these checks
that must be made for each name-specifier, but we argue in
Section 4 that this tradeoff is still advantageous.

3.2.3 Dynamic maintenance of name-trees

ACLs are resource properties that may change. Groups
or keys may be added or removed, or the operations allowed
by a particular group/key may be changed. In dealing with
name-tree maintenance, there are three qualities that any
design should achieve: (1) freshness of access control infor-
mation, (2) responsiveness to changes made to access control
information and (3) authentic and private maintenance up-
dates.

Many of these issues have been considered when design-
ing INS for service updates, so our focus is specifically on
how access control updates are handled. Responsiveness is
achieved by using triggered updates which are fired when
an ACL changes state. Periodic updates are also used to
enforce freshness. The utility of these updates comes from
the fact that ACLs typically have expiration times. Clearly,
the update period should be chosen such that it is less than
the ACL expiration time (Tupdate < tezpire) but not so small
that it unnecessarily floods the network with update pack-
ets. Upon receiving an update request, INS actively modifies
its name-tree to reflect the current state of access rights and
intermediate ACLs are recomputed. Handling the privacy
and authenticity of these messages, as well as the authen-
ticity of messages in which a resource updates INS with its
other service attributes, is a subject of ongoing research.

3.2.4 User authorization rules

In order for this system to function, INS needs access
to the user’s set of current authorizations. The modified
lookup algorithm depends on knowing the user’s identity
and the groups of which he is a member. Each proxy in the
system stores a user’s signed SPKI/SDSI certificates. [5]
describes an efficient algorithm for determining, from a set
of SPKI/SDSI certificates, the access control groups of which
a particular user is a member and the operations that he is
allowed to perform. Complete and detailed descriptions of
the procedures are found in [5], but this is well beyond the
scope of this paper. In essence, a (finite) transitive closure is
taken over the certificates, and rules representing the user’s
authorizations are extracted. The rules are simple and not
signed. However, each rule has a representation as a signed
user certificate, or a chain of signed user certificates. The
closure algorithm is run when there is a change in the user’s
certificates, such as when he acquires a new certificate, or
when one of his certificates expires.

The proxy presents the user’s authorization rules to INS
with the user’s query. INS uses the rules to check if the user
is on an (intermediate or leaf) ACL contained at a node in
the INS tree (using the LOOKUP-NAME-AC algorithm). An
important point is that these ACL checks performed by INS
can be made fast and efficient. The ACL check is used to
determine if a user is on an ACL, and it is not necessary
for INS to know the proof that the user would generate to
show that he is on the ACL.

When INS has completed its searching and returned an
address, the proxy will then use a secure authentication and



authorization protocol to contact the resource [4]. The mod-
ified INS system we present now returns only resources to
which the user has access, so the proxy should only have to
execute this security protocol once.

3.3 The Scenario Revisited

Edward is looking to obtain a copy of his schedule,
schedule.doc, from the closest user in his group. Edward
places a request for the document via his proxy. Edward
does not explicitly have to indicate to his proxy his group
membership or the fact that he wants to retrieve the docu-
ment from another group member; this is handled automat-
ically by his proxy. Edward’s proxy contacts an INR with
which it has previously registered. It then queries the INR
for the best accessible resource, translating the request spec-
ified by Edward to an INS-specific name-specifier. Edward’s
proxy alsc computes his authorization rules (they may be
computed on the fly or pulled from the proxy’s cache) and
sends them along with the request to the INR. The INR,
which has received access control advertisements from all the
registered resources in the network, takes the request and
the user’s authorizations and executes the LOOKUP-NAME-
AC algorithm. After a single execution of this algorithm,
the INR returns the closest, accessible resource to Edward’s
proxy. Edward’s proxy then uses a secure protocol to con-
tact the resource and uses a standard secure copy protocol
to retrieve the file from the resource. Because INS knew
about Edward’s group membership, it returned a resource
that is accessible, meaning the time-consuming security pro-
tocol would only have to be executed once.

4. EVALUATION

A prototype system was implemented in Java using INS
2.0, a pure Java implementation of INS. In this section, a
formal evaluation of this system is presented. These exper-
iments were all conducted using off-the-shelf Intel Pentium
II 266MHz computers with a 512 KB cache and 128 MB
RAM, running Windows NT Server 4.0. The software was
built and run using Sun’s Java Virtual Machine version 1.3.

4.1 Comparison of resource retrieval time

As a baseline, this system will be compared to a basic
scheme, where INS is used as the resource discovery system,
but does not have access to ACLs or the authorizations of the
requester. This basic scheme was described in Section 2.3.
For convention, we will assume that the user, U, is operating
in a network with n total resources.

To understand the performance gains of this new solu-
tion, we must analyze the time it takes U to successfully
access the most optimal resource and compare this time in
both the basic and access-controlled systems. This time is
denoted as tpasrc for the basic scheme and as t4¢ for the
access-controlled system. Each of these time values can be
generally expressed by the following equation:

n
tr = tquery + (Z bk M (tlatenc’y + tacl—check)) + tcrypto (2)
k=1

tquery is the query time, the time it takes the resource discov-
ery system to respond to U’s request. tguery also includes
any time U’s proxy uses to prepare the request. by is a
boolean value that is 1 if U contacts resource &k and 0 if U
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does not. tigtency is the round-trip network latency between
two proxies. This is essentially the time it takes U to re-
trieve a resource’s ACL over the network. taci—check is the
ACL-check time, the time it takes for a simple ACL check
to be performed. ACL checks were made very fast with our
adopted implementation (as will be shown later in this sec-
tion). Finally, terypto is the time it takes U to derive the
full authorization proof and for this proof to be verified by
a particular resource’s proxy.

4.1.1 teasic

In the basic scheme, the time for U to successfully access
the most optimal resource is given by the following equation:

1
tpasic = tqueryBASIC -+ ; . (tlatency + tacl—check)

(3)

This derivation of tzasrc can be found in {10]. tquerygasic
is the time it takes the LOOKUP-NAME algorithm to execute
and p is the probability U has access to a given resource.

4.1.2 tac

Similarly, the time to retrieve a resource using our access-
controlled solution is given by:

+ tcrypto

tac = tqueryAc -+ tlatency + tc’rypto

Il

tqueTyBASlc + Dn - tacl—check
(4)

The key difference is that tac is not dependent on the like-
lihood that U has access to a given resource. Instead, the
query time, tqueryqo, depends on Dy, which represents the
number of ACL checks that will have to be made while
traversing the INS name-tree. It is a function of the number
of resources in the network (n), but is also affected by the
complexity of the name-tree and name-specifiers. For more
details, see [10].

+ tlatency + tcrypto

4.1.3 Name Lookup Performance

To determine the difference between the quantities
tquerygasic aNd tquery o, We constructed a large, random
name-tree and timed how long it took the tree to perform
1000 random lookups using each algorithm. The name-tree
and name-specifiers were chosen uniformly according to the
parameters defined in {1] (ro = 3, 7, = 3, n, = 2, and d
= 3). n, the number of distinct, unique names in the tree,
was varied from 1 to 13000 in increments of 100 to see how
tquerygasic and tquery, o vary with increasingly large name-
trees. The maximum heap size of the JVM was limited to
64MB, thus limiting the range of the experimentation.

Figure 3 shows the results of this experiment. Using the
basic LOOKUP-NAME algorithm, the performance went from
a maximum of around 700 name lookups/sec to a minimum
of 200 lookups/sec. From Figure 3, it is evident that as
the number of names in the name-tree increases, the lookup
rate decreases. As a result, the amount of time required
for a single lookup increases. But, the drop-off is not as
drastic as one would think and clearly is not linear. For a
moderately large system with approximately 2000 resources
(or names), the average lookup time is around 1.8 ms. For
small systems on the order of hundreds of resources, the
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Figure 3: The lookup rate (lookups/sec) is plotted
against the number of names in the name-tree.
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Figure 4: The lookup rate (lookups/sec) is plotted
against the number of names in the name-tree. Each
name in the name-tree is protected by an ACL with 10
unique keys.

lookup time is around 1.4 ms. These times are small and
the difference in lookup times between the small and large
systems is minimal.

The experiment was repeated in the access-controlled case.
Each resource was initialized with ACLs containing 10 unique
entries and the intermediate ACLs were computed. Figure 4
presents the performance results of the LOOKUP-NAME-AC
algorithm as the number of names in the tree varied from 1
to 3500. As is evident from this figure, the lookup rate is
significantly reduced from the rate without the ACL checks.
The experiment was terminated at a maximum of 3500 names
due to memory constraints of the JVM. With approximately
100 name-records in the tree, a rate of 325 lookups/second
was achieved. In the non-access-controlled case, this rate
was much higher at around 700 lookups/sec. At approxi-
mately 3500 name-records, the rate of the LOOKUP-NAME-
AC algorithm was at 240 lookups/sec, indicating only a drop
of in about 90 lookups/sec. Conversely, the rate in the basic
case dropped to 450 lookups/sec with 3500 names, indicat-
ing a drop of 250 lookups/sec.

Table 1 details the average lookup times for the two al-
gorithms for varying sizes of the name-tree. The difference
between the lookup times is on the order of few millisec-
onds and can be attributed directly to the intermediate ACL
checks that are made. In the following section, it will be
shown that tsci~check, the time for a simple ACL check is
on the order of approximately .07 ms. Based on the name-

343

Names in | Average Lookup Time (ms)
Name-Tree | Lookup-name-aC LOOKUP-NAME
100 3.24 1.45
500 3.35 1.48
1500 3.66 1.76
2500 3.94 2.04
3500 4.23 2.31

Table 1: This table shows the average lookup time ex-
perienced by the two algorithms for varying sizes of the
name-tree.

ACL Performance

ACL Checks/sec

2000

4000 6000 8000

Number of ACL Entries
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Figure 5: The ACL check rate (in ACL checks/sec) is
plotted against the number of entries in the ACL. It is
evident that the rate decreases with an increasing num-
ber of entries, but only slightly.

trees we used during the experimentation, we can calculate
approximately 15 intermediate ACL checks. This roughly
accounts for about a 15 x .07 = 1.05 ms difference between
the lookup times. The numbers in Table 1 seem to support
this back-of-the-envelope calculation.

4.1.4 Access Control List Performance, taci—check

In order to determine the cost of an ACL check, random
large ACLs were constructed with the number of distinct
entries in the ACL ranging from 1 to 14000 and the num-
ber of ACL checks that could be executed in the span of a
second was measured. Figure 5 illustrates the results of this
experiment. As expected, as the number of entries in the
ACL grows, the ACL check rate decreases logarithmically.
ACLs in our system are represented by red-black trees (bi-
nary trees), keyed by the users’ public keys, that guarantee
a log(n) time cost for adding new indices and looking up
values. As the number of entries in the ACL goes from 1 to
1000, the check rate decreases by 500 checks/sec. A similar
rate decrease can be seen as the number of entries is varied
from 1000 to 10000.

Figure 5 shows five stratified regions of lookup rates that
correspond to the number of decisions that must be made in
order to find a key in the ACL. Depending on where a key is
located in the range of possible keys, the number of decisions
to find it in the tree can vary. For an ACL of 1000 entries,
the time it takes to perform an ACL check can be one of



the following values: .083 ms, .074 ms, .067ms, or .061ms
(according to the four different regions in the graph). These
values are an order of magnitude smaller than the time taken
by the LOOKUP-NAME algorithm to find a name. Therefore,
the idea of making several ACL checks during the name
retrieval process adds a minimal time cost and seems very
reasonable.

4.1.5 Round-Trip Network Latency, tiatency

tiatency is the round-trip network latency between proxies
in the network. It is a fundamental component of the re-
source retrieval time in the basic solution (¢pasrc), which
requires a client proxy to explicitly contact potential target
proxies in order to determine access privileges. To estimate
this parameter, simulations were run in ns [7]. We adopted a
network structure where proxy-proxy communication takes
at most two hops. The links between proxies and routers
each have a bandwidth of 133 Mbps and a propagation de-
lay of 5 ms. The router-router links have a bandwidth of
100 Mbps. A single proxy-proxy flow was started between
two proxies and the round-trip time for each packet was
measured over a span of thirty seconds.

Initially, there was some variance in the RTT as TCP
uses a slow-start mechanism to find the optimal window
size. But, after equilibrium was reached, the mean RTT of
proxy-proxy communication was determined to be 48.37 ms.
It is worth noting that in a network with many resources,
this number is a best-case scenario. The link bandwidths
used were large, the propagation delays were small, and the
two-hop assumption will break down as the number of re-
sources increases. Despite using favorable conditions, we
see that tiatency is three full orders of magnitude larger than
taci—check. As will be shown in Section 4.1.6, this result
plays a key role in determining the efficiency of our access-
controlled resource discovery system.

4.1.6 tac versus tgasic

In this section, we analyze the difference in retrieval times
between the two solutions. Subtracting Equation 4 from 3,
we get:

Ai(n) = teasic(n) —tac(n)

1
5 (tlatency + tacl—check)_

(5)

From Equation 5, we see that the access-controlled scheme
outperforms the basic scheme if %'(tlatency"*“tacl—-check) is
greater than (Dn - taci—check + tlatency)- 1f it is, we can con-
clude it is more efficient for INS to perform the ACL checks
as it descends down its name tree, rather than leaving this
up to the user’s proxy. In order to make this comparison, we
consider our scenario (in Section 2.1) with 1000 total users
divided equally among the two groups (K4 managers and
Kp developers). Therefore, the probability that Edward
has access to any given resource is p = 0.5. If we also assume
the structure of the name-tree is as described previously, D,
= 15. From our experiments in Section 4.1.4, we will as-
sume an ACL check with 1000 entries per ACL takes .083
ms. Finally, the latency between proxies will be assumed to
be 48.37 ms (as calculated in Section 4./.5). Using these
parameters, the difference in lookup time is:

(Dn *tacl—check + tlatency)
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A:(n) %(48.37 +0.083) — (15 - 0.083 + 48.37)

47.291 ms (6)

Even with the parameters chosen to favor the basic solu-
tion, the access-controlled solution wins by a large margin.
It is likely that this is a conservative estimate. With 1000
resources in the network, tiatency will likely be greater than
48.4 ms as the propagation delays of the links will increase
and the number of hops between proxies will increase. Fur-
thermore, if p becomes smaller, the basic solution is sub-
ject to more trips across the network, making our savings
greater. The main difference in the resource retrieval times
for each solution can be attributed directly to the fact that
ACL checks are extremely fast. Our solution is not subject
to the network latency and the three orders of magnitude
saved in performing an ACL check give our solution a clear
advantage. The query time saved in the basic solution is
minimal compared to the time that the ACL checks save.

4.2 Performance of ACL propagation

The LOOKUP-NAME-AC algorithm requires that interme-
diate value nodes in the name-tree have computed the log-
ical OR of all the ACLs in its subtree. In order to do this,
the propagateAcls method is called periodically (for fresh-
ness) and any time a triggered update is initiated by a user’s
proxy.

The propagateAcls method is invoked every time an up-
date to an ACL occurs. For analysis purposes, the time be-
tween ACL updates is denoted ésriggerea. Immediately after
an ACL update occurs, the propagateAcls method must be
called. Since the method is synchronized, the name routers
cannot service any incoming requests during this time, back-
logging requests in a queue. This creates somewhat of a
“time-slotted” service model (as shown in Figure 6), where
the requests can only be serviced between the end of the
execution of propagateAcls and the time the next update
arrives.! Essentially, the INR can serve requests for some
time, update itself, serve requests, and so on. Clearly, the
goal here is to minimize the maintenance time with respect
to the available service time so that the service slots are
much bigger compared to the maintenance slots.

This “slotted” model can potentially lead to problems,
because users will not stop sending requests when the INR is
under maintenance. A queue will build up as the name-tree
is under maintenance and the requests in the queue along
with all other requests must be processed before the next
update arrives, or the system will experience congestion and
collapse. If we model the queue as an M/M/1 queue {3] with
Poisson arrivals and exponential service times, a formulation
can be made as to when operation of the system will be
successful (i.e., no collapse). The arrival rate of INS requests
is A. The service rate is p (the average service time is i) In

this system, ﬁ equals tgueryso. The time for the execution
of propagateAcls is fpropagate- The collapse condition will

n reality, there are other maintenance updates that the
INRs handle, such as changes to service profiles (e.g., growth
in the number of documents in a particular printer’s queue,
or a particular speaker going offline, etc.). But for the sim-
plicity of this analysis, these updates are ignored here. The
argument presented can be easily extended to account for
these updates as well.
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Figure 6: The propagateAcls method must be called af-
ter an ACL update has been sent to the INR. Since
the method is synchronized, new requests cannot be
serviced while the method is being executed. Servic-
ing of requests can only occur between the execution of
propagateAcls and the next update.

occur if all the requests are not serviced before the next ACL
update arrives. While the INR is under maintenance, we
expect Ng, the queue size, to grow to Atpropagate (by Little’s
Theorem [3]). Similarly, while the INR is in the service
slot, the number of incoming requests will be A(€triggered
- tpropagate). The time to service these requests must be
less than the duration of the service slot in order for queue
buildup to be avoided. That is:

€triggered > tpropugate . m (7)

Is it a reasonable assumption that this condition holds?
We have seen that t,,r0pagate is on the order of a few sec-
onds and % is on the order of a few milliseconds. According
to Equation 7, it can be seen that as long as the INR is
not receiving requests at the same frequency (every few mil-
liseconds), then the system will be fine. Even if X is on the
order of a request/ms, the frequency of ACL changes will
be on the order of minutes, not milliseconds. The condition
in Equation 7 will easily hold and the system operation will
be smooth.

4.3 Tradeoffs

Our solution saves time, but does add greater require-
ments for storage to INS. This is primarily driven by the
need to store ACLs (both resource-level and intermediate)
in the name-tree, a constraint not made necessary by the ba-
sic solution. A name-tree of 2000 name records that does not
store ACLs uses approximately 9.4 MB of storage, whereas
a name-tree that stores ACLs and has executed its propaga-
tion takes up 38.1 MB. In fact, ACL-propagated name-trees
use 3.75 times more space, on average, than basic name-

trees. Our experimental data fit the following linear ap-
proximation:
size(Tac(n)) = 3.75 - size(Tpasic(n))

3.75 x [(0.0185 - n) + 0.40] Mb  (8)

For relatively small name-trees, this difference is not sub-
stantial. But, as the number of name-records grows fairly
large, the difference in the name-tree sizes is significant. The
computational resources required to store the name-trees be-
come large as the system scales. As the number of name-
records grow, the sizes of the intermediate ACLs also grow
accordingly. Note, this is the worst case scenario. Even
though each ACL has 10 different entries, it is very possi-
ble that entries can be repeated across resources, thereby
somewhat limiting the size of the trees. Despite this fact,
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integrating access-control into INS requires additional mem-
ory in the name routers.

Nevertheless, storage is cheap and can be solved simply
by adding more memory to each INR. On the other hand,
saving time is not as simple as installing additional compo-
nents to each router. As such, the storage-time tradeoff is
one that is worth making.

5. CONCLUSION

This paper has experimentally verified the merits of our
resource discovery system that integrates access control by
comparing it to alternative systems. The resource retrieval
time is greatly reduced using this architecture, while security
is not compromised. This allows our system to scale to levels
that traditional resource discovery systems wishing to im-
plement access control would be unable to efficiently reach.
While the implementation and execution of this system does
require additional memory in each intentional name router,
sacrificing storage for time and efficiency is a worthwhile
tradeoff.
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