
A “GREEDY” CHANNEL ROUTER * 

by Rouald L. I&vest aud Charles M. Fiduccia 

MIT Laboratory for Computer Science, Cambridge, Mass. 02139, and 
GE Research and Development Center, Schenectady, New York 12301 

Ma.rch 1981 

Abstract --- 
We prescut a new, “greedy”, channel-router that is 

quick, simple, and highly eflcctive. It always succeeds, 
usually using no more than one track more than required 
by channel density. (It may be forced in rare cases to make 
a few connections “off the end” of the channel, in order to 
succeed.) It assumes that all pins and wiring lie on a com- 
mon grid, and that vertical wires are on one layer, horizon- 
tal on another. 

The greedy router :<ires up the channel in a left-to-right, 
column-by-column manner, wiring each column completely 
before starting the next. Within each column the router 
tries to maximize the utility of the wiriug produced, using 
simple, “greedy” heuristics. It may place a net on more 
than one track for a few columns, and “collapse” the net to 
a single track later on, using a vertical jog. It. may also use 
a jog to move a net to a track closer to its pin in some future 
column. The router may occasionally add a new track to 
the channel, to avoid “get.ting stuck”. 

Introduction --. -. ---- 
Introduced in 1971 [lla71], “channel routing” has be- 

cqme a very popul;?.r method of routing integrated circuit.s. 
(!h [I<SP73], [Ili74], (Dc76], [AK’1 761, [l’DS7’7], [KK’IS), 
[Iti%).) Typically, the wiriug area i,; first divided into dis- 
j,,int rectangular “cl~snnels” . A “global roukr” then tlctcr- 
nlines which channels each uet traverses. Finally a “cbnnnei 
router” computes a detailed routing for each channel. ‘l’his 
approach is effect,ive because it decomposes the overall prob- 
Il:rn into a number of simpler prohlems and simultaneously 
considers all nets traversing each clmnnel. 

The general channel-routing problem has been proven 
NP-Complete ([GJ79], [l,a80], [SzSl], (SI380]), alt,hough 
algorithms exist for high!y-restricted cases ([DKSSU81], 
[Ll%l], (Pigl], [‘ro80], (La80]). A slightly direrent wiriug 
model permits one to come within e factor of 2 of channel 
density ([RBMsl]). Useful methods also exist for comput- 
ing lower bounds on chanuel widths ({BRsl], [Le81]). These 
results highlight the need for good practical heuristics. 

The algorithm presented here exploits a novel control 
structure: a left-to-right column-by-column scan of the 
channel, where the router completes the routing for one 
column before proceeding to the next. In each column the 
router acts in a “greedy” manner trying to maximize the 
utility of the wiring produced. 

Our work is an extension of Alford’s [Ai80]; who also 
considered a left-to-right scan of ,the chanuel. His router 
did not guarantee success (because it did not allow nets 
to occupy more than one track in any column), ran quite 
slowly, and produced noticeably poorer results than our 
“greedy” algorithm. 

Kawamoto and Kajitani [KK79] use a similar column- 
by-column approach, but not in left-to-right order. They 
ntso assume (as we do not) that between adjacent columns 
there is enough room to wire an arbitrary permutation. 

The following paragraphs define what we mean by a 
“channel routing problem” and its solution. 

A channel-routing problem is specified by giving: 

(1) 

(2) 

(3) 

(‘1 

(21 

A “ch;?nnel-length” X. Most of the routing will lie 
within the channel whose “left end” is at .t -= 0, and 
“righl end” is at z = X + 1, on the vertical col~~mns at 
x-coordinates 1,. . . , X, although columns outside the 
chmnel ma,y also he used. 
Top aud bottom connection lists T - (Tl, . . ., TX) ad 
I3 = (I?,, . . ., El>). Ti (resp. U,) is the net number for 
the pin at the top (resp. bottom) of the i-th column 
(at x := i), or is 0 if no such pin exists. 
The left and right connecl,ion s.:fs, L :md I-Z, sperifyiug 
which nets must connect to the right and left ends of 
the channel. (They are sets sin--e WC assume that a net 
need councct at most once to an end of the channel, 
and that the relative ordering of such connections may 
be chosen by the channel router.) 

A sohtion to a channel-routing problem specifies: 
The channel width u) - the number of horizoutal 
“trac;;s” used. These tracks arc at ?/-coordinates 
1 , . . ~, w. A channel router tries to minimize W. 
For each net n, a set of connected horizontal and ver- 
tical “wire segments” whose endpoints are grid points 
(5, y) with 1 5 y 2 w, except that segments with 
endpoints (i,O) or ( i, ~1) -t- 1) must he included if ‘Z; - 
n or B; = 7~. Endpoints with z < 1 or z > II) are 
legal but should be avoided. A net in L (resp. R) 
must have a segment touching the line z = 0 (resp. 
z = X + 1). Two segmenCs in the same direction are 
on the same layer, so they may not touch if they are 
for different nets. Two segments for the same net in 
different directions that touch at a grid point are said 
to be connected by a “contact” or “via” at that point. 
If the segments were for different nets we would have 
a “crossover”. 

l This research WZLS supported by the General Electric Corporation, DARPA grant N00014-80-CO622, Air Force 

grant ~OSR-F.~9620-81-0054, and 14~7 grant MCS-8006938. 

@ ACM 

19th Design Automation Conference 

256 



The channel density of a particular channel routing 
problem is defined to be the maximum number of nets 
which have pins on both sides of the line z = (Y, for any 
cr. (We don’t count nets all of whose pins lie on a single 
vertical line.) The channel density is a lower bound on the 
widt.h of any solution to that channel-routing problem. 

If its “conllict graph” ([IlS71]) contains cycles, a 
channel-routing problem may be unsolvable within the 
channel, for any w (e.g. X = 2, T = (1,2) and B = (2, l).) 
Such problems can always be solved by using columns 
“outside” the channel. 

The following factors are often used to evaluate the 
quality of a successful solution (in a typical order of 
priority): its width w, the number of columns “off the end” 
it uses, its total wire-length, and the numhcr of vias it uses. 

The Routing Mgorithm -___- -.-_A_ 

The greedy router scans the channel in a l&-to-right, 
t,olurnn-by-column manner, completing the wiring within 
:I given column before proceeding to the next. In each 
column the router tries to maximize the utility of the wiring 
produced, in a simple “greedy” masner. 

Its first step in a column is to make connections to 
:my pins at the top and bottom of the column. These 
connections arc minimd; no more vertical wiring is used 
‘ban is needed to bring these nets safely into the channel, to 
l,he first track which is either empty or contains the desired 
net. 

The second step in a column tries to free up as many 
tracks as possible by making vertical connecting jogs that 
“collapse” nets that currently occupy more than one lrack. 
This step may complete the job of bringing a connection 
from a pin over to a track that its net currently occupies 
(step 1 might have stopped at an intermediate empty track). 

The third step tries to shrink the range of tracks oc- 
cupied by nets still occupying more than one track, so col- 
lapsing these nets later will be less of a problem. Since 
freeing up tracks has high priority, jogs made here have 
priority over jogs made in the next step. 

The fourth step makes “preference” jogs that move a 
net up if its next pin is on the top of the channel, and down 
if its next pin is on the bottom. The router chooses longer 
jogs over shorter ones if there is a conflict. This tends to 
maximize the amount of “useful” vertical wiring created. 
These jogs are effective at resolving upcoming “conllicts”, 
even though no explicit consideration of these conflicts is 
made. 

The lift11 step is only needed if a pin could not be 
connected up in step one because the channel is “full”. 
Then the router “adds a new track” to the channel between 
existing tracks, and connects the pin up to this track. (The 
old tracks are renumbered.) 

When the processing for a column is complete, the 
router extends the wiring into the next. column and repeats 
the same procedure. ‘l’bc following paragraphs make precise 
the algorithm just sketched. 

The input for the greedy router consists of (1) a 
specification of a channel-routing problem, (2) three non- 
negative integer parameters: in,ltial-chantlel-width, ~nirrimr~nr. 
jog-length, and steady-net-constant. 

The greedy router begius wild the initia[-charLrle[-2oidth 
given. ‘2 new track is added whencvrr the current chnnncl- 
:vidth becomes unworkable. ‘fhc router does not begin over 
wihcn a rmw track is added, so d&rent initial widths may 
give dil’ferent results. Good results are usua.lly obtained 
with in.itial-channel-widih just less than the best final chan- 
nel width. One can run the router several times, with 
(rLitiul-cha,lnel-width set initially to the channel dcnsit.y and 
increased by one each time. 

The router will make no “jogs” shorter than minimum- 
jog-length. A higher setting rcdu+:es the number of vias 
and thus produces more acceptable solutions, while a lower 
setting tends to reduce the number of tracks used. The best 
results are obtained with a setting of about w/4, where 
UJ is the best channel width ohtainable. By running the 
router 2-4 times with different initial parameter settings we 
quickly determined the best solution obtainable. 

Let H(n) denote the highest column k for which Tk = 
n or Llk = n (except that If(n) = X + 1 if n E EZ). We 
say a net n “has its last pin in column k” if Jr(n) = k and 
that it “has its last pin by column k” if H(n) _< k. 

When routing a given column, the greedy router 
classibes each net which has a pin to the right as either 
rising, falling, or steady. A net is rising if its next pin after 
the current column will be on the top of the channel (say 
in column k), and the net has no pin on the bottom of the 
channel before column k + steady-net-cortstant. Fallzng 
nets are defined similarly. Steady nets are the remaining 
nets. We typically use a value of 10 for steady-net-constant. 
A larger value reduces the number of times a multi-pin net 
changes tracks. 

The fundamental data structure for this router is the 
set Y(n) for each net n of “tracks currently occupied” by 
net n. Each track is denoted by its y-coordinate, so Y(n) 
is a subset of { 1,. . . ,w } for each n. If Y(n) = 4 (the 
empty set), the net is not currently being routed (i.e. we 
have not yet reached the first column in which net n has 
a pin, or we have pa.ssed the last column in which net n 
has a pin and have completed a!1 the routing for net rz). 
Otherwise, suppose Y(?r) = { ~1,. . ., yk } when the router 
is working on column i. Then each point (i, yt), . . . , (i, yk) 
is a “dangling end” of some wiring already placed for net 
n. Exactly one such “dangling end” is listed in Y(n) for 
each connected piece of wiring already placed for net n. 
The router is obligated to eventually connect together these 
“dangling ends” so that each net is tiually implemented by a 
>ingle conncctcd piece of wire. When cxteritiing lhc routing 
from column i to column i $- 1, ho~iaoiital wiriug will used 
in every track y for which y G Y(n) for some ~1 alid eit.her 
IY(n)l ,> 1 (the dangling cuds hale yet to bC coilricctcd 
together) or the last pin for net 72 cccurs after coluJml i. 

We dcfi~le a net to be split at my time that Il’(n)l > 
1. We also call a split net ‘~collapr~it~ic”, since We map be 

257 



:tbIe to ‘lcolIapsc’i it down to a single track (or zero tracks 
if WC have passed the last pin for the net) by makiug an 
appropriate connecting jog. 

We il!llstrate the operations of the router using a set of 
“before-after” figures for each step. ‘l’hesc figures describe 
what happens in a single column, and should be iutcr- 
preted as follows. Nets cntcring a column from t.hc pre- 
vious column are shown cxtcnded up to the current column. 
If the net has pins to the right of this column, the net 
is shown extended towards the next column with an nr- 
rowhead. OLhcrwisc (if the net has no pius to the right), 
no arrowhead is shown. A I’+“, “-“, or “+/ -” may be 
shown next to an arrowhead to denote rising, falling, or 
steady nets. 

The Greedy_Router 
Let w denote the current channel width (initially WJ = 
initial-channel-width). 
Assign Tracks To Nets At Left End: For each net n in L 
give n a distinct value for Y(n) (i.e. a distinct track in the 
range 1,. . , , initial-channel-width on which to eutcr the 
channel from the left. end.) Put the “rising” nets above the 
“steady” nets above the “falling” nets and generally group 
the nets at the center of the channel. 
Route Channel From Left To Right: For each column i, for 
i = 1,2,..., until i 2 n and no split. nets remain to be 
collapsed do: 
(a) Make Feasible Top and Dottom Connections in Minimal 

Manner: If 2; or l3i is nonzero, “bring in” that net if 
possible to the to the nearest possible track which is 
either empty or already assigned to this net, by running 
a vertical wire from the edge of the channel to the 
desired track, and adding that track to Y(T;) or Y(Bi). 
(Fig. A) Note that a net n is not routed to t.he nearest 
track in Y(n) if there is a nearer empty track - leaving 
n temporarily assigned to an additional track. (Figs. 
B, C) Also note that a new net can not be brought into 
a “full” channel in this step (but. see step (c)). (Pig. D) 
If ??; and B, are both n.onzero, try to “briog in” both 
nct,s but if Ti # l?i and the vertical segments would 
confiict (overlap) then just bring in the net which can 

be brought in with the Icast wire, and lca\rc tbe other 
net to be brought in at. step (e). (Fig. E) AS speci;J 
case, if there are no empty tracks, a.nd net y; = Bi # 
0 is a net which has conncctil,ns in this column only, 
then run a vertical wire from top to bottom of this 
column. (Fig. Ii‘) 

k/// ;///,J L/N// I ////rJ 

i- 2- '< -A 2- 

3- 3- s --• 3- 

4- 4 l- l- 

lq7q ,/,,,-,l//,, 

A A’ 6 B’ 

p%$ gwJ PO 2 ,,n, 

3 FE 

ywjh 5 u~n,~ I,//, 5 /N/I 

3- 

I- I 

2- 2 2------r 2 
1- I- 3- 

ifi 

3 

A- 4- 4- 4 

6 
F’ 

jb) Free Up AS Many Tracks As Possible Uy Collapsing 
Split Nets: Add vertical segments in t&is column to 
collapse split net,s in a pattern that will create the most 
empty tracks for use in the next column. Define a 
“collapsing jog” to be’ a “piece of vertical wire” which 
connects two tracks holding the same net without CTOSS- 
ing another track holding that net. (So each split net n 
generates lY(n)I - 1 such jogs.) Define a lLpattern” to 
be any set of collapsing jogs for which jogs for different 
nets do not overlap and for which no jogs overlap any 
vertical wiring placed in step (a). The number of such 
patterns to consider may be exponential in the number 
of collapsing jogs lhere are to consider. Find the pat- 
tern which creates the most empty tracks by a small 
but complete combinatorial search. (Figs. G, H) A pab 
tern will free up OX track for every jog it contains, plus 
one additional track for every net it Ytnishes”. (The 
pattern finishes a net n if it totally connects up the 
dangling ends for n and n has its last pin by column 
i.) Resolve any ties between patterns that free up the 
most tracks by choosing the pattern which leaves the 

T 
I- 
3- 

2- 

PlEpq 

G 

// ' P4 

T 

2- 

1- 

2- 

3- 

4- 

3- 

qpwl 

I 

258 



outermost uncollapsed split net as far as possible from 
the channel edge; if necessary consider the second out- 
ermost such net, etc. (Fig. I) Resolve auy remaining 
ties by choosing the pattern with largest sum of jog 
lengths. (Fig. J) Add appropriate vertical wiring for 
each jog in the winning pattern, and for each such jog 
which connects a track yr to a track ~2 (assume yr < 
yz) for some net n, delete yr from Y(n). (This is an 
arbitrary choice that might get modified in steps (c) 
and (d).) Note that this st.ep will typically collapse a 
net that was temporarily brought in to an empty track 
in step (a) when that net had a previously assigned but 
mom distant track. 

(c) Add Jogs To Reduce The Rnngc of Split Nets: For each 
uncollapscd split net (i.e. for etch net n. with Y(n) > 
2): try to reduce the raiige of tricks assigned to the net 
by adding vertical jogs that have the cl&t of moving 
the net: (i) from the maximma !.rack iu Y(n) to the 
lowest possible empty track a.~~(?; (ii) from the minimum 
track in Y(P.) to the highest possible crnpt,y track. (Fig. 
K) Uccause of step (b), no co!!a.psing will occur, but 
~hc difficulty of collapsing the AC rcrnainiog split nets 
may be rcducccl. Ma.kc no jogs which ale shorter than 
minimum-jog-length or which would be incompatible 
with vert,ical wiring already placed in this columned by 
previous steps. If a jog for net q is mnde from track ~1 
to track ya, replace yr by ya in Y(Tz). 

(d) Add Jogs to Raise Rising Nets and Lower Falling Nets: 
Consider all the unsplit (i.e. [Y(n)1 = 1) rising and 
falling nets being routed in order of decreasin,g distance 
from their track y E Y(n) to their “target edge” (e.g. 
the upper edge of the channel for rising nets). Try to 
<dd a vertical jog to move that net to an empty track 
which is as close as possible to its target edge. (Fig. 
L) Make no jogs which arc shorter than minitn?lm-jog- 
le?~yth or which would bc incompatible with vertical 
wiring already placed in this column by previous steps. 
If a jog for net TX is made from track yr to track ~2, 
replace yr by y2 in Y(n). 

;? v//!/c- “///l//// z&1 

I- 
3-L-----,+ 3w+ 

2- 2 1 4+- 4-- 

L!!// ; '///I 

K 
T ““L” T 

(e) Widen Channel If Needed To Make Previously In- 
feasible Top Or Bottom Connection: If a net T; or Bi 
could not be brought in to a track in step (a), create 
a new track for this net and bring the net in to this 
track. Place this track as near the center of the chan- 
nel as possible between existing tracks, subject only to 
the constraint that, desired connection to the edge of 
the channel can be made. (Fig. M) (If the new track 

lies between tracks previously numbered k and k + 1, 
all old tracks at y-coordinates k $- 1 and greater now 
have their y-coordinates rctroactivcly iucreascd by one, 
and all Y(n) referring to these tracks are appropriately 
modiGed.) Add the new track to Y(T,) or Y(f$) as 
appropriate. 

(f) Extend To Next Column. For each net 7~ such that 
IY(n)l = 1 and n has no pins aft,er column i, make 
Y(n) be the empty set. (The routing for these nets is 
now finished.) Then for each track y which is in Y(n) 

for some 71, extend the “dangling end” for net n a.long 
track rJ into column y + 1 with appropriate horizontal 
wiring. (Fig. N) 

This completes the description of the greedy router. 
The router will always complete the routing successfully, 
although it may use a few addition! al columns beyond the 
natural right end of the channel to do so. 

The algorithm takes about 10 seconds on a OEC KA- 
10 for moderate sized channels. The implemcntatiou was 
simple -- about 15 pages of LISP code, counting 10 pages 
for I/O and initialization. 

Discussion 

This algorithm is the result of long series of cxperimen- 
tation and evaluation of variations on the basic idea of 
scanning down the channel from left to right and routing 
everything as you go. 

By “minimally” connecting anet in step (a) we separate 
the tasks of connecting up a pin aud of deciding to use a 
column to jog all the way over to a track the net may al- 
ready be on. Step (b) makes this latter decision; it might 
turn out that another such “collapsing pattern” frees up 
more tracks. 

When collapsing nets the router tries to free up the 
most tracks, since it is hard to achieve optimal routings if 
nets are allowed to occupy more tha.n one track for very 
long. Since we observed that it is very dillicult in general 
to collapse a net which is in a track just next to the channel 
edge, due to the fact that other nets must cross this track 
to enter the channel, the collapsing algorithm will favor 
patterns that collapse these “difficult” nets. 

The use of combinatorial search for the net collapsing 
phase was found to be acceptably fast since there were never 
more than four split nets in our examples. A “dynamic 
programming” approach can be used instead, if it is desired 
to avoid exponential worst-case running times. 

WC were surprised to find that the step (d) works SO 

well, since it is very simple and takes no particular notice of 

259 



upcoming conflicts. Our initial implementation tried to first 
resolve upcoming conflicts in the order they were coming 
up, and then to jog the other nets as much as possible 
in the appropriate directions. The success of the current 
variation seems to be based on the fact that it bries to jog 
nets in trar.ks uear the edges of the chaunel first - these are 

the most difficult places to move a net from, and also on 
lhc fact that the router will tends to maximize the amount 
cd useful vertical wiring created. 

One nice feature of the greedy router is that its cm- 

trol structure is very flexible and robust: it is easy to 
iua.ke variations in the heuristics employed Lo achieve spc- 
c.ial rffccts or to rearrange priorities. The parl,icular ;jlgo- 
~itbm presented here is merely our best suggestion based 
on our experimental evidcncc; other variations may turn 
ftut bcttcr in other situatiorls. As an cxarnplc, we ha.ve also 
considered a “gridlcss” variation where the track-to-track 
::pxcing can be reduced if a pair of adjnce:.t tracks does 
riot have contacts next to each other in some column. This 
variation uses more “intelligence” when selcctimg the jogs 
to make in a given column. It is also easy, for example, to 
restrict jogs for a net to those columns for which it has a top 
or bottom connection, etc. Another variation we have not 
yet tried is to scan outwards from a column of maximum 
density instead of using a left-to-right scan; we expect this 
variation may prove to be valuable in practice as well. We 
not very sure how one should best order the nets in L at 
the beginning - how should a set of rising nets be ordered? 

One extension that is worth noting in particular is 
that is not too dificult to modify the router to handle the 
notorious “switchbox” problem - where a “channel” has 
a fixed length and w,dth and terminals fixed on all four 
sides. (See [So811 f or a discussion of the importance of this 
problem.) Two MIT students, Jim Koschclla and David 
Christman, have performed this modification; their results 
arc reported in I<oschella’s B.S. thesis, and their program 
is current,ly used in the MIT “PI” system. ((Ko81, Riglb]) 

Experimental Results 

We present three sorts of experimental results: 
(a) Data on five chips routed at GE using previous 

algorithms, 
(b) Data on Deutsch’s “difficult example”, and 
(c) Data on program-generated standardized test ex- 

amples taken from [12i81a] 

WC considered five chips at GE that were designed 
Tlsillg a poly-cell approach. All together they contained 26 
ch:tnncls, with an average channel density of 16.500, and 
a range of densities from 12 to 43. The greedy algorithm 
was al);e to route all of these csannels successfully, with 

>:I :~vc~‘ngc channel width of 16.654 (i.e. it routed 22 of 
the 26 chnur~els usiug a uumber of tracks exactly equal to 
ihe charlrlcbl density, and routed 4 of them using one more 
Ir;lck than the chaunel density). This represrnts an average 
(!f an increase of’ 0.93 pcrccnt over channel density. The 
;~rCviOUS router used at GE ;wera,ge$ xn increase of roughly 
: 2 pcricut over chanrlel density for these problems. 

WC tcst.cd the greedy router on the “difficult example” 
of Dcutsch !l)e76]. This problem has a channel density of 
;9. To our knowledge no compietely automatic algorithm 
leas produced a routing in 19 trncks. Yoshimura and Kuh 
report an algorithm which achicvcd 20 tracks on this prob- 
lem (YK80]. The greedy algorithm also produced a routing 
in only 20 tracks (although it did use more vias). This 
routing is given in the Appendix. 

The paper [RiXla] contains a (‘standard” set of bcnch- 
mark channel-routing problems, described by a program 
that generates them. We ran the greedy router on many 
benchmark channels taken from this paper, and were 
generally unable to improve by hand any of the routings 
found. 

Acknowledgements ---__ 
We should like to thank Dan Schweikcrt, David Deutsch, 

Ernest Kuh, Phil Lewis, James Rurnbaugh, Flavio Rose, 
Ron Pintcr, Charles Leiscrson, Alan Baratz, and Seth !.-.I- 
ford for helpful discussions, information, and/or critical 
comments on an early draft of this paper. 

REFERENCES -_____- 

[AlSO] Aiford, S. “DYCHAR: A Channel Router which uses 
dynamic channel assignment,” MIT Bachelor’s thesis. 
(May 1080). 

[AKTX] Asano, T., T. Kitahashi, and K. Tauaka, “On 
a Method of Realizing Minimum-Width Wiring,” Electronics 
and Communications in Japan, Vol. J59-A, No. 2 
(1976), 29-39. 

[BR81] Brown, D. and Ii. L. Rivest, “New Lower Bounds 
on Channel Width”, I’roc. CXU Conference on VLSI 
Systems and Computations, (Computer Science Press 
1981) 178- 185. 

[De761 Deutsch, D. N., “A ‘Dogleg’ Channel Router,” l’roc. 
I%th Design /tutornation Conference, IEEE (1976), 
425-433. 

~DKSSU81] rhlev, I)., K. Ka.rplua, 21. Sicgpl, A. kjtrctng, 
aud J. Ul111t:ln, “Optim.11 bvirirlg I?etwccn I&tarqlrs,” 
l’roc. 13th Aouual ACM SymposilIm on ‘I’hcory d 
Col-nputing (klny 1981), 312-317. 

[GJ79] Carey, M. and D. J~~hnson, Cornpltlers and ~r~ntrm- 

tnliility: A Cu.ide to Ihe Theory of NP-Colnpleteness, 
(l?reeman, 1970). 

[IIa7j.] IIashirnoto, A. and J. Stevens, “\L’iro Routing by 
Optimizing Channel Assignment within I,arge Aper- 
tures,” Proc. 8- tA 13esign Automation Workshop, IL1:EE 
(1971), 214-224. 

[Hi74] Hightower, D., “The Intrrconncction Problem: A 
Tutorial,” Cofr.pJlter 7,4 (April 1974), 18-32. 

[KIC79] Kawamoto, T. and Y. Kajitani, “The Minimum 
Width Routing of of a ~-ROW 2-Layer Polycell-Layout,” 
PTOC. IGth ncaign Automation Conference, IEEE (1979), 
290-296. 

260 



[KSP73] Kernighaa, B., D. Schweikert, and G. Persky. 
‘<AD Optimal Channel-Routing Algorithm for Polyccll 
Layouts of Integrated Circuits,” Proc. IO-t/r Design 
Automation Wofkshop, IEEl< (1973), 50-59. 

;I~iSln] !.Zivcpt, R. L., LL ‘Benchmark’ Channel-Iiouting 
Ihblerns,” In preparation. 

\KoSl] Koschella, J., “A Placement/Interconnect Chan- 
nel Router: Cutting your PI into Slices,” Bachelor’s 

jI?i82] Itivcst, R. l,.,” 

Thesis. MIT Department of Electrical Engineering a.nd 
Sysi fru” . 

The ‘1’1’ (I’lacsmcnt and Interconnect) 
I’roc. 19th Design Automation ConJerence, 

Computer Science. (May 1981). 
(r,as vcgas, 1(~82) 

[L&O] LaPaugh, A., “Algorithms for Integrated Circuit 
jRHMtiL] Rivest, R. T,., A. E. Baratz, and C. Miller, 

Layout: an Analytic Approach,” Ph.D. Thesis, MIT 
“Proiably Good Channel-Routing Algorithms,” Proc. 

Laboratory for Computer Science Report TR-248 (November 
CMU Conference on VLSI Systwns n/id Computnlions, 

1980). 
(Computer Science Press 1981), 153-159. 

[Le81] Leighton, T., “New Lower Bounds for Channel 
[SfEo) Snhui, S. and A. Phatt, “The Complexity of Design 

Routing,” l’o appear. 
Automation Problems,” PrOC. t7th Lksigil llulornation 
Confcwnce, IIXX (JUIJ~ 1’380), 402-411. 

[LP81] Leiserson, C., and R. Pinter, “Optimal Placement 
for River Routing,” Pruc. C&NJ Conference on VLSI 
Systems and Computations, (Computer Science Press 
1981), 126-143. 

[Sdl] Soukup, J., “Circuit hyout,” hoc. of the IEfSE, 
vol. 69, No. lO(Oct. 1981), 1281-1304. 

]So81] Szymanski, T., “Dogleg Chnnrrcl Routing is NP- 
Complete,” To appear. 

[PDSW] Persky, G., D. Deutsch, and D. Schweikert, “LTX 
- A Minicomputer-Based System for Automated LSI 
Lay-out,” Jcurnal of Design Automatics and Fault- 
Tolerant Computing 1,3 (May 1977), 227-255. 

[PiSl] Pinter, R., “Optimal Routing in Rectilinear Chan- 
eels,” .Proc. CMU Conference on VIST System.s and 

[ToSO] Tompa, M., “An Optimal Solution to a Wirc- 
Routing F’roblcm,” Proc. 12th Anu~lal ACM Sym- 
posium on 2’hec~y of Comphny, (AI)ril 1980), 201-210. 

[YK80] Yoshimura, ‘I?. and E. Kuh, “EHicicnt Algorilhms 
for Chauncl IZoat,ing,” U. C. Herkelcy Electronics Re- 
starch Laboratory Memo. No. M80/43 (August 1986). 

I. A ppendix. Deutsch's "Difficult Example* 

Parameters: Initial-channel-width = 20 
Minimum- jog-length = 2 
Steady-net-constant = 10 

Channel-width z 20 (Density = 19) 
Extra columns used = 
Vias used = 34: 
Wire-length = 4150 
Time = 7.93 seconds 

261 



126 I I 
:27 

128 

II I 

50-+-+- 

129 30-i-L 
130 &- 

131 

13% 

133 24-g 

134 

135 20-t-* 

136 52-!-!-r 

137 1 

136 

139 

140 

141 

::I :::rj-. 

114 2,-L! I 

145 

146 24- 1 

147 I 

148 4&J-+.+-------. 

149 

150 

151 

152 

153 24- 1 

154 
155 

1 
20-i-* 

156 52-!-L 
. 

-*-4E 

-t-44 

87 35-!-L 

RR 36-l j 

89 48---l- 

90 
I 

49-a *- 

I II Illilliiiiii4’ '---+-+---+.+-+-+.+-*-+-+-+-+-t-48 

I II +.a Illlllllllll d-+-* -... +-+ -,-- +-+-t-+-+-+-+-.+-l- 

91 ,I.!.! 

92 
i 

39-t--- 

93 
I 

46.+-• 

94 47-!-!- 

95 50-L!- 

96 52-!-L 

97 20-!-L 

‘II 
J, 

--* I I I I I I I *-+-+-+-+-C-C.* 
'/II/ IIIIIII I l .--+-+-+-+-+-~-+-t-+---+-+-+-*-+.+-24 

IIIIIIIII II II '-+-~-+-+.+-+.-+-+-+---*-+---~-+-23 

1 !J_!.!_!-!_!J_! -_--- !---!-I-,, 
~_~...~_!J~! 

I I I I I I illl 

*---+---!-!-2o I 

II I +-+-~.+-+-t--.+-+-+.*-+..-+---* *‘-1 

,omJ! 1 I f I I I I I I i 
; I l -+-+.+-+-+-+-+-+----.-----+--“* 

/I -*-+ 

47 
lllllllJlJ~~ I- '---+-+-+-c-+-+-+..+-+-+-+-+ -,----.-- +-31 

46 
II I II I I Ii I I I I *-+-+-C-+-f-= *-+.+-+-+-+ ----_ ‘-+-I 

49 I I I I I *..+-+-+-+---* 

60 I I I I *-+-+-+.* 

51 
llllll~l’ g-+-+-+-+-+.+- -+-+-------* 

52 
IIIIII II Ml I I 2-+-+-+-+-+-+-m-+-r *-----*-+-+-+-+---+-+-32 

53 
I I. IIIII II .-.---+.----+.+-+-+.+---+-+-23 

70 3&l---+-+-+-+-+-+-t-+-+- 

I I I I I I I I I I I I I 
s-+-+-+-+-+-+-+-+-+-+-+-+-+-+-42 

75 41---+-+-+-+.--+-+-c-+.+-* 

IIII lllll 76 ~g~--+-+-+.+-~-+-+-+-+-+---+-+-+-+-'-+-+-+-+-~Q 

77 
III1 lllll 

' I l-!-!-!-!-!-3, 6---+-+-+-+---+-+-+-+-+---+-r 
I I I I I I I I I 78 44---+-+-+.+---+-+-+-+-+-* 


