
111

SPKI/SDSI 2.0
A Simple Distributed Security

Infrastructure
by Ronald L. Rivest

MIT Lab for Computer Science
(Joint work with Butler Lampson and Carl

Ellison)

222

Outline

 context and history
 motivation and goals
 syntax
 public keys (principals)
 naming and certificates
 groups and access control

333

The Context

 Public-key cryptography invented in 1976
by Diffie, Hellman, and Merkle, enabling:
– Digital signatures:

private key signs, public key verifies.
– Privacy:

public key encyrpts, private key decrypts.
 But: Are you using the “right” public key?

Public keys must be authentic, even though
they need not be secret.

444

How to Obtain the “Right’’ PK?

 Directly from its owner
 Indirectly, in a signed message from a

trusted certification agent (CA):
– A certificate (Kohnfelder, 1978) is a digitally

signed message from a CA binding a public key
to a name:
 “The public key of Bob Smith is
 4321025713765534220867 (signed: CA)’’

– Certificates can be passed around, or managed
in directories.

555

 How do I find out the CA’s public-key
(in an authentic manner)?

 How can everyone have a unique name?
 Will these unique names actually be useful

to me in identifying the correct public key?
 Will these names be easy to use?

Scaling-Up Problems

666

 (PEM, X.509): Use a global hierarchy with
one (or few) top-level roots:

 Use certificate chains (root to leaf):
A B C D

 Names are also hierarchical: A/B/C/D.

Hierarchical “Solution”Hierarchical “Solution”

D

C

B

A

777

Scaling-Up Problems (continued)

 Global name spaces are politically and
technically difficult to implement.

 Lawyers must get involved if one wants
certificates to support commerce or binding
contracts. Standards of due care for issuing
certificates must be created.

 Nonetheless, a global hierarchical PK
infrastructure is slowly beginning to appear
(e.g. VeriSign).

888

PGP “Solution”

 User chooses name (userid) for his public
key:
 Robert E. Smith <res@xyz.com>

 Bottom-up approach where anyone can
“certify” a key (and its attached userid).

 “Web of trust” algorithm for determining
when a key/userid is trusted.

999

Is There a Better Way?

 Reconsider goals...
 Standard problem is to

implement name key maps:
– Given a public key, identify its owner by name
– Find public key of a party with given name

 But often the “real’’ problem is to
build secure distributed computing systems:
– Access control is paradigmatic application:

should a digitally signed request (e.g. http
request for a Web page) be honored?

101010

SPKI/SDSI (“spooky”?/“sudsy”)

 Simple Public Key Infrastructure
 Simple Distributed Security Infrastructure
 SDSI is effort by Butler Lampson and

myself to rethink what’s needed for
distributed systems’ security. It attempts to
be fresh design (start with a clean slate).

 SPKI is effort by Carl Ellison and others to
design public-key infrastructure for IETF.

 SPKI/SDSI is a merger of these designs.

111111

Motivations:

 Incredibly slow development of PK
infrastructure

 Sense that existing PK infrastructure
proposals are:
– too complex (e.g. ASN.1 encodings)
– an inadequate foundation for developing secure

distributed systems
 A sensed need within W3C security

working group for a better PK infrastructure

121212

Related Work

 Blaze, Feigenbaum, and Lacy’s work on
“decentralized trust management”
(Policy-Maker)

 W3C (world wide web consortium) work on
security and on PICS

 Evolution of X.509 standards

131313

Simple Syntax (S-expressions)
 Byte-strings:

 abc (token)
“Bob Dole” (quoted string)
&4A5B70 (hexadecimal)
=TRa5 (base-64)
#3:def (length:verbatim)
[unicode] &3415AB8C (display hint)

 abc~ def = abcdef (fragmentation)
Lists:
(certificate (issuer bob)
 (subject alice))

141414

Principals are Keys

 Our active agents (principals) are keys:
specifically, the private keys that sign
statements. We identify a principal with the
corresponding verification (public) key:
(public-key
 (rsa-md5-verify
 object
 signature
 (const &03)
 (const &435affd1…)))

 In practice, keys are often represented by
their hash values.

151515

Keys may be simple programs
 (public-key
 (let object-hash (md5 object))
 (equal object-hash
 (rsa signature

 (const &03)
 (const &435affd1…))))

 Programming language has only two
statement types:
– assignment statements
– equality tests.

161616

All Keys are Equal

 Each principal can make signed statements,
just like any other principal.

 These signed statements may be certificates,
requests, or arbitrary S-expressions.

 This egalitarian design facilitates rapid
“bottom-up” deployment of SPKI/SDSI.

171717

Signed Objects

 Signing creates a separate object, containing
the hash of object being signed.

 (signed
 (object-hash (hash sha1 &84…))
 (signer (public-key …))
 (signature &5632…))

181818

Encrypted Objects
 (encrypted
 (key (hash sha1 &DA…))
 (ciphertext =AZrG…))

 One can indicate the key:
– by its hash value
– in encrypted form
– using its name

191919

Users Deal with Names, not Keys

 The point of having names is to allow a
convenient understandable user interface.

 To make it workable, the user must be
allowed to choose names for keys he refers
to in ACL’s.

 The binding between names and keys is
necessarily a careful manual process. (The
evidence used may include credentials such
as VeriSign or PGP certificates...)

202020

Names in SDSI are local

 All names are local to some principal; there
is no global name space. Each principal has
its own local name space.

 Syntax: (ref <key> name)
(or just(ref name)if key is understood)

 A principal can use arbitrary local names;
two principals might use the same name
differently, or name another key differently.

 Linking of name spaces allows principals to
use definitions another principal has made.

212121

Linking of name spaces

 A principal can export name/value bindings
by issuing corresponding certificates.

 Name spaces are linked; I can refer to keys
named: (ref bob)
 (ref bob alice)
 (ref bob alice mother)
if I have defined bob,

bob has defined alice, and
alice has defined mother.

222222

Certificates in SPKI/SDSI 2.0

 These take a single unified form, but are
used for many purposes:
– binding a local name to a value
– defining membership in a group
– delegating rights to others
– specifying attributes of documents and of key-

holders

232323

Certificate Parts
 issuer: <key> or (ref <key> name)
 subject: <key> or

 (ref <key> name1 … namek)
 or a document (or its hash)

 validity period
(not-before …) (not-after …)
Note: no revocation of certificates!

 tag: specifying rights or attributes
 propagation-control: a boolean flag

242424

Sample Certificate
(certificate
 (issuer (ref <my-key> “Bob Smith”))
 (subject <bob’s-key>)
 (not-after 1996-03-19_07:00)
 (tag (*)))

This defines <bob’s-key> as the value of the
name “Bob Smith” in my key’s name space .
The tag (*) means that <bob’s-key> inherits
all the rights of my name “Bob Smith”.

252525

Certificate Chains

 A sequence of certificates can form a chain,
where definitions cascade and rights flow.

 {K1} ==> {K1 mit rivest} (tag (read foo))
{K1 mit} ==> {K2} (tag (read (*)))
{K2 rivest} ==> {K3} (tag (read (*)))
is equivalent to:
{K1} ==> {K3} (tag (read foo))

 Validity periods and tags intersect.
 A request may be accompanied by a chain.

262626

Generalized tags and *-forms

 There are a set of “*-forms” for writing tags
that represent a set of *-free tags. The
system can automatically intersect these
sets, even though tag semantics is
application-dependent.

 (tag
 (spend-money
 (account (* set 1234 5678))
 (date (* range date 1997 1998))
 (amount
 (* range numeric 1 1000))))

272727

Propagation Control

 A certificate may turn on propagation
control, in which case rewriting of issuer’s
name in a certificate chain can not proceed
past the point where it is rewritten to be a
single key.

 Examples:
– Subscribers to on-line journal
– Group of individuals who are “adults”.

282828

Cert can also describe keyholder
(certificate
(issuer <rons-key>)
(subject (keyholder <rons-key>))
(not-after 1998-01-01_00:00)
(tag (name “Ronald L. Rivest”)
 (postal-Address ...)
 (phone 617-555-1212)
 (photo [image/gif] ...)
 (email rivest@mit.edu)

 (server “http://aol.com/~rlr”)))

292929

On-line orientation

 We assume that each principal can provide
on-line service directly, or indirectly
through a server.

 A server provides:
– access to certificates issued by the principal
– access to other objects owned by principal

303030

A Simple Query to Server

 A server can be queried:
“What is the current definition your
principal gives to the local name `bob’ ?”

 Server replies with:
– Most recent certificate defining that name,
– a signed reply: “no such definition”, or
– a signed reply: “access denied.”

313131

Access Control for Web Pages

 Motivating application for design of SDSI.
 Discretionary access control: server

maintains an access-control list (ACL) for
each object (e.g. web page) managed.

 A central question: how to make ACL’s
easy to create, understand, and maintain?
(If it’s not easy, it won’t happen.)

 Solution: named groups of principals

323232

Groups define sets of principals

 Distributed version of UNIX “user groups”
 A principal may define a local name to refer

to a group of principals:
– using names of other principals:
friends include bob alice tom

– using names of other groups:
enemies include mgrs vps

 Defining principal can export group
definitions, so you may say:
 friends include ron (ref ron friends)

333333

“Membership Certificates”

 Just like name/value certificate, where name
is “group name”; subject is member or
subgroup. (Group is “multivalued name”.)

 (certificate
 (issuer (ref <mitkey> faculty))
 (subject <bob’s-key>)
 (tag (*))
 (not-after 1997-07-01))

 Subject could also be another group, whose
members are included in issuer group.

343434

Sample ACLs
(acl (subject friends) (tag read))

(acl (subject(ref AOL subscribers))
 (tag read))

(acl (subject (ref VeriSign adults))
 (tag (http “http://abc.com/adult”)))

(acl (subject (ref ibm employees)
 (ref mit faculty))

 (tag read write))

353535

Querying for protected objects

 Can query server for any object it has.
 If access is denied, server’s reply may give

the (relevant part of) the ACL.
 If ACL depends upon remotely-defined

groups, requestor is responsible for
obtaining appropriate certificates and
including them as credentials (certificate
chain) in a re-attempted query.

363636

Implementations of SDSI 1.0

 Microsoft (Wei Dai, in C++)
 MIT (Matt Fredette, in C)
 Both implementations up and running now.

(No compatibility testing yet…)
 Gillian Elcock is completing a web-based

certificate-manager support system.

373737

Recap of major design principles
 ACLs must be easy to write & understand
 Principals are public keys
 Linked local name spaces (one per key)
 Groups provide clarity for ACLs
 On-line client/server orientation
 Client does work of proving authorization
 Certificates support flexible naming and

authorization patterns.
 Simple syntax

383838

Conclusions

 We have presented a simple yet powerful
framework for managing security in a
distributed environment.

 Draft of our paper available at:
 http://theory.lcs.mit.edu/~rivest
 (Currently just SDSI 1.0; SPKI/SDSI 2.0
coming soon. These slides will be posted.)

 Comments appreciated!

