
111

SDSI -- A Simple Distributed
Security Infrastructure

by Ronald L. Rivest
MIT Lab for Computer Science

(joint work with Butler Lampson)

222

Outline
 Context and history
 Motivation and goals
 SDSI:

– syntax
– public keys (principals)
– naming and certificates
– groups and access control

333

The Context
 Public-key cryptography invented in 1976

by Diffie, Hellman, and Merkle, enabling:
– Digital signatures:

private key signs, public key verifies.
– Privacy:

public key encyrpts, private key decrypts.
 But: Are you using the “right” public key?

Public keys must be authentic, if not
necessarily secret.

444

How to Obtain the “Right’’ PK?
 Directly from its owner
 Indirectly, in a signed message from a

trusted certification agent (CA):
– A certificate (Kohnfelder, 1978) is a digitally

signed message from a CA binding a public key
to a name:
 “The public key of Bob Smith is
 4321025713765534220867 (signed: CA)’’

– Certificates can be passed around, or managed
in directories.

555

 What if I don’t know the CA’s public-key?
 How can everyone have a unique name?
 “Solution”: (PEM, X.509) Use a global

hierarchy with one (or few) top-level roots:

 Use certificate chains (root to leaf)

Scaling-Up Problems

D

C

B

A

666

Scaling-Up Problems (continued)
 Global name spaces are politically and

technically difficult to implement. Legal
issues arise if one wants to use certificates
to support commerce or legally binding
contracts. Standards of due care for issuing
certificates must be created.

 A global hierarchical PK infrastructure is
slowly beginning to appear (e.g. VeriSign).

777

Is There a Better Way?
 Reconsider goals...
 “Standard’’ problems to be solved:

– Given a public key, identify its owner
– Find public key for a given party

 “Real’’ problem to be solved:
– build secure distributed computing systems

» Access control is paradigmatic application: should a
digitally signed request (e.g. http request for a Web
page) be honored?

888

Motivations for designing SDSI:
 Incredibly slow development of PK

infrastructure
 Sense that existing PK infrastructure

proposals are
– too complex (ASN.1 encodings, for example)
– an inadequate foundation for developing secure

distributed systems
 A sensed need within W3C security

working group for a better PK infrastructure

999

Related Work
 IETF’s “SPKI” (Simple Public Key

Infrastructure) working group (esp. Carl
Ellison’s work)

 Blaze, Feigenbaum, and Lacy’s work on
“decentralized trust management”

 W3C (world wide web consortium) work on
security and on PICS

 Evolution of X.509 standards

101010

SDSI has Simple Syntax
A SDSI object (an A SDSI object (an A SDSI object (an S-expressionS-expressionS-expression) may be:) may be:) may be:

 abcabcabc (token)(token)(token)
“Bob Dole” “Bob Dole” “Bob Dole” (quoted string)(quoted string)(quoted string)
#4A5B70#4A5B70#4A5B70 (hexadecimal)(hexadecimal)(hexadecimal)
=TRa5=TRa5=TRa5 (base-64)(base-64)(base-64)
#03:def #03:def #03:def (length:verbatim)(length:verbatim)(length:verbatim)
[unicode] #3415AB8C [unicode] #3415AB8C [unicode] #3415AB8C (with hint)(with hint)(with hint)
(RSA-with-MD5:(RSA-with-MD5:(RSA-with-MD5: (list)(list)(list)
 (E: #03) (E: #03) (E: #03)
 (N: #42379F3A0721BB17)) (N: #42379F3A0721BB17)) (N: #42379F3A0721BB17))

111111

Keys are ``Principals’’
 SDSI’s active agents (principals) are keys:

specifically, the private keys that sign
statements. We identify a principal with the
corresponding verification (public) key:
 (Principal:
 (Public-Key:
 (RSA-with-MD5:
 (E: #03)
 (N: #34FBA341FF73)))
 (Principal-At: “http://abc.def.com/”))

121212

All Keys are Equal*
 Each SDSI principal can make signed

statements, just like any other principal.
 These signed statements may be certificates,

requests, or arbitrary S-expressions.
 This egalitarian design facilitates rapid

“bottom-up” deployment of SDSI.
 * Some SDSI principals may have a special syntax, e.g.:
VeriSign!! USPS!!

131313

Signed Objects
 Signing adds a new signature element to

end of list representing object being signed.
 A signature can be managed independently

of the corresponding signed object.
 An object may be multiply-signed.
 A signature element may itself be signed

(this is used to reconfirm a signature).

141414

Users Deal with Names, not Keys
 The point of having names is to allow a

convenient understandable user interface.
 To make it workable, the user must be

allowed to choose the naming scheme.
 The binding between names and keys is

necessarily a careful manual process.

151515

Names in SDSI are always local
 All names are local to some principal.
 A principal can use arbitrary local names.
 A principal can export name/value bindings

by issuing corresponding certificates.
 SDSI syntax supports indirection:

 I can refer to keys (values) named:
bob

 bob’s alice
 bob’s alice’s mother

161616

DNS names get special treatment
 A name of the form:

 billg@microsoft.com
is equivalent to:
 DNS!!’s com’s microsoft’s billg

 (This assumes that public keys for entities in the
DNS have been created, which may happen in the
not too distant future.)

171717

Certificates
 Certificates are signed statements (signed S-

expressions).
 Certificates may bind names to values (e.g.

to principals or group definitions), may
describe the owner of public key, or serve
other functions.

 A certificate has an issuer (signer) and an
expiration date.

181818

Sample Certificate
(Cert:
 (Local-Name: “John Smith”)
 (Value: (Principal: ...))
 (Signed:
 (Object-Hash: (SHA-1: #34FD4A))
 (Date: 1996-03-19T07:00)
 (Expiration-Date: 2000-01-01T00:00)

 (Signer: (Principal: ...))
 (Signature: #57ACD1)))

191919

Auto-Certificates describe signer
(Auto-Cert:
 (Public-Key: ...)
 (Principal-At: http://bu.edu)
 (Server: http://aol.com)
 (Name: “Robert E. Smith”)
 (Postal-Address: ...)
 (Phone: 617-555-1212)
 (Photo: [image/gif] ...)
 (Email: alice@abc.com)
 (Signed: ...))

202020

On-line orientation
 SDSI assumes that each principal can

provide on-line service, either directly or
(more typically) indirectly through a server.

 A SDSI server provides:
– access to certificates issued by the principal
– access to other objects owned by principal
– reconfirmation service for expired certificates

(SDSI does not have CRL’s !)

212121

A Simple Query to Server
 A server can be queried:

“What is the current definition your
principal gives to the local name `bob’ ?”

 Server replies with:
– Most recent certificate defining that name,
– a signed reply: “no such definition”, or
– a signed reply: “access denied.”

222222

Reconfirmation of Certificates
 SDSI certificates have an expiration date,

and may have a reconfirmation period.
 A certificate is valid before the expiration

date, if the most recent signature is within
the last reconfirmation period.

 A principal may authorize its server to
reconfirm its certificates.

 Reconfirmation is done by supplying a fresh
reconfirmation signature to the certificate.

232323

Access Control for WWW Pages
 Motivating application for design of SDSI.
 Discretionary access control: server

maintains an access-control list (ACL) for
each object (e.g. WWW page) managed.

 A central question: how to make ACL’s
easy to create, understand, and maintain?
(If it’s not easy, it won’t happen.)

 Solution: named groups of principals

242424

Groups define sets of principals
 Distributed version of UNIX “user groups”
 A principal may define a local name to refer

to a group of principals:
– using names of other principals:
friends = (Group: bob alice tom)

– using names of other groups, and algebra:
enemies = (Group: (OR: mgrs vps))

 Group definitions may be exported using
certificates issued by the defining principal.

252525

Your definitions can use mine
 If you have defined ron to refer to my

principal (public key), then you can use
ron’s bob
ron’s friends
ron’s bob’s friends

to refer to principals or groups indirectly.
(The syntax shown is sugar for things like
 (ref: ron bob friends))

262626

Sample ACL’s
(ACL: (read: associates))
(ACL: (read: Newsweek’s subscribers))
(ACL: (read: VeriSign!!’s adults))
(ACL: (read: microsoft’s employees))
(ACL: (write: (OR: bob bob’s asst)))
(ACL: (read:
 (OR: bob
 bob’s friends
 mit’s eecs’s faculty)))
 (write: ron))

272727

Querying for protected objects
 Can make a query for the object.
 If query fails, reply may indicate what the

(relevant portion of the) ACL is.
 If ACL depends upon remotely-defined

groups, requestor is responsible for
obtaining appropriate ``membership
certificate’’ and including that as a
credential in his query.

282828

Membership Certificates
 Issued by principal defining group, or his

server, when requested.
 (Membership.Cert:
 (Member: <ron’s principal>))
 (Group: faculty)
 (Signed:
 (Signer: <mit’s principal>)
 ...))

292929

Encrypted Objects
 (Encrypted:
 (Key: (Key-Hash:
 (SHA-1 #DA3710)))
 (Ciphertext:
 =AZrGT57+30vB1QsMPuI5Ol79))

 One can indicate the key:
– by its hash value
– in encrypted form
– through its name

303030

Other issues and topics
 Multiply-signed requests
 Data compression
 Delegation certificates
 Generalized queries and templates
 Algorithm for evaluating names
 Algorithm for determining group

membership

313131

Implementations
 Microsoft (Wei Dai)
 MIT (Matt Fredette)
 We expect working code by end of this

calendar year.

323232

Recap of major design principles
 Principals are public keys
 ACLs are easy to write & understand
 Linked local name spaces (one per key)
 Groups provide clarity for ACL’s
 On-line client/server orientation
 Client does work of proving authorization
 Reconfirmation instead of CRLs
 Signing authority can be delegated
 Simple syntax

333333

To find out more about SDSI
 Draft of our working paper available at:

 http://theory.lcs.mit.edu/~rivest

(Warning: under development)

343434

Conclusions
 We have presented a simple yet powerful

framework for managing security in a
distributed environment.

 Comments appreciated!

