
SDSI -- A Simple Distributed
Security Infrastructure

by Ronald L. Rivest
MIT Lab for Computer Science

(joint work with Butler Lampson)

Outline
 Context and history
 Motivation and goals
 SDSI:

–  syntax
–  public keys (principals)
–  naming and certificates
–  groups and access control

The Context
 Public-key cryptography was invented in

1976 by Diffie, Hellman, and Merkle.
 Public-key crypto enables:

– Digital signatures (sign with private key, verify
with public key)

– Privacy (encrypt with public key, decrypt with
private key)

 But: Are you using the “right” public key?

How to Obtain the “Right’’ PK?
 Directly from its owner
  Indirectly, in a signed message from a

trusted CA (certification agent):
– A certificate (Kohnfelder, 1978) is a digitally

signed message from the CA binding a public
key to a name, e.g..:
 “The public key of Alice B. Smith is
 4321025713765534220789867 ’’

– Certificates can be passed around, or managed
in directories.

 What if I don’t know the CA’s public-key?
 How can everyone have a unique name?
  “Solution”: (PEM, X.509) Use a global

hierarchy with one (or few) top-level roots:

 Use certificate chains (root to leaf)

Scaling-Up Problems

Scaling-Up Problems (continued)
 Global name spaces are politically and

technically difficult to implement. Legal
issues arise if one wants to use certificates
to support commerce or legally binding
contracts. Standards of due care for issuing
certificates must be created.

 A global hierarchical PK infrastructure is
slowly beginning to appear (e.g. VeriSign).

Is There a Better Way?
 Reconsider goals...
  “Standard’’ problems to be solved:

– Given a public key, identify its owner
– Find public key for a given party

  “Real’’ problem to be solved:
– build secure distributed computing systems

» Access control is paradigmatic application: should a
digitally signed request (e.g. http request for a Web
page) be honored?

Motivations for designing SDSI:
  Incredibly slow development of PK

infrastructure
 Sense that existing PK infrastructure

proposals are
–  too complex (ASN.1 encodings, for example)
–  an inadequate foundation for developing secure

distributed systems
 A sensed need within W3C security

working group for a better PK infrastructure

Related Work
  IETF’s “SPKI” (Simple Public Key

Infrastructure) working group (esp. Carl
Ellison’s work)

 Blaze, Feigenbaum, and Lacy’s work on
“decentralized trust management”

 W3C (world wide web consortium) work on
security and on PICS

SDSI Has Very Simple Syntax
 Based on S-expressions
 Each S-expression is either:

–  a representation of an octet (byte) string:
 abc “Bob Smith” #4A5B70
 =TRa5 #03:def
 [unicode] #3415AB8C

–  a parenthesized list of simpler S-expressions:
 (RSA-with-MD5:
 (E: 3)
 (N: #42379F3A0721BB17))

Keys are ``Principals’’
  In SDSI, the active agents (principals) are

keys: specifically, the private keys that can
make signed statements. We identify a
principal with the corresponding verification
(public) key:
 (Principal:
 (Public-Key:
 (RSA-with-MD5:
 (E: #03)
 (N: #34FBA341FF73)))
 (Principal-At: “http://abc.def.com/”))

All Keys are Equal*
 Each SDSI principal can make signed

statements, just like any other principal.
 These signed statements may be certificates,

requests, or arbitrary S-expressions.
 This egalitarian design facilitates rapid

“bottom-up” deployment of SDSI.
  * Some SDSI principals may have a special syntax, e.g.:
VeriSign!! USPS!!

Signed Objects
 Signing adds a new signature element to

end of list representing object being signed.
 A signature can be managed independently

of the corresponding signed object.
 An object may be multiply-signed.
 A signature element may itself be signed.

Naming in SDSI
 All names are local to some principal.
 A principal can use arbitrary local names.
 A principal can export name/value bindings

by issuing corresponding certificates.
 SDSI syntax supports indirection:

 I can refer to keys (values) named:
 bob

 bob’s alice
 bob’s alice’s mother

DNS names get special treatment
 A name of the form:

 billg@microsoft.com
is equivalent to:
 DNS!!’s com’s microsoft’s billg

  (This assumes that public keys for entities in the
DNS have been created, which may happen in the
not too distant future.)

Certificates
 Certificates are signed statements (signed S-

expressions).
 Certificates may bind names to values (e.g.

to principals or group definitions), may
describe the owner of public key, or serve
other functions.

 A certificate has an issuer (signer) and an
expiration date.

Sample Certificate
(Cert:

 (Local-Name: “John Smith”)
 (Value: (Principal: ...))

 (Signed:
 (Object-Hash: (SHA-1 #34FD4A))
 (Date: 1996-03-19T07:00)
 (Expiration-Date: 2000-01-01T00:00)

 (Signer: (Principal: ...))
 (Signature: #57ACD1)))

Auto-Certificates
 An auto-certificate is signed by the principal

whom it is about.
  (Auto-Cert:
 (Public-Key: ...)
 (Principal-At: ...)
 (Server: ...)
 (Name: “Alice B. Cummings”)
 (Postal-Address: ...)
 (Phone: ...)
 (Photo: [image/gif] ...)
 (Email: alice@abc.com)
 (Signed: ...))

On-line orientation
 SDSI assumes that each principal can

provide on-line service, either directly or
(more typically) indirectly through a server.

 A SDSI server provides:
–  access to a database of certificates issued by the

principal
–  access to other objects owned by principal
–  reconfirmation service for expired certificates

(SDSI does not have CRL’s !)

A Simple Query to Server
 A server can be queried:

“What is the current definition your
principal gives to the local name `bob’ ?”

 Server replies with:
– Most recent certificate defining that name, or
– A signed reply indicating that there is no such

definition.

Reconfirmation of Certificates
 SDSI certificates have an expiration date,

and may have a reconfirmation period.
 A certificate is valid before the expiration

date, if the most recent signature is within
the last reconfirmation period.

 A principal may authorize its server to
reconfirm its certificates.

 Reconfirmation is done by supplying a fresh
reconfirmation signature to the certificate.

Access Control for WWW Pages
 Motivating application for design of SDSI
 Discretionary access control: server

maintains an access-control list (ACL) for
each object (e.g. WWW page) managed.

 A central question: how to make ACL’s
easy to create, understand, and maintain?
(If it’s not easy, it won’t happen.)

 Solution: named groups of principals

Groups
 Distributed version of UNIX “user groups”
 A principal may define a local name to refer

to a group of principals:
–  using names of other principals:
friends = (Group: bob alice tom)

–  using names of other groups, and algebra:
enemies = (Group:
 (OR: accountants mgrs))

 Such definitions are given in certificates
issued by the defining principal.

Your definitions can use mine
  If you have defined ron to refer to my

principal (public key), then you can use
 ron’s bob
 ron’s friends
 ron’s bob’s alice

to refer to principals or groups indirectly.
(The syntax shown is sugar for things like

 (ref: ron bob alice))

Sample ACL’s
(ACL: (read: associates))

(ACL: (read: Newsweek’s subscribers))
(ACL: (read: VeriSign!!’s adults))

(ACL: (read: microsoft’s employees))
(ACL: (write: (OR: bob bob’s asst)))

(ACL: (read:

 (OR: bob
 bob’s friends
 mit’s eecs’s faculty)))
 (write: ron))

Querying for protected objects
 Can make a query for the object.
  If query fails, reply may indicate what the

(relevant portion of the) ACL is.
  If ACL depends upon remotely-defined

groups, requestor is responsible for
obtaining appropriate ``membership
certificate’’ and including that as a
credential in his query.

Membership Certificates
  Issued by principal defining group, or his

server, when requested.
  (Membership.Cert:
 (Member: (Principal: ...))
 (Group: fudge-lovers)
 (Signed: ...))

Encrypted Objects
  (Encrypted:
 (Key:
 (Key-Hash:
 (SHA-1 #DA3710)))
 (Ciphertext:
 =AZrGT57+30vB1QsMPuI5Ol79))

  There are a variety of ways to indicate the key:
–  by its hash value
–  in encrypted form
–  through its name

Other issues and topics
 Multiply-signed requests
 Data compression
 Delegation certificates
 Generalized queries and templates
 Algorithm for evaluating names
 Algorithm for determining group

membership

Implementations
 Microsoft (Wei Dai)
 MIT (Matt Fredette)
 We expect working code by end of this

calendar year.

To find out more about SDSI
 Draft of our working paper available at:

 http://theory.lcs.mit.edu/~rivest

(Warning: under development)

Conclusions
 We have presented a simple yet powerful

framework for managing security in a
distributed environment.

 Comments appreciated!

