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We consider the problem of identifying an unknown value x E (1, Z,..., n} using only 
comparisons of x to constants when as many as E of the comparisons may receive erroneous 
answers. For a continuous analogue of this problem we show that there is a unique strategy 
that is optimal in the worst case. This strategy for the continuous problem is then shown 
to yield a strategy for the original discrete problem that uses logsn + E . logslogsn + 
O(E . log&) comparisons in the worst case. This number is shown to be optimal even if 
arbitrary “Yes-No” questions are allowed. 

We show that a modified version of this search problem with errors is equivalent to the 
problem of finding the minimal root of a set of increasing functions. The modified version 
is then also shown to be of complexity logsn + E . logslogsn + O(E * log&). 

I. INTRODUCTION 

Let x be an unknown number which we wish to identify by asking “Yes-No” questions 
about it. Our objective is to minimize the number of questions required in the worst 
case, taking into account that some of the answers received may be erroneous. 

This problem comes in several versions based on the possible values of x and the 
nature of the “Yes-No” questions. In the discrete case x is a member of the finite set 

(1, z..., n]; in the continuous case x is a member of the half-open real interval (0, 11. In 
the continuous case we will not in general be able to identify x exactly with a finite 
number of questions; rather we try to minimize the size, z, of the region which is known 
to contain x. In either case let U denote the universe of possible values of x. Independent 
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of the choice of U, the allowable questions may in one case be arbitrary “Yes-No” 
questions about x, i.e., questions of the form “Is x E T?” where T is a specified subset1 
of U, or in the other case the allowable questions may be restricted to comparkms, i.e., 
questions of the form “Is x < c I” where c is a specified element of U. 

We carry out a worst-case analysis of the preceding identification problem under the 
additional assumption that up to E of the answers may be incorrect. This bound E may 
be a constant or a function of II (the size of the universe) in the discrete case or of E (the 
desired size of the region found to contain x) in the continuous case. We are mainly 
interested in strategies that use comparison questions only and consider strategies with 
arbitrary “Yes-No” questions only in order to derive lower bounds for the complexity 
of comparison strategies. It is worth noting that in none of the cases we consider does the 
restriction to comparison questions cause any significant increase in the number of 
questions needed in the worst case. 

In Section II we answer an open problem from [5] by showing that there is a unique 
optimal strategy for the continuous problem with only comparison questions allowed. 
For a given number Q of questions the strategy minimizes the worst-case size of the 
region A which is found to contain the unknown x. 

This comparison strategy for the continuous case does not translate into a strategy for 
the original discrete problem just by setting E = l/n. The reason for this is that the 
region A which is found to contain x may not be an interval. In Section III we show that E 
extra comparison questions are always sufficient to cut A down to an interval. This then 
yields a comparison strategy for the discrete problem using no more than lg n + E * lglg 71 
+ O(E * lg E) questions2 in the worst case, which again is optimal even among strategies 
using arbitrary “Yes-No” questions about x. 

In Section IV we consider the problem of finding the minimum root of a set of in- 
creasing functions. This problem is considered by Gal et al. in [3]. It arises in determining 
how far a point in a feasible region of a mathematical programming problem can be 
translated in a given direction before striking a boundary. The latter is a familiar sub- 
problem of the common gradient-following approach to nonlinear programming (cf. [3]). 
We show that this minimum root identification problem (without errors) is equivalent 
to a variation of the continuous search problem with errors considered in Section II. 
The variation is that errors may occur in “No’‘-answers only. The lg n + E . lgig 12 + 
O(E . lg E) result from Section II then immediately applies as an upper bound and we 
prove that it also is a lower bound. Establishing the equivalence of the two problems and 
establishing lower bounds were stated as two open problems in [SJ. 

In Section V we mention some open problems. 
We do not consider the case where the bound E on the number of erroneous answers 

is a function of the number Q of questions. The discrete version of this problem where 
arbitrary “Yes-No” questions are allowed and where E is a linear function of Q is 
equivalent to the problem of optimal block coding for a noisy channel with a noiseless 
and delayless feedback channel. This equivalence was pointed out in [2, 61. The coding 

1 In the continuous case we restrict the choice of T to measurable subsets of U. 
* We use lg to denote log, throughout this paper. 
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problem has been studied and asymptotic bounds on the “transmission rate” (Ig n)/Q 
have been given in [ 1, 61. 

In constrast, we consider the case of strategies that use only comparison questions 
and where E is independent of Q (but may depend on n). 

II. THE CONTINUOUS CASE 

In this section we give a complete answer to the following questions: Given E > 0, how 
many comparison questions about an unknown x E (0, l] are necessary in the worst case 
to determine a subset A of (0, l] o size less or equal to E which contains X? Note that f 
we do not require A to be an interval. (It will, however, be a union of disjoint intervals; 
the size of such a set is the sum of the sizes of its component intervals.) 

To state the following theorem it is conxenient to reverse the situation and let the 
number Q of questions be given and to determine the smallest E achievable with Q 
questions. We use (C)) to denote Cz,, (F). 

THEOREM 1. For any two nonnegative integers Q and E let c(Q, E) denote the smallest E 
such that Q arbitrary “Yes-No” questions about an unknown x E (0, 11, up to E of which 
may receive erroneous answers, are su#icient in the worst case to determine a subset A of 
(0, l] with x E A and / A 1 < E. Then E(Q, E) = ((4) . 2-Q. 

This smallest E can be achieved by a strategy using only comparison questions. This 
optimal comparison strategy is unique. 

Proof. The state of knowledge of the questioner at any point during the questioning 
can be summarized by the number q of questions remaining and the E + ltuple A, = 
(A,O,..., AgE) defined by 

x E A,” 23 exactly e of the previous answers were incorrect. 

Clearly we always have x E &, A,“. Define the weight w of a state A, when there are q 
questions remaining by 

W(% 4) = f. ((E : 3) . 1 Aae 1. 

(This definition is due to Berlekamp [I].) 
We now define an “adversary answering strategy” to answer the next question. Suppose 

the question is “Is x E T ?” A “Yes’‘-answer then results in a state described by YA,-1 = 
(VA:-, ,..., VA:-‘_,) with 

and 

‘A:-_, = (A,” n T) u (AZ-l - T), for 1 < e < E, 
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Similarly, a “No’‘-answer results in a state described by 

“A,-, = (nA;-, )..., *A;-,) 

with 

“A;-_, = (A,@ - T) u (Ai-1 n T), for 1 9 e < E, 

and 

"A;-_, = A,'- T. 

It is straightforward to verify that w(q - 1, ?JA,-,) + w(q - 1, *A,) = w(q, A,), using 
the identity ((“A’)) = (G)) + ((&)). Th e a d versary strategy consists in answering “Yes” 
if w(p - 1, yA,,) 3 w(q - 1, nA,,) and “No” otherwise, thereby making sure that 
W(P - 1, 4-i) 2 W(P, 42. 

The definitions of w and A, imply that w(Q, A,) = ((i)) and ~(0, A,) = Cf=, 1 /lo6 I. 
Hence no E = cT=o 1 Aoe 1 smaller than ((2)) * 2-Q is achievable against the adversary 
answering described above. 

The above analysis also shows that the best questioning strategy is to choose the next 
question “Is x E T ?” such that the two possible weights are equal. Any such strategy 
does in fact achieve E = Cf=, 1 A,e 1 smaller than ((,“)) * 2-Q in the worst case. This 
can be done with a comparison “Is x < c ?” because ~(4 - 1, VA,-,) and w(q - 1, nAp--1) 
are continuous functions of c, for c = 0 we have w(p - 1, VA,-,) < w(q - 1, nAqml), and 
for c = 1 we have w(q - 1, ~A,-,) > W(Q - 1, "A,-,). Hence there is at least one c where 
the two weights are equal. 1 

We can of course rephrase the theorem into a statement about the number Q = Q(E, E) 
of questions necessary to achieve B against up to erroneous answers: 

Q(E, E) = min]Q’ I E > ((f)) -2-0’1. 

It is worth pointing out that this defines Q not only for E being a constant but also for E 
being a function of E. 

III. THE DISCRETE CASE 

Any strategy for the continuous problem discussed in the preceding section can 
immediately be used for the discrete problem (by setting E = l/n) if the final set uf+ A,8 
known to contain the unknown X, is an interval. Unfortunately, this is not always the 
case with the optimal comparison strategy, as can be verified with an example as simple 
as E = 1 and Q = 4. Since the optimal comparison strategy for the continuous problem 
is unique, we cannot hope to duplicate its performance in the discrete case. However, 
we will not do much worse either. 

57+/3-9 
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LEMMA 1. Consider the optimal comparison strategy for the continuous problem as 
described in the proof of Theorem 1. Then E additional comparison questions asked after the 
end of the strategy su@e to reduce the set &, A,6 to a single interval. 

Proof. The proof is easy and we only give a brief outline. 
The set uf-,, A,6 consists of a fmite number of intervals, say I1 , , . ., 1r (where r < E + 1). 

Define depth (1,) to be the number of sets A, g 0 < e < E, that intersect Ii , and define , 
depth(A,) = xi=, depth(I& Using the fact that A, = (AZ,..., A,,E) can described 
completely by no more than E + 1 previous “Yes’‘-answers and E + 1 previous “No”- 
answers, it is not hard to see that depth(A,) < E + 1. The proof can then be completed 
by observing that any comparison questions placed between two intervals reduces 
depth(A,) by at least 1, no matter what the answer is. 1 

THEOREM 2. For any nonnegative integer E and positive integer n, let Q(n, E) denote 
the number of comparison questions necessary in the worst case to identsfy an unknown 
x E (1, 2,..., n} when up to E of the questions may receive an erroneous answer. Then 
min{Q’ 1 20’ > n . ((g’))} < Q(n, E) < min{Q’ 1 20’-E > n * ((Ok?)}. 

Proof. Immediate from the remark after Theorem 1, Lemma 1, and from the fact 
that any strategy for the continuous problem that produces an interval as the final set 
known to contain x can be used for the discrete problem by simply setting E = l/n. 1 

Then theorem holds when E is a constant as well as when E is a function of n. With 
some tedious manipulations the inequalities given in the Theorem can be shown to imply 

Q(n, E) = lg n + E . lglg 71 + O(E lg E). 

IV. FINDING MINIMUM ROOTS 

The problem of determining a small interval containing the minimum root in the 
interval (0, l] of a set of continuous increasing functions g6 , 0 < i < k, is considered 
by Gal et al. [3]. (W e assume that gi(0) < 0 and g,(l) > 0 for all i.) The small interval 
is to be determined by testing the sign of the functionsgi evaluated at various points, i.e., 
by asking questions of the form “Is gi(c) > 0 ?” with 0 < i < k and c E (0, 11. All 
questions are to be answered correctly. First we show that this minimum root identifica- 
tion problem is equivalent to a variation of the search-with-errors problem considered 
in Section II. (“Equivalence” of the two problems is taken to mean that any optimal 
strategy for one problem translates trivially into an optimal strategy for the other problem, 
and conversely.) Then we show that its worst-case complexity is essentially the same as 
that of the search-with-errors problem in the previous section. 

THEOREM 3. The minimum root ident$cation problem for a set {gi IO < i < k} of 
strictly increasing fundions over (0, l] is equivalent to the problem of iakntifring an unknown 
x E (0, l] us&g only questions of the form “Is x < c ?” with c E (0, 11, when up to E = k 
of the “No’‘-answers but none of the “Yes’‘-answers may be erroneous. 
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Sketch of Proof. The state of the questioning in the minimum root identification 
problem can be summarized by k + 2 real numbers 

and a permutation ZT of {O,..., k} chosen such thatLi is the largest c such that the question 
“Is g,,u)(c) > 0 I” has received a “No” answer (L+ is 0 if no such answer has been received 
yet) and R is the smallest c for which a question “Is g,(c) > 0 ?” has received a “Yes” 
answer, for some j (R is 1 if no such answer has been received yet). 

The state of the questioning in the search-with-errors problem described in Theorem 1 
can also be summarized by real numbers L, ,..., LI, , R ordered as above. Here the L*‘s 
are the k + 1 largest numbers c such that the question “Is x < c ?” has received a “No” 
answer (L, = L, = *.* = L,* = 0 if only k - k’ “No’‘-answers have been received yet) 
and R is the smallest c such that the question “Is x -=E c ?” has received a “Yes” answer 
(R is 1 if no “Yes’‘-answer has been received yet). 

Gal et al. have shown [3, Proposition 2, Sect. 5.11 that optimality of any strategy for 
the minimum root identification problem is preserved if questions of the form “Is 
g,,o)(c) > 0 ?” are replaced by “Is g,,(,,)(c) > 0 ?” It can easily be verified that the two 
questions “Is g,+)(c) > 0 ?” (for the root identification problem) and “Is x < c ?” (for 
the search-with-errors problem) create the same successor cor&gurations, viz., 

if the answer is “Yes,” and 

if the answer is “No.” 1 

Because all the “Yes’‘-answers are guaranteed to be correct in this “half-lie” version, 
the problem of ending up with several intervals, which complicated the connection 
between the continuous and the discrete cases of the “full-lie” version in Sections II 
and III, does not exist here: The continuous and the discrete versions of the “half-lie” 
problem are trivally equivalent. 

We now show that the worst-case complexity of the “half-lie” problem is essentially 
the same as that of the “full-lie” problem given in the previous Section. 

Since an upper bound carries over immediately form the (seemingly harder) full-lie 
problem, the results from Section III imply an upper bound of lg n + E * lglg n + 
O(E Ig E). We now establish this same expression as a lower bound. The proof is some- 
what unusual in that it does not describe an adversary answering strategy. 

THEOREM 4. Let Q(n, E) be the number of comparison questions “Is x < c I,’ necessary 
in the worst case to determine an unknown value x E {l,..., n} when up to E of the “No”- 
answers, but none of the “ Yes” answ~s, may be incorrect. Then Q(n, E) 2 lg n + E * lglg n + 
O(E Ig E). 
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Proof. Consider an arbitrary optimal (in the worst case) questioning strategy S, kept 
fixed throughout this proof. We model S by a finite binary “decision tree” T, . Internal 
nodes t in T, correspond to questions “Is x < ct ?” the left and right sons of an internal 
node are the questions asked following a “Yes” and a “No” answer, respectively (unless 
they are leaves), and leaves are associated with the determined value of the unknown x. 
We may assume that the strategy S always asks exactly Q questions, e.g., by asking 
“Is x < n?” K times if the value of the unknown is already determined after Q - K 
questions. 

With each leaf / of T, we associate not only the determined value of the unknown, 
denoted by value(4, but also two subsets of {l,..., Q>: lies(G) and yes(e). Here lies(e) 
indicates which questions were answered incorrectly along the path of the leaf G (in- 
correctly with respect to the correct value which is value(e)), and yes(/) indicates which 
questions received a “Yes” answer. 

The main idea of this proof is this: If t is an internal node of T, with question “Is 
x < ct ?” whose left son (“left” branches correspond to “Yes” answers) has a leaf [with 
value(J) = x, where x < ct and 1 lies(t)\ < E among its successor, then the right son 
must also have at least one leaf 6 with value(P) = x ( an , in fact, 1 lies(P)\ = 1 lies(e)/ + 1) d 
among its descendants. This is just saying that if the “oracle” has not yet given E incorrect 
answers and the correct answer to the current question is “Yes,” then the oracle may 
choose to answer (incorrectly) “No.” If 1 lies(e)] was less than E - 1 then any later “Yes” 
answer along the path from the right son of t to the leaf d’ with value(P) = x and 
/ lies(P)/ = I lies(e)/ + 1 (8 ’ is unique among the successors of the right son of t) in 
turn gives rise to another leaf d”, with value X. This successive “creation” of leaves with 
value x then forces the number of leaves of Ts to be large enough to imply the desired 
lower bound on the depth of T, . Since these “new” nodes are only caused by “Yes” 
answers we have to show that there are plenty of “Yes” branches in the tree. 

DEFINITION. A path from the root of T, to a leaf 6 is called regular if for all i E {O,... , 
E - l} at least one-fourth of the Q/E answers between (and including) the ((Q/E) * i) f 
1st and the (Q/E) * (i + 1)th answers are “Yes” answers. A path that is not regular is 
irregular. 

Chim 1. For all large enough n, the number of irregular paths in T, is less than 
n/2. 

Proof. The number of “Yes”-“No” sequences of length Q/E with no more then 
(Q/E)/4 “Yes” answers is bounded by 2(o/E)*H(1/4), where H is the “Entropy function” 
defined by H(p) = -p . lgp - (1 - p) * lg(1 - p). Hence the number of “Yes’‘-“No” 
sequences of length Q with less than one-fourth of the answers between the ((Q/E) * i)st+ 1 
and the (Q/E) * (i + 1)th answer being “yes” answers is bounded by 2colE).H(1/4)+(o-tojE)) 
and consequently the number of regular paths in T, is bounded by E.2tQlE).H(l~4~+(~-(Q~E)). 
(For simplicity we are assuming that Q is divisible by E.) Let d = l-(l/E)+(l/E)*H(l/4). 
Then d = 1 - (O.lf&../E) < 1 and E . 2(o/E)‘H(1/4)+tQ-(o/E)) = 2Q**+uE. Since Q < 
Ign+E*lglgn+O(ElgE)andd< l,wehaveforalllargeenoughn:Q*d+lgE< 
(lg 1~ + E * lglg n + O(E lg E)) * d + lg E < (Ig n) - 1, which implies the claim. 
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Claim 2. For any x E {I,..., n}, if all paths from the root of T, to leaves with value x 
are regular then there are at least (Q/4&3= leaves with value x. 

Proof. For each x E {l,..., EZ} and i E (0 ,..., E} define 

N,(i) = {t 1 t is a node in T, on level ((Q/E) . i) + 1 
t has among its descendants a leaf G with 
value(L) = x and 1 lies(t)1 = i but no leaf 8’ 
with value(C) = x and 1 lies(P)] < i}. 

For any X, NJO) consists of the root of T, , hence 1 N,(O)/ = 1. For all i < E, 
I Ncc(i + 111 b l/4 * (Q/E) . I N&II b ecause each “Yes” branch on the path from a 
node t E Ndi) to a leaf 8 with 1 lies(/)j = i and value(/) = 0 gives rise to a node in 
N&i + l), and by assumption there are at least l/4 + (Q) “Yes” branches between levels 
(Q/E)i + 1 and (Q/E) * (i + 1). Th is is explained above in the description of the main 
idea of this proof and is illustrated in Fig. 1. By induction, ] iV2(Q)l 3 (Q/4qE * I N,(O)1 
= (Q/4E)E, which proves the claim. 

Since N=(Q) n N,(Q) = ~zr for x # x’, at least n/2 values x have only regular paths 
to leaves with value = x, and since Q > Ig n, we get 

number of leaves in Ts > (n/2) * (Q/4E)E 2 (n/2) * (lg n/4E)E, 

which implies that the depth of T, is at least lg n + E - lg Ig n + O(E lg E). 
This lower bound result also holds for strategies with arbitrary “Yes’‘-“No” questions 

since the above proof does not make use of the restriction to comparisons. 

volueW=r.nd 
IliesQJI4 

FIGURE 1 
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V. OPEN QUESTIONS 

We conjecture that the gap of E questions between the continuous and discrete problems 
discussed in Theorems 1 and 2 can be decreased. 

Clearly the issue of coping with erroneous answers could also be studied in the context 
of other familiar search problems such as sorting, finding medians, finding maxima of 
unimodal functions, etc. (cf. [4]). 
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