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A plaintext message to be encrypted is segmented into a
number of words, e.g., four words stored in registers A, B,
C and D, and an integer multiplication function is applied to
a subset of the words, e.g., to the two words in registers B
and D. The integer multiplication function may be a qua-
dratic function of the form f(x)=x(ax+b) or other suitable
function such as a higher-order polynomial. The results of
the integer multiplication function are rotated by lg w bits,
where lg denotes log base 2 and w is the number of bits in
a given word, to generate a pair of intermediate results t and
u. An exclusive-or of another word, e.g., the word in register
A, and one of the intermediate results, e.g., t, is rotated by
an amount determined by the other intermediate result u.
Similarly, an exclusive-or of the remaining word in register
D and the intermediate result u is rotated by an amount
determined by the other intermediate result t. An element of
a secret key array is applied to each of these rotation results,
and the register contents are then transposed. This process is
repeated for a designated number of rounds to generate a
ciphertext message. Pre-whitening and post-whitening
operations may be included to ensure that the input or output
does not reveal any internal information about any encryp-
tion round. Corresponding decryption operations may be
used to decrypt the ciphertext message.
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Input: Plaintext stored in four w-bit input registers A, B,C, D

Number r of rounds

w-bit round keys S/0

Output;

Procedure: B =B + S[0]
D=D+ S
fori=1tordo

{

..... 2r +3]
Ciphertext stored in A,B,C,D

t=(Bx(2B+1))<lgw
u=Dx2D+1))x<lgw
A= ((AD 1)< u)+ S2i
C={{COu) )+ S]2i+1]
(A,B,C,D)=(B,C,D,A)

}
A=A+ 82r+2]
C=C+82r+3]
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Encryption with RC6-w/r/b

Input: Plaintext stored in four w-bit input registers A4,B,C,D
Number r of rounds
w-bit round keys S/0,...,2r + 3]

Output:  Ciphertext stored in A,B,C,D

Procedure: B =B + S[0]
D =D+ S[1]
fort=1tordo

{

t=(Bx(2B+1) xlgw
u=(Dx(2D+1))xlgw
A=(ADt)xu)+ S[2i]
C=((COu)xt)+ S[2i+1]
(A,B,C,D)=(B,C,D,A)

}

A=A+ 8S[2r+2]
C=C+82r+3

FIG. 1
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Decryption with RC6-ww/r/b

Input: Ciphertext stored in four w-bit input registers A, B, C,D
Number r of rounds
w-bit round keys S/0,...,2r + 3]

Output: Plaintext stored in A,B,C,D

Procedure: C=C- S[2r + 3]
A=A-S[2r+2
for i = r downto 1 do

{

(A,B,C,D)=(D,A,B,C)
u=Dx2D+1))xIgw
t=(Bx(2B+1)) < Igw
(C-S2i+1])>» )P u
((A-S[2i)>»u) @t

C
A
}
D=D- S|
B=B-9[0]

FIG. 3
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Key schedule for RC6-w/r/b

Input: User-supplied b byte key preloaded into the c-word
array L[O,...,c-1]
Number r of rounds

Output: w-bit round keys SJ0,...,2r + 3]
Procedure: S[0] = Py,

fori=1to2r+3do
S[t] = S[i - 1]+ Qu

A=B=1=j=0

v =3 x max{c,2r + 4}
fors=1tovdo

{

A=S8[i]=(S[[]+A+B) <3
B=L[j]=(L}j]+ A+ B)<«<(A+B)
1=(t+1)mod (2r +4)
j=(+1) mode

}

FIG. 5
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ENHANCED BLOCK CIPHERS WITH
DATA-DEPENDENT ROTATIONS

FIELD OF THE INVENTION

The present invention relates generally to cryptography,
and more particularly to block ciphers for implementing
encryption and decryption operations in cryptographic
applications.

BACKGROUND OF THE INVENTION

In a conventional block cipher cryptographic system, a
plaintext message is encrypted using a secret key, and is
transmitted in its encrypted form. A receiver decrypts the
encrypted message using the same secret key in order to
recover the plaintext message. An example of a conventional
block cipher is the Data Encryption Standard (DES) cipher.
DES and other conventional block ciphers are described in
B. Schneier, Applied Cryptography, pp. 154-185 and
219-272, John Wiley & Sons, New York, 1994, which is
incorporated by reference herein. An improved block cipher
utilizing data-dependent rotations is described in U.S. Pat.
No. 5,724,428, issued Mar. 3, 1998 in the name of inventor
R. L. Rivest, which is incorporated by reference herein. This
improved cipher is referred to as RC5™, which is a trade-
mark of RSA Data Security, Inc. of Redwood City, Calif., the
assignee of U.S. Pat. No. 5,724,428. The RC5™ block
cipher in an illustrative embodiment provides improved
performance in part through the use of data-dependent
rotations in which a given word of an intermediate encryp-
tion result is cyclically rotated by an amount determined by
low-order bits of another intermediate result.

The security of the RC5™ block cipher is analyzed in, for
example, in B. S. Kaliski Jr. and Y. L. Yin, “On Differential
and Linear Cryptanalysis of the RC5™ Encryption
Algorithm,” in D. Coppersmith, ed., Advances in
Cryptology—Crypto ’95, Vol. 963 of Lecture Notes in
Computer Science, pp. 171-184, Springer Verlag, 1995; L.
R. Knudsen and W. Meier, “Improved Differential Attacks
on RC5™” in N. Koblitz, ed., Advances in Cryptology—
Crypto 96, Vol. 1109 of Lecture Notes in Computer
Science, pp. 216-228, Springer Verlag, 1996; A. A. Selcuk,
“New Results in Linear Cryptanalysis of RC5™.” in S.
Vaudenay, ed., Fast Software Encryption, Vol. 1372 of
Lecture Notes in Computer Science, pp. 1-16, Springer
Verlag, 1998; and A. Biryukov and E. Kushelevitz,
“Improved Cryptanalysis of RC5™,” to appear in proceed-
ings of Advances in Cryptology—Eurocrypt *98, Lecture
Notes in Computer Science, Springer Verlag, 1998; all of
which are incorporated by reference herein. These analyses
have provided a greater understanding of how the structure
and operations of RC5™ contribute to its security. Although
no practical attack on RC5™ has been found, the above-
cited references describe a number of interesting theoretical
attacks.

It is therefore an object of the present invention to provide
a further improved block cipher which not only exhibits
additional security by thwarting one or more of the above-
noted theoretical attacks, but also exhibits an enhanced
implementability in a wide variety of cryptographic appli-
cations.

SUMMARY OF THE INVENTION

The present invention provides an improved block cipher
in which data-dependent rotations are influenced by an
additional primitive operation which is in the form of an
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integer multiplication. The use of such an integer multipli-
cation greatly increases the diffusion achieved per round of
encryption, allowing for higher security per round, and
increased throughput. The integer multiplication is used to
compute rotation amounts for data-dependent rotations, such
that the rotation amounts are dependent on substantially all
of the bits of a given register, rather than just low-order bits
as in the above-described embodiment of the RC5™ block
cipher.

In an illustrative embodiment of the invention, a plaintext
message to be encrypted is segmented into four words stored
in registers A, B, C and D, and an integer multiplication
function is applied to two of the words in registers B and D.
The integer multiplication function may be a quadratic
function of the form f(x)=x(ax+b), where a is an even
integer and b is an odd integer. Other types of functions,
including polynomials with degree greater than two, may be
used in alternative embodiments. The results of the integer
multiplication function in the illustrative embodiment are
rotated by lg w bits, where lg denotes log base 2 and w is the
number of bits in a given word, to generate a pair of
intermediate results t and u. An exclusive-or of the contents
of another register, e.g., A, and one of the intermediate
results, e.g., t, is rotated by an amount determined by the
other intermediate result u. Similarly, an exclusive-or of the
contents of the remaining register D and the intermediate
result u is rotated by an amount determined by the other
intermediate result t. An element of a secret key array is
applied to each of these rotate results, and the register
contents are then transposed. This process is repeated for a
designated number of rounds to generate a ciphertext mes-
sage. Pre-whitening and post-whitening operations may be
included to ensure that the input or output does not reveal
any internal information about any encryption round. For
example, the values in registers B and D may be pre-
whitened before starting the first round by applying elements
of the secret key array to these values. Similarly, the values
in registers A and C may be post-whitened after completion
of the designated number of rounds by applying elements of
the secret key array to these values. Corresponding decryp-
tion operations may be used to recover the original plaintext
message.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 and 3 show exemplary encryption and decryption
processes, respectively, in accordance with illustrative
embodiments of the invention.

FIGS. 2 and 4 are diagrams illustrating the computations
involved in the encryption and decryption processes of
FIGS. 1 and 3, respectively.

FIG. 5 shows an exemplary key generation process in
accordance with the invention.

FIG. 6 shows an illustrative system incorporating encryp-
tion and decryption processes in accordance with the inven-
tion.

DETAILED DESCRIPTION OF THE
INVENTION

The illustrative embodiment of the invention to be
described below is designed to meet the requirements of the
Advanced Encryption Standard (AES) as set forth by the
National Institute of Standards and Technology (NIST). To
meet the requirements of the AES, a block cipher must
handle 128-bit input and output blocks. The specified target
architecture and languages for the AES do not yet support
64-bit operations in an efficient and clean manner. The
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illustrative embodiment to be described below uses four
32-bit registers. The invention thus exploits 32-bit
operations, such as integer multiplications, that are effi-
ciently implemented on modern processors.

The illustrative block cipher in accordance with the
invention is referred to as RC6™, which is a trademark of
RSA Data Security, Inc. of Redwood City, Calif., assignee of
the present application. Like the above-described RC5™
block cipher, the RC6™ block cipher in accordance with the
invention may be viewed as a parameterized family of
encryption algorithms. A given version of RC6™ can be
specified as RC6™-w/r/b, where the word size is w bits, the
encryption process includes a nonnegative number of rounds
1, and b denotes the length of the encryption key in bytes. Of
particular relevance to the AES will be versions of RC6™
with 16-, 24- and 32-byte keys. For all variants in the
illustrative embodiment, RC6™-w/r/b operates on four
w-bit words using the following six basic operations. The
base-two logarithm of w will be denoted by lg w.

a+b integer addition modulo 2"

a-b integer subtraction modulo 2"

adb bitwise exclusive-or of w-bit words

axb integer multiplication modulo 2"

a<<<b rotate the w-bit word a to the left by the amount

given by the least significant g w bits of b
a>>>b rotate the w-bit word a to the right by the amount
given by the least significant g w bits of b

Note that in the following description of RC6™ the term
“round” is in accordance with the more established DES-like
idea of a round, i.e., half of the data is updated by the other
half, and the two are then swapped. Various descriptions of
the RC5™ block cipher have used the term “half-round” to
describe this type of action, such that a given RC5™ round
included two half-rounds. The present description will uti-
lize the more established meaning of a “round.”

FIG. 1 illustrates an encryption process in accordance
with the illustrative embodiment of the invention. As noted
above, the illustrative embodiment uses four w-bit input
registers. These registers, which are designated A, B, C and
D, contain an initial plaintext message to be encrypted, as
well as the output ciphertext message at the end of encryp-
tion. The designations A, B, C and D will also be used herein
to refer to the contents of the registers. The first byte of
plaintext or ciphertext is placed into the least-significant
byte of A; the last byte of plaintext or ciphertext is placed
into the most-significant byte of D. The operation (A, B, C,
D)=(B, C, D, A) denotes the parallel assignment of values on
the right to registers on the left. In the encryption process of
FIG. 1, the user supplies a key of b bytes. Extra zero bytes
are appended to the key if necessary to make the length of
the key a non-zero multiple of four bytes. From this, 2r+4
w-bit words are derived which are stored in an array
S[O, . . ., 2r+3]. This array is used in both encryption and
decryption. Additional aspects of the key schedule are
described below in conjunction with FIG. §.

The input to the encryption process of FIG. 1 includes a
plaintext message stored in registers A, B, C and D, a
specified number r of rounds, and the w-bit secret key in the
form of the above-noted array S[0, . . ., 2r+3]. The output
ciphertext is stored in the registers A, B, C and D. The steps
of the encryption process are shown as pseudocode in FIG.
1, and are illustrated in a process diagram in FIG. 2.
Referring to FIG. 2, the operations between the horizontal
dashed lines are repeated in the for loop of the pseudocode
for each of the r rounds. Before entering the loop, the
contents of register B are summed in operation 10 with S[0]
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4

from the secret key array, and the contents of register D are
summed in operation 12 with S[1] from the array. These
operations provide “pre-whitening” which prevents the
plaintext from revealing part of the input to the first round
of encryption.

The pre-whitened value of B is supplied to an operation
14 which generates a function f(x)=x(2x+1), where x is the
input of the function, i.e., the pre-whitened value of B in
operation 14. A general function of the form:

Fx)=x(ax+b)(mod 2*)

has the following properties: (i) when a is even and b is odd,
f(x) maps {0, 1, . . ., 2"-1} onto itself, i.e., it is a
permutation such that each input x gives a different result;
and (ii) when a=2 and b=1, every bit of the input x has some
effect on the high order 1g w bits of f(x) for most inputs x.
The above-noted function f(x)=x(2x+1) is an example of an
integer multiplication function which provides properties (i)
and (ii). Other functions which provide these or similar
properties, including higher-order polynomials, could be
used in alternative embodiments of the invention. One such
alternative is a function in which a is zero and b is an odd
integer which varies from round to round. It should be noted
that, although the output of the general function in the form
given above is taken mod 2", this is not a requirement of an
integer multiplication function in accordance with the inven-
tion. The term “integer multiplication function™ as used
herein should be understood to include any function involv-
ing integer multiplication, including an integer multiplica-
tion itself.

The output of operation 14, which corresponds to (Bx
(2B+1)), is then rotated to the left by 1g w bits in operation
16, and the result t is exclusive-or’d with A in operation 18.
The same function f(x)=x(2x+1) is applied in operation 20
to the pre-whitened value of D. The output of operation 20,
which corresponds to (Dx(2D+1)), is rotated to the left by Ig
w bits in operation 22, and the result u is exclusive-or’d with
C in operation 24. Operation 26 rotates the results of the
exclusive-or of A and t to the left by an amount given by the
least significant Ig w bits of u, and the element S[2i] of the
secret key array is added in step 28 to the result of the
rotation. Operation 30 rotates the results of the exclusive-or
of C and u to the left by an amount given by the least
significant Ig w bits of t, and the element S[2i+1] of the
secret key array is then added in step 32 to the result of the
rotation. The operation (A, B, C, D)=(B, C, D, A) is then
applied, such that A receives the pre-whitened value of B,
register B receives the output of operation 32, register C
receives the pre-whitened value of D, and register D receives
the output of operation 28. As previously noted, the opera-
tions between the horizontal dashed lines in FIG. 2 are
repeated for r rounds. At the completion of the r rounds, the
values of A and C are subject to “post-whitening” operations
34 and 36, respectively, to ensure that the resulting cipher-
text will not reveal any part of the input to the last round of
encryption. Operations 34 and 36 add elements S[2r+2] and
S[2r+3] to the respective A and C values to generate post-
whitened values of A and C. The registers A, B, C and D then
contain the encrypted ciphertext corresponding to the origi-
nal plaintext.

The corresponding steps of the decryption process are
shown as pseudocode in FIG. 3 and illustrated in a process
diagram in FIG. 4. The input to the decryption process is the
ciphertext stored in the four w-bit registers A, B, C and D,
the number of rounds r, and the secret round key array
S[O, . . ., 2r+3]. The output of the decryption process is the
original plaintext. Operations 40 and 42 update the values of
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A and C to reverse the post-whitening operations 34 and 36,
respectively of FIG. 2. The operations between the horizon-
tal dashed lines in FIG. 4 are then repeated for each of the
r rounds, and correspond to the operations within the for
loop in the pseudocode of FIG. 3. Within the loop, the
operation (A, B, C, D)=(D, A, B, C) is applied, such that A
receives the value of D, register B receives the revised value
of A generated in operation 40, register C receives the value
of B, and register D receives the revised value of C gener-
ated in operation 42.

The function f(x)=x(2x+1) is applied in operation 44 to
D, and the result, which corresponds to (Dx(2D+1)), is
rotated to the left by 1g w bits in operation 46 to generate u.
Similarly, the function f(x)=x(2x+1) is applied in operation
50 to B, and the result, which corresponds to (Bx(2B+1)), is
rotated to the left by 1g w bits in operation 52 to generate t.
The element S[2i+1] of the secret key array is subtracted in
operation 54 from C, and the result is rotated to the right in
operation 56 by the least significant 1g w bits of t. In
operation 58, C takes on the result of the exclusive-or of u
and the output of the rotate operation 56. Similarly, the
element S[2i] of the secret key array is subtracted in opera-
tion 60 from A, and the result is rotated to the right in
operation 62 by the least significant lg w bits of u. In
operation 64, A takes on the result of the exclusive-or of t
with the output of the rotate operation 62. After the r rounds
are completed, operations 66 and 68 update the values of D
and B to reverse the pre-whitening operations 12 and 10,
respectively, of FIG. 2.

The above-described illustrative embodiment includes at
least two significant changes relative to the conventional
RC5™ block cipher. These are the introduction of the
quadratic function f(x)=x(2x+1) and the fixed rotation by lg
w bits. The use of the quadratic function is aimed at
providing a much faster rate of diffusion thereby improving
the chances that simple differentials will spoil rotation
amounts much sooner than in RC5™. The quadratically
transformed values of B and D are used in place of B and D
as additives for the registers A and C, increasing the non-
linearity of the cipher while not losing any entropy (since the
transformation is a permutation). The fixed rotation plays a
simple yet important role in hindering both linear and
differential cryptanalysis.

FIG. 5 shows an example of a key schedule suitable for
use in generating the secret key array S[0, . . . , 2r+3] used
in the illustrative embodiment of FIGS. 1 through 4. The key
schedule of FIG. 5 is similar to that used for RC5™ and
described in detail in the above-cited U.S. Pat. No. 5,724,
428, but derives more words from the user-supplied key for
use during encryption and decryption. The key schedule uses
two w-bit registers A and B, along with variables 1i,j, v and
s. The inputs to the key schedule are a user-supplied key of
b bytes, and the number of rounds r. The output is the array
S[O, . . ., 2r+3] of w-bit round keys. Extra zero bytes are
appended to the user-supplied key if necessary to make the
length of the key a non-zero multiple of w/8 bytes. This is
then stored as a sequence of ¢ w-bit words L[0], . . . L[c-1],
with the first byte of the key stored as the low-order byte of
L]J0], etc., and I[c-1] padded with high order zero bytes if
necessary. Note that if b=0, then c=1 and L[0]=0.

In the key generation procedure shown in FIG. 5, element
S[0] is initiated to a designated constant P,,. In the first for
loop, the elements S[i] are initialized using a constant Q,,
and values of A, B, 1 and j are set to zero. The second for loop
generates w-bit words for the secret key array. The number
of w-bit words that will be generated for the round keys is
2r+4 and these are stored in the array S[O0, . . ., 2r+3]. The
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constants P, and Q,, in FIG. 5§ may be, for example,
P,,=B7E15163 and Q,,=9E3779B9 (hexadecimal), i.e., the
so-called “magic constants” used for the RC5™ key sched-
ule in U.S. Pat. No. 5,724,428. The value of P5, is derived
from the binary expansion of e -2, where ¢ is the base of the
natural logarithm function. The value of Q5, is derived from
the binary expansion of ¢—1, where ¢ is the Golden Ratio.
Similar definitions for Pg,, Q4, and so on can be used for
versions of RC6™ with other word sizes. It should be noted
that these values are to some extent arbitrary, and other
values could be used in alternative embodiments of the
invention. Other suitable key schedules could also be used
in place of the FIG. 5 key schedule.

FIG. 6 shows one possible implementation of the inven-
tion. A secure communication system 100 includes a trans-
mitter 112 and a receiver 114 which communicate over a
channel 116. A plaintext message is applied to an input 118
of the transmitter 112, and processed using the encryption
techniques described in conjunction with FIGS. 1 and 2 to
generate an encrypted message which is transmitted over the
channel 116 to the receiver 114. The receiver 114 processes
the encrypted message using the decryption techniques
described in conjunction with FIGS. 3 and 4 to generate the
corresponding plaintext message at an output 120. In this
embodiment, the encryption techniques may be imple-
mented in software which is executed by a processor 130
which includes the registers A, B, C and D previously
described. Software instructions for carrying out the encryp-
tion may be stored in a memory 132 from which they are
retrieved and executed by the processor 130. Similarly, the
decryption techniques may be implemented in software
which is executed by a processor 140 which also includes
the registers A, B, C and D. Software instructions for
carrying out the decryption may be stored in a memory 142
from which they are retrieved and executed by the processor
140. The registers A, B, C and D need not be internal to the
processors 130 and 140, and in other embodiments could be,
for example, part of the respective memories 132 and 142.
Software implementations of the invention are very efficient
in that the invention in the illustrative embodiment uses
primitive operations, e.g., add, subtract, multiply, exclusive-
or and rotate, that are very well-supported on available
MICrOProcessors.

The transmitter 112 and receiver 114 may be, for example,
computers or other digital data processing devices connected
by a local area network, a wide area network, an intranet, the
Internet or any other suitable network. Alternatively, the
transmitter 112 may be a smart card, and the receiver 114
may be a card reader. The communication channel 116 in
such an embodiment is a connection established between the
card and the reader when the card is inserted in the reader.
In these and other embodiments of the invention, the encryp-
tion and decryption processes may be directly implemented
in the processors 130 and 140 using hard-wired computation
circuitry. In still other embodiments, combinations of hard-
ware and software may be used to implement the encryption
and decryption. The invention can also be implemented in
the form of software stored on a computer-readable medium,
such as a magnetic disk, an optical compact disk or an
electronic memory. The term “processor” as used herein
should be understood to include a microprocessor, central
processing unit (CPU), microcontroller or other processing
unit of a computer, set-top box, smart card, card reader,
wireless terminal, personal digital assistant or other com-
munication device, an application-specific integrated circuit
(ASIC), field-programmable gate array (FPGA) device or
other type of hardware configured to provide one or more of
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the computations described in conjunction with FIGS. 1
through 4, or any other type of device capable of imple-
menting at least a portion of an encryption or decryption
operation in accordance with the invention using hardware,
software, or combinations thereof. The term “memory”
should be understood to include an electronic random access
memory (RAM) or other type of memory external to the
above-defined processor, such as memory 132 or 142 of
FIG. 6, or a memory which is internal to the processor, such
as a processor memory which includes the registers A, B, C
and D in FIG. 6.

Mlustrative performance measurements for the above-
described encryption and decryption processes are given in
TABLE 1 below. The performance figures do not include
key setup, and are therefore applicable to any key size b. The
performance figures shown here for an optimized ANSI C
implementation of RC6™-32/20/b were obtained using the
compiler in Borland C++ Development Suite 5.0 as specified
in the AES submission requirements. Performance was
measured on a 266 MHz Pentium II computer with 32
MBytes of RAM running Windows 95. To improve the
precision of the timing measurements, maskable interrupts
on the processor were disabled while the timing tests were
executed. The figures shown for an assembly language
implementation of RC6™-32/20/16 were obtained on the
same computer under similar conditions. The performance
figures given for an optimized Java implementation of
RC6™-32/20/b were measured on a 180 MHz Pentium II
computer with 64 Mbytes of RAM running Windows NT
4.0. This implementation was compiled on Javasoft’s JDK
1.1.6 compiler, and the performance of the resulting byte
code was measured both on Javasoft’s JDK 1.1.6 interpreter
(with JIT compilation disabled) and on Symantec Corpora-
tion’s Java! JustInTime Compiler Version 210.054 for JDK
1.1.2. The figures shown have been scaled to 200 MHz, and
it is expected that the AES-specified reference platform will
produce comparable, or slightly improved, figures. TABLE
2 shows, for purposes of comparison, corresponding figures
for RC5™-32/16/16 for the ANSI C, Java (JIT) and assem-
bly implementations, generated using similar methodolo-
gies. The figures in TABLES 1 and 2 are averages generated
over ten executions of the described computations.

TABLE 1

Performance Figures for RC6 ™-32/20/b

Blocks/ MBytes/
sec sec
Cycles/ at at
Technique Block 200 MHz 200 MHz
ANSI C RC6 ™-32/20/b encrypt 616 325,000 5.19
ANSI C RC6 ™-32/20/b decrypt 566 353,000 5.65
JAVA (JDK) RC6 ™-32/20/b encrypt 16,200 12,300 0.197
JAVA (JDK) RC6 ™-32/20/b decrypt 16,500 12,100 0.194
JAVA (JIT)  RC6 ™-32/20/b encrypt 1,010 197,000 3.15
JAVA (JIT) RC6 ™-32/20/b decrypt 955 209,000 3.35
Assembly RC6 ™-32/20/b encrypt 254 787,000 12.6
Assembly RC6 ™-32/20/b decrypt 254 788,000 12.6
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TABLE 2
Performance Figures for RCS ™-32/16/16
Blocks/ MBytes/
sec sec
Cycles/ at at
Technique Block 200 MHz 200 MHz
ANSI C RC5 ™-32/20/16 encrypt 328 609,756 4.9
JAVA (JIT) RC5 ™-32/20/16 decrypt 1,143 174,978 1.4
Assembly RC5 ™-32/20/16 decrypt 148 1,351,351 10.8

It can be seen that the RC6™-32/20/b encryption process
provides greater throughput in Mbytes/sec at 200 MHz than
the corresponding RC5™-32/16/16 encryption process, for
each of the three exemplary software implementations of
TABLE 2. As noted above, the encryption times given in
TABLES 1 and 2 do not include key setup, and are inde-
pendent of the length of the user-supplied key. It is expected
that the key setup required for both RC6™-32/20/b and
RC5™-32/16/b will be approximately the same. Timings in
the ANSI C case were obtained by encrypting or decrypting
a single 3,000-block piece of data. The timings in Java and
assembly were obtained by encrypting or decrypting a single
block 10,000 times. Faster implementations may well be
possible.

Estimates will now be given for the performance of
RC6™-32/20/16 on 8-bit platforms such as those that may
be found in smart cards and other similar devices. In
particular, estimates will be considered for the Intel MCS-51
microcontroller family. It is expected that the estimates can
be considered to hold for other types of processors, such as
the Philips 80C51 family, that have similar instruction sets
and timings. A given round of RC6™-32/20/16 encryption
includes six additions, two exclusive-ors, two squarings, two
left-rotates by lg 32=5 bits, and two left-rotates by a variable
quantity r. Note that this counts (Bx(2B+1))=2B>+B as a
squaring and two additions. These basic operations can be
implemented on an 8-bit processor in the following manner,
ignoring addressing instructions:

1. A 32-bit addition can be computed using four 8-bit
additions with carry (ADDC).

2. A 32-bit exclusive-or can be computed using four 8-bit
exclusive-ors (XRL)

3. A 32-bit squaring can be computed using six 8-bit by
8-bit multiplications (MUL) and eleven ADDCs. Note
that six multiplications are enough since we only need
the lower 32 bits of the 64-bit product.

4. Rotating a 32-bit word left by five can be computed by
rotating the word right by one bit position three times
and then permuting the four bytes. Note that rotating
the word right by one bit position can be done using
four byte rotations with carry (RRC).

5. Rotating a 32-bit word left by r can be computed by
rotating the word left or right by one bit position r'
times (r'=4, with average two) and then permuting the
four bytes appropriately. The five bits of r are used to
determine r' and the permutation which can be con-
trolled using jumps (JB).

6. Most instructions take one cycle except MUL which
takes four cycles and JB which takes two cycles.

Using the above observations, the total number of pro-

cessor clock cycles needed to implement one round of
RC6™-32/20/16 on an 8-bit microcontroller or other similar
platform is summarized in TABLE 3 below.
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TABLE 3
Number of Cycles for One Round of RC6 ™-32/20/16 on 8-bit Platform
Cycles/ Contributing

Operation Instructions Operation Cycles
add 4 ADDC 4 4x6=24
exclusive-or 4 XRL 4 4x2=8
squaring 6 MUL, 11 ADDC 35 35x2=170
rotate left by 5 12 RRC 12 12x2=24
rotate left by r 8 RRC or RLC, 8 JB 24 24 x 2 =48
Total 174

Taking conservative account of the addressing
instructions, the pre-whitening, post-whitening and any
additional overheads, we estimate that encrypting one block
of data with RC6™-32/20/16 requires about (174x20)x4=
13,920 cycles. Assuming that a single cycle on the Intel
MCS-51 microcontroller takes one microsecond, an estimate
for the encryption speed of RC6™-32/20/16 on this particu-
lar processor is about (1,000,000/13,920)x128=9.2 Kbits/
second. As for the key setup, the dominant loop in the FIG.
5 process is the second for loop. For b=16, 24, 32 and r=20,
the number of iterations in this loop is v=max {20x2+4,
b/4}=132, which is independent of b. Each iteration in the
second for loop uses four 32-bit additions, one rotate to the
left by three, and one variable rotate to the left by r. In
addition, there are some 8-bit operations which will be
included as overheads. Following an analysis similar to that
given above for the encryption process, the total estimated
number of cycles for each iteration, ignoring addressing
instructions, is 52. Again, making a conservative estimate
for the additional overheads, we estimate about (52x132)x
4=27,456 cycles to set up a 128-, 192- or 256-bit key, which
will require about 27 milliseconds on an Intel MCS-51
microcontroller.

An estimate of hardware requirements for a custom or
semi-custom hardware implementation of the invention will
now be provided. The most relevant parameters are the
silicon area, speed and power consumption of a 32x32
integer multiplication. We estimate that this multiplication
may require 120x100 microns (0.012 mm?) in area with a
standard 0.25 micron CMOS process, about three ns for each
multiply operation, and a power consumption of about five
milliwatts. We conservatively estimate that a 32-bit variable
rotate, i.c., a “barrel shifter,” would take about half of the
area of the multiplier (0.006 mm?®) and one ns for each
operation. Also, we estimate that a 32-bit full adder would
take one-quarter of the full multiplier area and around one
ns. In addition, the function f(x)=x(2x+1)(mod 2") can be
computed by using only a multiplier that returns the bottom
32 bits of the 64-bit product rather than implementing a full
32x32 multiplier. We estimate that such a “partial” multi-
plier would take around 60% of the area of the full multiplier
and a computation time of about three ns. Estimating an area
of zero and computation time of zero for a 32-bit exclusive-
or, and an area of 0.003 mm? and a computation time of one
ns for a 32-bit carry-propagate add, the total required area is
about 0.016 mm? and the total required computation time is
5 ns. For an efficient implementation, two such sets of
circuitry might be included on one chip. As a result, the total
area would be about 0.032 mm* for those parts directly
relevant to RC6™-32/20/16, with an additional 0.018 mm?
for control, input/output and other overhead operations. The
total computational area required in this exemplary hard-
ware implementation is therefore on the order of 0.05 mm?.
Assuming that power consumption is proportional to area,
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we have a total power budget of about 21 milliwatts. With
20 rounds per block, we have a total encryption time of
approximately 5x20=100 ns for each block, giving an esti-
mated data rate of about 1.3 Gbits/second. We would expect
the decryption time to be similar to that required for
encryption, and for both encryption and decryption time to
be independent of the length of the user-supplied key. It
should be noted that the above estimates are somewhat crude
but also conservative. Savings might be possible by, for
example, using only a multiplier that returns the bottom 32
bits rather than implementing a full 32x32 bit multiplier, or
by implementing a circuit for squaring. It would also be
possible to “unwind” the main encryption loop 20 times in
some modes of use, which would allow for greatly improved
performance at the cost of additional area and power con-
sumption.

In terms of security, the best attack on RC6™ appears to
be an exhaustive search for the user-supplied encryption key.
The data requirements to mount more sophisticated attacks,
such as differential and linear cryptanalysis, can be shown to
exceed the available data. In addition, there are no known
examples of so-called “weak” keys.

It should again be emphasized that the encryption and
decryption techniques described herein are exemplary and
should not be construed as limiting the present invention to
any particular embodiment or group of embodiments. Alter-
native embodiments may use functions other than the exem-
plary quadratic described above, including polynomial func-
tions with degree greater than two. In addition, the output of
the function need not be taken mod 2". Moreover, although
illustrated in an embodiment utilizing 32-bit words and a
corresponding block size of 128 bits, the invention can be
readily extended to other block sizes as required. For
example, the invention could be configured with a 64-bit
word size and a corresponding block size of 256 bits to take
advantage of the performance offered by the next generation
of system architectures. In addition, the illustrative embodi-
ment of FIGS. 1 through 4 allows one to exploit a certain
degree of parallelism in the encryption and decryption
routines. For example, the computation of t and u at each
round can be performed in parallel as can the updates of
values such as A and C. It can therefore be expected that
embodiments of the invention will show improved through-
put as processors move to include an increasing amount of
internal parallelism. These and numerous other alternative
embodiments within the scope of the appended claims will
be readily apparent to those of ordinary skill in the art.

What is claimed is:

1. A method of encrypting a plaintext message, compris-
ing the steps of:

(a) segmenting the plaintext message into a plurality of

words;

(b) applying an integer multiplication function to at least
one of the words;

(c) rotating a value which is based on the result of the
applying step (b) by a first number of bits;

(d) rotating a value which is based on the result of the
rotating step (¢) by a second number of bits derived
from another one of the words;

(e) applying a secret key to a value which is based on the
result of step (d); and

(f) repeating steps (b), (c), (d) and (e) for a designated
number of rounds.

2. The method of claim 1 wherein at least one of the
values which are based on the result of the applying step (b),
the rotating step (¢) and the rotating step (d) is the corre-
sponding result itself.
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3. The method of claim 1 wherein the integer multiplica-
tion function is a quadratic function of the form f(x)=x(ax+
b), where a and b are integers.

4. The method of claim 3 wherein a is an even integer and
b is an odd integer.

5. The method of claim 3 wherein a is zero and b is an odd
integer which varies from round to round.

6. The method of claim 3 wherein the integer multiplica-
tion function is a quadratic function of the form f(x)=x(ax+
b)(mod 2"), where w is the number of bits in a given one of
the words.

7. The method of claim 1 wherein the rotating step (c)
includes rotating a result of the applying step (b) by a
predetermined number of bits given by lg w, where lg
denotes log base 2 and w is the number of bits in a given one
of the words.

8. The method of claim 1 wherein step (a) includes
segmenting the plaintext message into four words, step (b)
includes applying the integer multiplication function to two
of the four words, and step (c) includes rotating each of the
two results of step (b) by a predetermined number of bits to
generate two corresponding intermediate results.

9. The method of claim 8 wherein steps (d) and (e) for a
given one of the two words subject to steps (b) and (c)
include the steps of:

(i) computing an exclusive-or of one of the other words
and one of the two intermediate results;

(ii) rotating the result of step (i) by an amount given by the
other intermediate result; and

(iii) applying an element of a secret key array to the result
of step (ii).

10. The method of claim 1 further including the steps of
storing the plurality of words in a corresponding plurality of
registers as part of segmenting step (a), and transposing the
contents of the registers after performing the applying step
(e).
11. The method of claim 1 further including the steps of
pre-whitening at least a subset of the plurality of words
before performing step (a) by applying an element of a secret
key array to the subset.

12. The method of claim 1 further including the steps of
post-whitening at least a subset of the plurality of words
after performing step (f) by applying an element of a secret
key array to the subset.

13. An apparatus for encrypting a plaintext message,
comprising:

amemory for storing at least a portion of a secret key; and

a processor associated with the memory, wherein the

processor is operative:

(2) to segment the plaintext message into a plurality of
words;

(b) to apply an integer multiplication function to at least
one of the words;

(c) to rotate a value which is based on the result of
operation (b) by a first number of bits;

(d) to rotate a value which is based on the result of
operation (¢) by a second number of bits derived
from another one of the words;

(e) to apply the portion of the secret key to a value
which is based on the result of operation (d); and

(f) to repeat operations (b), (c), (d) and (e) for a
designated number of rounds.

14. The apparatus of claim 13 wherein at least one of the
values which are based on the result of the apply operation
(b), the rotate operation (¢) and the rotate operation (d) is the
corresponding result itself.
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15. The apparatus of claim 13 wherein the integer mul-
tiplication function is a quadratic function of the form
f(x)=x(ax+b), where a and b are integers.

16. The apparatus of claim 15 wherein a is an even integer
and b is an odd integer.

17. The apparatus of claim 15 wherein a is zero and b is
an odd integer which varies from one of the rounds to
another of the rounds.

18. The apparatus of claim 15 wherein the integer mul-
tiplication function is a quadratic function of the form
f(x)=x(ax+b)(mod 2"), where w is the number of bits in a
given one of the words.

19. The apparatus of claim 13 wherein operation (c)
includes rotating a result of operation (b) by a predetermined
number of bits given by lg w, where lg denotes log base 2
and w is the number of bits in a given one of the words.

20. The apparatus of claim 13 wherein operation (a)
includes segmenting the plaintext message into four words,
operation (b) includes applying the integer multiplication
function to two of the four words, and operation (c) includes
rotating each of the two results of operation (b) by a
predetermined number of bits to generate two corresponding
intermediate results.

21. The apparatus of claim 20 wherein the processor is
further operative to implement operations (d) and (e) for a
given one of the two words subject to operations (b) and (c)
by:

(i) computing an exclusive-or of one of the other words

and one of the two intermediate results;

(ii) rotating the result of operation (i) by an amount given
by the other intermediate result; and

(iii) applying an element of a secret key array to the result
of operation (ii).

22. The apparatus of claim 13 wherein the processor is
further operative to store the plurality of words in a corre-
sponding plurality of registers as part of operation (a), and
to transpose the contents of the registers after performing
operation (e).

23. The apparatus of claim 13 wherein the processor is
further operative to pre-whiten at least a subset of the
plurality of words, before performing operation (a), by
applying an element of a secret key array to the subset.

24. The apparatus of claim 13 wherein the processor is
further operative to post-whiten at least a subset of the
plurality of words after performing operation (f), by apply-
ing an element of a secret key array to the subset.

25. A computer-readable medium for storing one or more
programs for encrypting a plaintext message, wherein the
one or more programs when executed implement the steps
of:

(a) segmenting the plaintext message into a plurality of

words;

(b) applying an integer multiplication function to at least
one of the words;

(c) rotating a value which is based on the result of the
applying step (b) by a first number of bits;

(d) rotating a value which is based on the result of the
rotating step (¢) by a second number of bits derived
from another one of the words;

(e) applying a secret key to a value which is based on the
result of step (d); and

(f) repeating steps (b), (c), (d) and (e) for a designated
number of rounds.

26. A method of decrypting a ciphertext message, com-

prising the steps of:

(a) segmenting the ciphertext message into a plurality of
words;
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(b) applying an integer multiplication function to at least
one of the words;

(c) rotating a value which is based on the result of the
applying step (b) by a first number of bits;

(d) rotating a value which is based on the result of the
rotating step (c) by a second number of bits derived
from another one of the words;

(e) applying a secret key to a value which is based on the
result of step (d); and

(0) repeating steps (b), (¢), (d) and (e) for a designated
number of rounds.

27. An apparatus for decrypting a ciphertext message,

comprising:

amemory for storing at least a portion of a secret key; and

a processor associated with the memory, wherein the
processor is operative:

(2) to segment the ciphertext message into a plurality of
words;
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(b) to apply an integer multiplication function to at least
one of the words;

(c) to rotate a value which is based on the result of
operation (b) by a first number of bits;

(d) to rotate a value which is based on the result of
operation (¢) by a second number of bits derived
from another one of the words;

(e) to apply the portion of the secret key to a value
which is based on a result of operation (d); and

(f) to repeat operations (b), (c), (d) and (e) for a
designated number of rounds.

28. The method of claim 1 wherein the first number of bits
is zero.

29. The apparatus of claim 13 wherein the first number of
bits is zero.



