RC6—The elegant AES choice

Ron Rivest rivest@mit.edu
Matt Robshaw mrobshaw@supanet.com
Yiqun Lisa Yin yiqun@nttmcl.com
RC6 is the right AES choice

- Security
- Performance
- Ease of implementation
- Simplicity
- Flexibility
RC6 is simple: only 12 lines

\[
\begin{align*}
B &= B + S[0] \\
D &= D + S[1] \\
&\text{for } i = 1 \text{ to } 20 \text{ do} \\
&\quad \{ \\
&\quad\quad t &= (B \times (2B + 1)) \ll 5 \\
&\quad\quad u &= (D \times (2D + 1)) \ll 5 \\
&\quad\quad A &= ((A \oplus t) \ll u) + S[2i] \\
&\quad\quad C &= ((C \oplus u) \ll t) + S[2i + 1] \\
&\quad\quad (A, B, C, D) &= (B, C, D, A) \\
&\quad \} \\
A &= A + S[42] \\
C &= C + S[43]
\end{align*}
\]
Simplicity

- Facilitates and encourages analysis
 - allows rapid understanding of security
 - makes direct analysis straightforward
 (contrast with Mars and Twofish)

- Enables easy implementation
 - allows compilers to produce high-quality code
 - obviates complicated optimizations
 - provides good performance with minimal effort
RC6 security is well-analyzed

- RC6 is probably most studied AES finalist
 - RC6 is based on RC5
 - RC6 analysis builds directly on RC5 analysis
 - original RC6 analysis is very detailed
 - RC6 simplified variants studied extensively
 - small-scale versions allowed experimentation
RC6 key schedule is rock-solid

- Studied for more than six years
- Secure
 - thorough mixing
 - one-way function
 - no key separation (cf. Twofish)
 - no related-key attacks (cf. Rijndael)
Original analysis still accurate

- RC6 meets original design criteria
- Security estimates from 1998 still good today; independent analyses supportive.
- Secure, even in theory, even with analysis improvements far beyond those seen for DES during its lifetime
- RC6 provides a solid, well-tuned margin for security
32-bit Performance

- Excellent performance
- 32-bit CPUs are
 - NIST reference platform
 - a significant fraction of installed computers throughout the AES lifetime
 - becoming more prevalent in cheaper devices (e.g. ARM)
Smart Card Suitability

- RC6 fits in the cheapest smart cards, and well-suited for many (e.g. ARM processor)
- Bandwidth, not CPU, likely to be most significant bottleneck
- 8-bit CPUs will become far less important over the AES lifetime
Performance on 64-bit CPUs

- Generally good 64-bit performance
- IA64-performance only fair but anomalous—slower than Pentium!
 - Note 3x improvement with IA64++
- Future chips will optimize AES
- In addition, RC6 gains dramatically with multi-block processing compared to other schemes
Major Trends: Java and DSPs

- Increasing use of **Java**
 - for e-commerce and embedded apps.
 - RC6 provides excellent speed with **minimal** code size and memory usage

- Increasing use of **DSP chips**
 - likely to be more significant than IA64 or 8-bit processors
 - RC6 gives excellent performance
Flexibility

- **RC6 is fully parameterized**
 - key size, number of rounds, and block length can be readily changed
 - well-suited for hash functions
- **RC6 is only AES finalist that naturally gives DES and triple-DES compatible variants (64-bit blocks)**
How do we grade candidates?

- Security (corroborated)
- Performance (speed+memory)
 - 32-bit (30%)
 - Java (20%)
 - DSP (15%)
 - 64-bit (15%)
 - Hardware (15%)
 - 8-bit (5%)
- Ease of implementation
- Simplicity
- Flexibility

Overall: 40/25/15/10/10
Conclusions

- RC6 is a simple yet remarkably strong cipher
 - good performance on most important platforms
 - simple to code for good performance
 - excellent flexibility
 - the most studied finalist
 - the best understood finalist
- RC6 is the secure and “elegant” choice for the AES
(The End)