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Abstract

We introduce a notion of “statistical robustness” for voting
rules. We say that a voting rule is statistically robust if the
winner for a profile of ballots is most likely to be the winner
of any random sample of the profile, for any positive sam-
ple size. We show that some voting rules, such as plurality,
veto, and random ballot, are statistically robust, while others,
such as approval, score voting, Borda, single transferable vote
(STV), Copeland, and Maximin are not statistically robust.
Furthermore, we show that any positional scoring rule whose
scoring vector contains at least three different values (i.e., any
positional scoring rule other than t-approval for some t) is not
statistically robust.

Keywords: social choice, voting rule, sampling, statistical
robustness

1 Introduction
It is well known that polling a sample of voters before an
election may yield useful information about the likely out-
come of the election, if the sample is large enough and the
voters respond honestly.

It is less well known that the effectiveness of a sample in
predicting an election outcome also depends on the voting
rule (social choice function) used.

We say a voting rule is “statistically robust” if for any
profile the winner of any random sample of that profile is
most likely to be the same as the (most likely) winner for the
complete profile. While the sample result may be “noisy”
due to sample variations, if the voting rule is statistically
robust the most common winner(s) for a sample will be the
same as the winner(s) of the complete profile.

To coin some amusing terminology, we might say that a
statistically robust voting rule is “weather resistant”—you
expect to get the same election outcome if the election day
weather is sunny (when all voters show up at the polls) as
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you get on a rainy day (when only some fraction of the vot-
ers show up). (We assume here that the chance of a voter
showing up on a rainy day is independent of his preferences.)

We show that plurality voting is statistically robust,
while—perhaps surprisingly—approval voting, STV, and
most other familiar voting rules are not statistically robust.

We consider the property of being statistically robust a
desirable one for a voting rule, and thus consider lack of
such statistical robustness a defect in voting rules. In gen-
eral, we consider a voting rule to be somewhat defective if
applying the voting rule to a sample of the ballots may give
misleading guidance regarding the likely winner for the en-
tire profile.

One reason why statistical robustness may be desirable
is for “ballot-auditing” (Lindeman and Stark 2012), which
attempts to confirm the result of the election by checking
that the winner of a sample is the same as the overall winner.

Similarly, in an AI system that combines the recommen-
dations of expert subsystems according to some aggregation
rule, it may be of interest to know whether aggregating the
recommendations of a sample of the experts is most likely
to yield the same result as aggregating the recommendations
of all experts. In some situations, some experts may have
transient faults or be otherwise temporarily unavailable (in a
manner independent of their recommendations) so that only
a sample of recommendations is available for aggregation.

Since our definition is new, there is little or no directly
related previous work. The closest work may be that of
Walsh and Xia (Walsh and Xia 2011), who study various
“lot-based” voting rules with respect to their computational
resistance to strategic voting. In their terminology, a voting
rule of the form “Lottery-Then-X” (a.k.a. “LotThenX”) first
takes a random sample of the ballots, and then applies voting
rule X (where X may be plurality, Borda, etc.) to the sam-
ple. Their work is not concerned, as ours is, with the fidelity
of the sample winner to the winner for the complete profile.
Amar (Amar 1984) proposes actual use of the “random bal-
lot” method. Procaccia et al. (Procaccia, Rosenschein, and
Kaminka 2007) study a related but different notion of “ro-
bustness” that models the effect of voter errors.

The rest of this paper is organized as follows. Section 2
introduces notation and the voting rules we consider. We
define the notion of statistical robustness for a voting rule in
Section 3, determine whether several familiar voting rules



are statistically robust in Section 4, and close with some dis-
cussion and open questions.

2 Preliminaries
Ballots, Profiles, Alternatives. Assume a profile P =
(B1, B2, . . . , Bn) containing n ballots will be used to de-
termine a single winner from a set A = {A1, A2, . . . , Am}
of m alternatives. The form of a ballot depends on the vot-
ing rule used. We may view a profile as either a sequence or
a multiset; it may contain repeated items (identical ballots).

Social choice functions. Assume that a voting rule (social
choice function) f maps profiles to a single outcome (one
of the alternatives): for any profile P , f(P ) produces the
winner for the profile P .

We allow f to be randomized, in order for “ties” to be
handled reasonably. Our development could alternatively
have allowed f to output the set of tied winners; we prefer
allowing randomization, so that f always outputs a single
alternative. In our analysis, however, we do consider the set
ML(f(P )) of most likely winners for a given profile.

Thus, we say that A is a “most likely winner” of P if no
other alternative is more likely to be f(P ). There may be
several most likely winners of a profile P . For most profiles
and most voting rules, however, we expect f to act deter-
ministically, so there is a single most likely winner.

Often the social choice function f will be neutral—
symmetric with respect to the alternatives—so that chang-
ing the names of the alternatives won’t change the outcome
distribution of f on any profile. While there is nothing in
our development that requires that f be neutral, we shall
restrict attention in this paper to neutral social choice func-
tions. Thus, for example, a tie-breaking rule used by f in
this paper will not depend on the names of the alternatives;
it will pick one of the tied alternatives uniformly at random.

We do assume that social-choice function f is anony-
mous—symmetric with respect to voters: reordering the bal-
lots of a profile leaves the outcome unchanged.

We will consider the following voting rules. (For more
details on voting rules, see (Brams and Fishburn 2002), for
example.)

Many of the voting rules are preferential voting rules; that
is, each Bi gives a linear order Ai1 � Ai2 � . . . � Aim.
(In the rest of the paper, we will omit the� symbols and just
write Ai1Ai2 . . . Aim, for example.)

• A positional scoring rule is defined by a vector ~α =
〈α1, . . . , αm〉; we assume αi ≥ αj for i ≤ j.
Alternative i gets αj points for every ballot that ranks al-
ternative i in the jth position. The winner is the alternative
that receives the most points.
Some examples of positional scoring rules are:

Plurality: ~α = 〈1, 0, . . . , 0〉
Veto: ~α = 〈1, . . . , 1, 0〉
Borda: ~α = 〈m− 1,m− 2, . . . , 0〉

• Single-transferable vote (STV) (also known as instant-
runoff voting (IRV)): The election proceeds in m rounds.
In each round, the alternative with the fewest votes is

eliminated. Each ballot is counted as a vote for its highest-
ranked alternative that has not yet been eliminated. The
winner of the election is the last alternative remaining.

• Plurality with runoff : The winner is the winner of the
pairwise election between the two alternatives that receive
the most first-choice votes.

• Copeland: The winner is an alternative that maximizes
the number of alternatives it beats in pairwise elections.

• Maximin: The winner is an alternative whose lowest score
in any pairwise election against another alternative is the
greatest among all the alternatives.

Other (non-preferential) voting rules we consider are:

• Score voting (also known as range voting): Each allow-
able ballot type is associated with a vector that specifies
a score for each alternative. The winner is the alternative
that maximizes its total score.

• Approval (Brams and Fishburn 1978; Laslier and Sanver
2010): Each ballot gives a score of 1 or 0 to each alter-
native. The winner is an alternative whose total score is
maximized.

• Random ballot (Gibbard 1977) (also known as random
dictator): A single ballot is selected uniformly at random
from the profile, and the alternative named on the selected
ballot is the winner of the election.

3 Sampling and Statistical Robustness
Sampling. The profile P is the universe from which the
sample will be drawn.

We define a sampling process to be a randomized function
G that takes as input a profile P of size n and an integer
parameter k (1 ≤ k ≤ n) and produces as output a sample S
of P of expected size k, where S is a subset (or sub-multiset)
of P .

We consider three kinds of sampling:

• Sampling without replacement. Here GWOR(P, k) pro-
duces a set S of size exactly k chosen uniformly without
replacement from P .

• Sampling with replacement. Here GWR(P, k) produces
a multiset S of size exactly k chosen uniformly with re-
placement from P .

• Binomial sampling. Here GBIN (P, k) produces a sample
S of expected size k by including each ballot in P in the
sample S independently with probability p = k/n.

Thus, the output of the voting rule on a sample might be
denoted as f(S), or f(G(P, k)), depending on the situation.

Statistically Robust Voting Rules. We now give our main
definitions.

Definition 1 If X is a discrete random variable (or more
generally, some function defined on a finite sample space),
we let ML(X) denote the set of values that X takes with
maximum probability. That is,

ML(X) = {x | Pr(X = x) is maximum}



denotes the set of “most likely” possibilities for the value
of X .

For example, ML(f(P )) contains the “most likely win-
ner(s)” for a (possibly randomized) voting rule f and pro-
file P ; typically this will contain just a single alterna-
tive. Similarly, ML(f(G(P, k))) contains the most likely
winner(s) of a sample of size k. Note that ML(f(P ))
involves randomization only within f (if any), whereas
ML(f(G(P, k))) also involves the randomization of sam-
pling by G.

Definition 2 We say that a social choice function f is statis-
tically robust for sampling rule G if for any profile P of size
n and for any sample size k ∈ {1, 2, ..., n},

ML(f(G(P, k))) = ML(f(P )) .

That is, an alternative is a most likely winner for a sample
of size k if and only if it is a most likely winner for the entire
profile P .

Note that this definition works smoothly with ties: if the
original profile P was tied (i.e., there is more than one most
likely winner of P ), then the definition requires that all most
likely winners of P have maximum probability of being a
winner in a sample (and that no other alternatives will have
such maximum probability).

Having a statistically robust voting rule is something like
having an “unbiased estimator” in classical statistics. How-
ever, we are not interested in estimating some linear com-
bination of the individual elements (as with classical statis-
tics), but rather in knowing which alternative is most likely
(i.e., which is the winner), a computation that may be a
highly nonlinear function of the ballots.

A simple plurality example. Suppose we have a plurality
election with 10 votes: 6 for A, 3 for B, and 1 for C. We try
all three sampling methods, all possible values of k, and see
how often each alternative is a winner in 1000 trials; Figure 1
reports the results, illustrating the statistical robustness of
plurality voting, a fact we prove in Section 4.3.

For brevity in this paper, we will generally assume that
the three kinds of sampling will yield equivalent results; we
don’t expect differences in the results depending on which
sampling process is used. (In a longer paper we would not
make this assumption.) Thus, to show a method is not sta-
tistically robust, it suffices here to show that it is not statis-
tically robust for one of the three sampling methods. How-
ever, we do take care to show that plurality is robust under
all three sampling methods.

In fact, statistical robustness under sampling without
replacement implies statistical robustness under binomial
sampling, as shown in the following theorem.

Theorem 1 If a voting rule f is statistically robust under
sampling without replacement, then it is statistically robust
under binomial sampling.

Proof: When binomial sampling returns an empty sample,
then, with a neutral tie-breaking rule, no alternative gains

any advantage. For non-empty samples, by the assump-
tion of statistical robustness under sampling without replace-
ment, for any k > 0, f(P ) is the most likely winner of a uni-
form random sample of size k. Therefore, f(P ) is the most
likely winner of a sample produced by binomial sampling
with any positive probability p.

4 Statistical Robustness of Various Voting
Rules

In this section, we analyze whether various voting rules are
statistically robust.

4.1 Random Ballot
Theorem 2 The random ballot method is statistically ro-
bust, with sampling methods GWR, GWOR, and GBIN .

Proof: Each ballot is equally likely to be chosen as the
one to name the winner.

4.2 Score Voting
Theorem 3 Score voting is not statistically robust.

Proof: By means of a counterexample. Consider the fol-
lowing profile:

(1) A1 : 100, A2 : 0
(99) A1 : 0, A2 : 1

There is one vote that gives scores of 100 forA1 and 0 for
A2, and 99 votes that gives scores of 0 for A1 and 1 for A2.

Then A1 wins the complete profile.
Under binomial sampling with probability p, A1 wins

with probability about p — that is, with about the proba-
bility A1’s vote is included in the sample. (The probability
is not exactly p because the binomial sampling may produce
an empty sample, in which case A1 and A2 will be equally
likely to be selected as the winner.)

For p < 1/2, A2 wins more than half the time; thus score
voting is not robust under binomial sampling.

4.3 Plurality
Throughout this section, we let ni denote the number of
votes alternative Ai receives, with

∑
i ni = n.

Theorem 4 Plurality voting is statistically robust, with
sampling without replacement.

Proof: Assume n1 > n2 ≥ . . . ≥ nm, soA1 is the unique
winner of the complete profile. (The proof below can easily
be adapted to show that plurality is statistically robust when
the complete profile has a tie for the winner.)

Let K = (k1, k2, ..., km) denote the number of votes for
the various alternatives within the sample of size k.

Let
(
a
b

)
denote the binomial coefficient “a choose b.”

Thus, there are
(
n
k

)
ways to choose a sample of size k from

the profile of size n.
The probability of a given configuration K is equal to

Pr(K) = (
∏

i

(
ni

ki

)
)/
(
n
k

)
.

Let γ(i) denote the probability that Ai wins the election,
and let γ(i, kmax) denote the probability that Ai receives
kmax votes and wins the election.



GWOR

k A B C
1 594 303 103
2 625 258 117
3 727 217 56
4 794 206 0
5 838 162 0
6 868 132 0
7 920 80 0
8 1000 0 0
9 1000 0 0

10 1000 0 0

GWR

k A B C
1 597 299 104
2 569 325 106
3 676 260 64
4 718 256 26
5 749 219 32
6 764 212 24
7 804 181 15
8 818 171 11
9 842 146 12

10 847 150 3

GBIN

k A B C
1 507 315 178
2 619 277 104
3 698 235 67
4 763 212 25
5 822 161 17
6 879 117 4
7 930 70 0
8 973 27 0
9 993 7 0

10 1000 0 0

Figure 1: Plurality voting with three sampling schemes on a profile with ten votes: 6 for A, 3 for B, and 1 for C. 1000 trials
were run for each sample size, with sample sizes running from k = 1 to k = 10. The entry indicates how many trials each
alternative won, with ties broken by uniform random selection. (The perhaps surprisingly large value for C of 178 for GBIN

results from the likelihood of an empty sample when k = 1; such ties are broken randomly.) Note that ML(G(P, k)) = A for
all three sampling methods G and all sample sizes k.

Then γ(i) =
∑

kmax
γ(i, kmax), and γ(i, kmax) =∑

K∈K Pr(K)/Tied(K), where K is the set of configura-
tions K such that ki = kmax and kj ≤ kmax for all j 6= i,
and Tied(K) is the number of alternatives tied for the max-
imum score in K. (Note that this equation depends on the
tie-breaking rule being neutral.)

For any kmax, consider now a particular configuration K
used in computing γ(1, kmax): K = (k1, k2, ..., km), where
k1 = kmax and ki ≤ kmax for i > 1.

Now consider the corresponding configurationK ′ used in
computing γ(2, kmax), where k1 and k2 are switched: K ′ =
(k2, k1, k3, ..., km).

Each configuration K ′ used in computing γ(2, kmax) has
such a corresponding configuration K used in computing
γ(1, kmax).

Then, by Lemma 1 below, Pr(K) > Pr(K ′). Thus,
γ(1, kmax) > γ(2, kmax).

Since γ(1, kmax) > γ(2, kmax) for any kmax, we have
that γ(1) > γ(2); that is, A1 is more likely to be the winner
of the sample than A2.

By a similar argument, for every i > 1, γ(1, kmax) ≥
γ(i, kmax) for any kmax, so γ(1) > γ(i). Therefore, A1 is
the most likely to win the sample.

Lemma 1 If n1 > n2, k1 > k2, n1 ≥ k1, and n2 ≥ k2,
then

(
n1

k1

)(
n2

k2

)
>
(
n1

k2

)(
n2

k1

)
.

Proof: We wish to show that(
n1
k1

)(
n2
k2

)
>

(
n1
k2

)(
n2
k1

)
. (1)

If n2 < k1, then
(
n1

k2

)(
n2

k1

)
= 0, so (1) is trivially true.

If n2 ≥ k1, then we can rewrite (1) as
(
n1

k1

)
/
(
n2

k1

)
>(

n1

k2

)
/
(
n2

k2

)
. So it suffices to show that for n1 > n2,(

n1

k

)
/
(
n2

k

)
is increasing with k, which is easily verified.

Theorem 5 Plurality voting is statistically robust, under bi-
nomial sampling.

Proof: Follows from Theorems 4 and 1.

Theorem 6 Plurality is statistically robust, under sampling
with replacement.

Proof: The proof follows the same structure as for sampling
without replacement. Again, assume n1 > n2 ≥ . . . ≥ nm.

For each configuration K used in computing γ(1, kmax)
and the corresponding configuration K ′ used in computing
γ(2, kmax), we show that Pr(K) > Pr(K ′).

Under sampling with replacement, the probability of a
configuration K = (k1, . . . , km) is equal to

Pr(K) =

(
k

k1, . . . , km

) m∏
i=1

(ni
n

)ki

.

For any configuration K used in computing γ(1, kmax),
consider the corresponding configuration K ′, obtained by
swapping k1 and k2, used in computing in γ(2, kmax): K ′ =
(k2, k1, k3, . . . , km). Then

Pr(K ′) =

(
k

k1, . . . , km

)(n2
n

)k1
(n1
n

)k2
m∏
i=3

(ni
n

)ki

.

So Pr(K) = (n1/n2)
(k1−k2) Pr(K ′). If n1 > n2 and

k1 > k2, then Pr(K) > Pr(K ′). If n1 > n2 and k1 = k2,
then Pr(K) = Pr(K ′). Thus, γ(1, kmax) > γ(2, kmax) for
every kmax, and therefore, A1 is more likely than A2 to win
a sample without replacement.

By a similar argument, for every i > 1, γ(1, kmax) ≥
γ(i, kmax) for any kmax, so γ(1) > γ(i). Therefore, A1 is
most likely to win the sample.

4.4 Veto
Theorem 7 Veto is statistically robust.

Proof: Each ballot can be thought of as a vote for the least-
preferred alternative; the winner is the alternative who re-
ceives the fewest votes.

For plurality, we showed that the alternative who receives
the most votes in the complete profile is the most likely to



receive the most votes for a random sample. By symmetry,
the same arguments can be used to show that the alternative
who receives the fewest votes in the complete profile is the
most likely to receive the fewest votes in a random sample.
Thus, the winner of a veto election is the most likely to win
in a random sample.

4.5 Approval Voting
We were surprised to discover the following.

Theorem 8 Approval voting is not statistically robust.

Proof: Proof by counterexample. Consider the following
profile:

(r) {A1}
(r) {A2, A3}

There are r ballots that approve of A1 only and r ballots
that approve ofA2 andA3. Each alternative receives r votes,
and each wins the election with probability 1/3.

However, in a sample of size 1, A1 wins with probability
1/2, while A2 and A3 each win with probability 1/4.

Similarly, in a sample without replacement of size n− 1,
A1 wins with probability 1/2 (when one of the ballots for
{A2, A3} is the ballot excluded from the sample), while A2

and A3 each win with probability 1/4.
Note that the example above shows not only that approval

is not (fully) statistically robust, but also that there does not
exist a threshold τ such that for any sample of size at least
τ -fraction of n, approval is statistically robust.

4.6 Borda
Theorem 9 Borda voting is not statistically robust.

Proof: Proof by counterexample. Consider the following
profile:

(n1) A1 A2 A3

(n2) A2 A3 A1

(n3) A3 A1 A2

Suppose n1 > n2 and n1 > n3. Then in a sample of size
1, each Ai wins with probability ni/n, and A1 is the most
likely winner.

In the complete profile,A1 gets a Borda score of 2n1+n3,
A2 gets 2n2 + n1, and A3 gets 2n3 + n2. If 2n2 − n3 > n1
(e.g., n1 = 100, n2 = 70, n3 = 30), then A2 beats A1 in the
complete profile.

Thus, Borda is not statistically robust with sampling with
or without replacement.

Borda is a special case of positional scoring rules. Sec-
tion 4.10 shows more generally that any positional scoring
rule whose scoring vector contains at least 3 distinct values
is not robust.

4.7 Single Transferable Vote (STV)
Theorem 10 STV is not statistically robust.

Proof:
We give two proofs that STV is not statistically robust.
Proof 1: For a sample of size 1, the most likely winner

will be the alternative with the most first-choice votes in the
complete profile. However, it is well known that STV does

not always elect the alternative with the most first-choice
votes.

Proof 2: We give a sketch of a counterexample with a
larger sample size k.

We construct a profile for which the winner is very un-
likely to be the winner in any smaller sample.

Choose m (the number of alternatives) and r (a “replica-
tion factor”) both as large integers.

The profile will consist of n = mr ballots:
(r + 1) A1 Am . . .
(r) A2 Am A1 . . .
(r) A3 Am A1 . . .
...
(r) Am−1 Am A1 . . .
(r − 1) Am A1 . . .

where the specified alternatives appear at the front of the
ballots, and “. . .” indicates that the order of the other lower-
ranked alternatives is irrelevant.

In this profile, Am is eliminated first, then A2, . . . , Am−1
in some order, until A1 wins.

Suppose now that binomial sampling is performed, with
each ballot retained with probability p. Let ni be the num-
ber of ballots retained that list Ai first. Each ni is a bino-
mial random variable with mean (r + 1)p (for A1), rp (for
A2 . . . Am−1), and (r − 1)p (for Am).

Claim 1: The probability that nm = 0 is effectively zero,
for any fixed p, as r →∞.

Claim 2: The probability that there exists an i, 1 ≤ i < m,
such that ni < nm goes to 1 as m, r →∞.

Note that as r gets large, then ni and nm are very nearly
identically distributed, so the probability that ni < nm goes
to 1/2. The probability that some ni will be smaller than nm
goes to 1.

Thus, in any sample GBIN (P, k), we expect to see some
Ai other than Am eliminated first. Since all of Ai’s votes
then go toAm, Am will with high probability never be elim-
inated, and will be the winner.

4.8 Plurality with Runoff
Theorem 11 Plurality with runoff is not statistically robust.

Proof: Proof by counterexample. Consider the following
profile:

(n1) A1 A2 A3

(n2) A2 A3 A1

(n3) A3 A2 A1

with n1 > n2, n1 > n3, and n2+n3 > n1. ThenA1 is most
likely to win a sample of size 1, but A2 wins the complete
election.

4.9 Copeland and Maximin
Theorem 12 Copeland and Maximin are not statistically
robust.

Proof: Proof by counterexample:
(n1) A1 A2 A3

(n2) A2 A1 A3

(n3) A3 A1 A2

Suppose n1 + n3 > n2 and n1 + n2 > n3, and n2 > n1
and n2 > n3. (For example, let n1 = 30, n2 = 40, n3 =



20.) Then A1 is the Condorcet winner (and therefore the
Copeland and maximin winner), but A2 is the most likely
winner of a sample of size 1.

4.10 Positional Scoring Rules
Theorem 13 Let ~α = 〈α1, . . . , αm〉 be any positional scor-
ing rule with integer αi’s such that α1 > αi > αm for some
1 ≤ i ≤ m. Then the positional scoring rule defined by ~α is
not robust.
Proof: We will show that a counterexample exists for any ~α
for which α1 > αi > αm for some i.

We construct a profile as follows. Start with r copies of
each of them! possible ballots, for some large r. Clearly, for
this profile, all m alternatives are tied, and each alternative
wins the election with equal probability, 1/m.

We will show that this profile can be “tweaked” so that
in the resulting profile, all m alternatives are again tied and
each win with equal probability. However, the number of
first-choice votes will no longer be equal for all alternatives,
so for a sample of size 1, the alternatives will not all win
with equal probability.

The “tweak” is performed as follows. Take a single ballot
type b (i.e., a permutation of the alternatives) that has A1 in
position 1 on the ballot, A2 in position i, and A3 in posi-
tion m. Consider the 6 ballot types obtained by permuting
A1, A2, A3 within b (while keeping the other alternatives’
positions fixed). We will change the number of ballots of
each of these 6 types by δ1, . . . , δ6 (the δi’s may be positive,
negative, or zero).

That is, starting from a ballot type A1[. . .]A2[. . .]A3, we
will change the counts of the following 6 ballot types:

A1[. . .]A2[. . .]A3 by δ1
A1[. . .]A3[. . .]A2 by δ2
A2[. . .]A1[. . .]A3 by δ3
A2[. . .]A3[. . .]A1 by δ4
A3[. . .]A1[. . .]A2 by δ5
A3[. . .]A2[. . .]A1 by δ6

where the “[. . .]” parts are the same for all 6 ballot types.
In order to keep the scores of A4, . . . , Am unchanged, we

require δ1 + . . .+ δ6 = 0.
Next, in order to keep the scores of A1, . . . , A3 un-

changed, we write one equation for each of the three alter-
natives:

(δ1 + δ2)α1 + (δ3 + δ5)αi + (δ4 + δ6)αm = 0,

(δ3 + δ4)α1 + (δ1 + δ6)αi + (δ2 + δ5)αm = 0,

(δ5 + δ6)α1 + (δ2 + δ4)αi + (δ1 + δ3)αm = 0.

Finally, to ensure that the number of first-choice votes
changes (so that the probability of winning a sample of size
1 changes) for at least one of A1, A2, A3, we add an addi-
tional equation, δ1 + δ2 = 1, for example.

The 5 equations above in 6 variables will always be sat-
isfiable with integer δi’s (details omitted). We can choose
the replication factor r to be large enough so that the num-
bers of each ballot type are non-negative. Thus, there always
exists a counterexample to statistical robustness as long as
α1 > αi > αm.

Note that this theorem implies the specific case of Borda
given in Section 4.6.

5 Discussion and Open Questions
We have introduced and motivated a new property for voting
rules: “statistical robustness,” and provided an initial suite
of results on the statistical robustness of several well-known
voting rules.

The research reported here represents only the first steps
towards a full understanding of the statistical robustness of
voting rules, however, and many interesting open problems
remain, some of which are given below.

It is perhaps surprising that plurality (and its complement,
veto) and random ballot are the only interesting voting rules
that appear to be statistically robust. Being statistically ro-
bust seems to be a somewhat fragile property, and a small
amount of nonlinearity appears to destroy it.

For example, even plurality with weighted ballots (which
one might have in an expert system with different experts
having different weights) is not statistically robust: this is
effectively the same as score voting.
Open Problem 1 Do some voting rules become statistically
robust for large enough sample sizes? For each interesting
voting rule, and each kind of sampling, determine precisely
for which values of k it is statistically robust. (Many of our
proofs only look at the simple case k = 1.) For which voting
rules is there a “threshold” τ(n) < n such that the voting
rule is statistically robust for k ≥ τ(n)?
We note that we can easily show that for approval and score
voting, there does not exist such a threshold τ(n).
Open Problem 2 Determine how the property of being (or
not being) statistically robust relates to other well-studied
voting rule properties.
Conjecture 1 Show that a voting rule cannot be statisti-
cally robust if the number of distinct meaningfully-different
ballot types is greater than m, the number of alternatives.
Conjecture 2 Show that plurality and veto are the only sta-
tistically robust voting rules among those where each ballot
“approves t” for some fixed t.
Conjecture 3 Show that a score voting rule cannot be ro-
bust if there are two profiles P and P ′ that have the same
total score vectors, but which generate different distributions
when sampled.
Open Problem 3 Determine how best to utilize the infor-
mation contained in a sample of ballots to predict the over-
all election outcome, when the voting rule is not statistically
robust. (There may be something better to do than merely
applying the voting rule to the sample.)
Open Problem 4 The voting rules studied by Walsh and
Xia (Walsh and Xia 2011) of the form “Lottery-Then-X”
seem plausible alternatives for statistically robust voting
rules, since their first step is to perform a lottery (take a sam-
ple of the profile). Determine which, if any, Lottery-Then-X
voting rules are statistically robust.
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