
INFORMATION AND CONTROL 55, 1--19 (1982)

How to Reuse a "Wr i te -Once" Memory*

R ONAL D L. RIVEST

MIT Laboratory for Computer Science, Cambridge, Massachusetts

AND

ADI SHAMIR

Weizmann Institute of Science, Rehovot, Israel

"TROUBLE HIM NOT; HIS WITS ARE GONE." KING LEAR, IILVi.89

Storage media such as digital optical disks, PROMS, or paper tape consist of a
number of "write-once" bit positions (wits); each wit initially contains a "0" that
may later be irreversibly overwritten with a "1." It is demonstrated that such
"write-once memories" (woms) can be "rewritten" to a surprising degree. For
example, only 3 wits suffice to represent any 2-bit value in a way that can later be
updated to represent any other 2-bit value. For large k, 1.29.... k wits suffice to
represent a k-bit value in a way that can be similarly updated. Most surprising,
allowing t writes of a k-bit value requires only t + o(t) wits, for any fixed k. For
fixed t, approximately k. t/log(t) wits are required as k ~ c~. An n-wit W O M is
shown to have a "capacity" (i.e., k • t when writing a k-bit value l times) of up to
n • log(n) bits.

I. INTRODUCTION

Digital optical disks (a variation of the "video disks" used to store analog
video data) are an exciting new storage medium. A single 12-in. disk costing
$100 can be used to store o v e r 1011 bits of data-- the equivalent of 40 reels
of magnetic tape--and to provide access to any of it in 1/10 sec. Such an
order-of-magnitude improvement in the cost-performance of memory
technology can have dramatic effects. (See Business Week, 1980; McLeod,
1981; Goldstein, 1982.)

However, such capability is achieved at the cost of making the writing
process irreversible. The disks are used as follows. Each disk is manufac-

* This research was supported in part by NSF Grant MCS-8006938. A preliminary
version of this paper appeared in Proceeding 14th AC M STOC, pp. 105-113, 1982.

1
0019-9958/82 $2.00

Copyright © 1982 by Academic Press, Inc.
All rights of reproduction in any form reserved.

2 RIVEST AND SHAMIR

tured with a thin reflective coating of tellurium. To write on the disk, a laser
is used to melt submicron pits in the tellurium at specified positions,
changing those positions from their virgin "0" state to a "1" state. To read
the disk, the laser (at low power) illuminates each position on the disk; the
lower reflectivity of the pits is easily sensed.

The tremendous capacities and cheap cost per bit of digital optical disks
provides strong motivation to examine closely their one drawback--their
"write-once" nature. The purpose of this paper is thus to explore the true
capabilities of such "write-once memories" (or woms). Other familiar
examples of woms are punched paper tape, punched cords, and PROMS
(programmable read-only memories in which the wits are microscopic fuses
that can be selectively blown).

Large woms might naturally be used to store data that is more or less
static: programs, documents, pictures, data bases, or archival storage dumps.
If the data requires updating, the worn can be replaced by a freshly written
worn. A large worn can be divided into blocks that are used up as needed; a
index on an associated magnetic disk can keep track of the valid blocks. The
magnetic disk can be eliminated by using linked-list or tree-like data
structures on the wom itself to link obsolete blocks to their replacements, at
some cost in terms of access time.

More formally, we model a worn as an array of "write-once bits" (or wits)
which are manufactured in a "0" state but which can later be independently
but irreversibly transformed into a "1" state. (We understand that some of
the current recorder-player designs for digital optical disks are not capable
of selectively changing individual zero bits within a previously written block.
However, this seems to be more a matter of engineering than of fun-
damentals.)

The main result of this paper is that by using appropriate coding
techniques, a wom can be "rewritten" many times, and that its "bit-capacity"
is much greater than the number of its wits. Many of the coding techniques

2rid
generat ion

Ol

Ol 1 [st generation

J
O0

Fro. 1. The (22)2/3-worncode on the Boolean 3-cube.

WRITE-ONCE MEMORY 3

TABLE 1

A (22)2/3 Womcode

X r(x) #(X)

O0 000 111
O1 100 O11
l0 010 101
11 001 110

proposed here are simple to implement, and can have a significant impact on
the cost of using woms.

As an example of the kind of behavior we are interested in, the following
coding scheme was a prime "motivat ing example" for this research.

LEMMA 1. Only 3 wits are needed to "write 2 bits twice."

Proof We show how to represent a 2-bit value x in 3 wits so that it can
later be changed to represent any other 2-bit value y. First, represen t x with
the pattern r(x) given in Table 1. Later, a value y (y ¢ x) can be written by
changing the pattern to r'(y). (If x = y no change is made). Observe that
r'(y) will have ones wherever r(x) does, so that we need only change zeros
to ones.

Decoding is easy: the memory word abc represents the 2-bit value (b @ e),
(a @ e), no matter whether the worn has been written once or twice. |

Figure 1 gves a picture of the Boolean 3-cube illustrating how the 3-wit
codewords are each assigned 2-bit values to represent.

II. NOrATION

Let weight of a binary codeword be the number of ones it contains. Let
x @ y denote the bitwise X O R of the bit vectors x and y (assumed to have
the same length). We say that a binary word x = Xl '." Xr is "above" another
binary word Y---Yl""Y, (denoted x>~y) if r = s and x l) y i for l<~t<~r .
Let log(x) denote the logarithm (base 2) of x (or, if the context requires an
integer value, Ilog2(x)}). We use Z~. to denote the set {0, 1 v - 1 }, and Z~
to denote the set of all binary words of length n. We say " f (n)~ g(n)" if
l im,~ f (n) /g(n) = 1. (The variable being taken to the limit should be clear
from the context.) We also let H(p) denote the "entropy function" H(p)=
p log(l /p) + (1 - - p) log(l / (1 --p))o

4 RIVEST AND SHAMIR

A coding scheme that uses n wits to represent one of v values so that it
can be written a total of t times (i.e., written once and changed t - 1 times)
we call a "(v) t /n-womcode '' (read: a "v t-times into n-wit womcode"). The
"/n" may be dropped for an optimal worn-code (with minimal n) (read: an
"optimal v t-times womcode') . The general case--where the number of
values may differ from generation to generat ion-- we call a "(v~,..., vt)/n-
womcode" (read: a "v~ to v~ into n-wit womcode"); here the value stored on
the ith write may be any one of {0 v i - 1 }.

Let w((vl , . . . ,v t)) denote the least n for which a (vl vt)/n-womcode
exists. Similarly, we use w((v) t) to denote the number of wits needed by an
optimal (v) t womcode. We are interested in characterizing the behavior of
w((v) t) for large values of v or t as well as finding "practical" coding
schemes for small values of v or t.

It seems at first paradoxical that w((v) t) < log(v) , t could happen.
Intuitively, the reason is that only the last value written needs to be
accessible--previous values may become irretrievable. In fact, if all
previously written values were always accessible then log(v) • t wits would be
required.

To make our definition of a womcode precise, we note that a (v~ vt)/n
womcode can be defined to consist of the following parts (here let
v = max(v~ vt)):

(1) An interpretation function a that maps each x ~ Z~ to a value
a(x) in Z~,

(2) An update function ~ which gives for any x E Z~ and for any
value y in Zv, either " i " (i.e., undefined), or else a codeword p (x , y) =
z E Z~ such that a(z) = y and z) x.

We say that a and p define a correct @~,..., vt)/n-womcode if they
"guarantee at least t writes" as defined below. In order to define this
condition we first make the following auxiliary definitions.

An acceptable sequence (il im) for a @1,..., vt)/n-womcode satisfies the
conditions that O ~ m ~ < t and each ii, l~<j~<m, is in Z~/ Note that in
particular the null sequence 2 is acceptable.

We define the "write function" p mapping acceptable sequences to
codewords (or L) as the iteration of p starting from the all-zero word 0 n
(corresponding to the "initial state" of the wom) by the following equations:

p((i, @) = 0", if j = O;

=fl(p((i 1 i j _ l)) , ij), if j) 1.

(We assume that # (L , y) = 2_ for all y.) We say that an acceptable sequence
"arrives at x" if that sequence is mapped by p to x.

WRITE-ONCE MEMORY 5

We say that a codeword x is "used in generation m," or "is an ruth
generation codeword" if there is an acceptable sequence of length m that
arrives at x. A codeword x is said to be "unused" if no acceptable sequence
of positive length arrives at x, otherwise we say x is "used."

If every codeword belongs to at most one generation we call the womcode
"synchronized"--since all acceptable sequences that arrive at a codeword
word arrive there "at the same time" (i.e., at the same generation). Otherwise
the womcode is called "unsynchronized." With a synchronized womcode one
can always determine how many generations have been written. Note that
our (22)2/3 womcode is not synchronized since 000 belongs to the zeroth,
first, and second generations. We say that a womcode is "almost
synchronized" if the all-zero word is the only codeword that belongs to more
than one generation, and it belongs only to the zeroth and first generations.

The laminar womcodes are an interesting special case of the synchronized
womcodes: a womcode is laminar if it is synchronized and the weight of
every (used) codeword determines its generation. (That is, no two codewords
of different generations have the same weight.)

We say that the womcode defined by a and ~ "guarantees at least t
writes" if no acceptable sequence of length t arrives at L. Tbis completes our
formal definition of a @1 vt}/n-womcode defined by a and /.t; such a
womcode is correct if it guarantees at least t writes.

We will often identify an interpretation a(x) with its binary representation.
(For example, in a (2k}t/n-womcode each n-bit codeword represents a k-bit
word.)

We would like to note that we initially studied only the (2k}t/n-womcodes,
but that we have since seen enough interesting examples of womcodes of the
more general form to warrant including the more general definition here.

We now introduce our three "complexity measures": P, I, and C. Let P(t)
denote the "penalty expansion factor" needed to guarantee t writes of values
from Z~, for large v, compared to that needed for just a single write,

P(t) = lira w((v}t)
o - ~ log(v) (1)

We will prove that P(2) = 1.29.., and P(t) ,,~ t/log(t).
Let I(v), denote the asymptotic "incremental cost" of increasing t by one

for a (v)t-womcode,

I(v) = lim w((v}t)
t-~o~ t (2)

We shall prove the surprising result that I(v)= 1.
We define the apparent capacity (in bits) of a (v I ,..., vt}/n-womcode to be

6 RIVEST AND SHAMIR

log(v I . . -vt); we denote this a s C ((/ .) 1 vt)/n). Similarly, let C(n) denote
the apparent capacity (in bits) of an n-wit memory field:

C(n) = max{log(v I ... vt) I w((v 1 Ul)) 4 n}. (3)

We shall demonstrate that C(n) = n • log(n) + o(n • log(n)). As an auxiliary
definition, we let R((v 1 vt) /n) = C((vl v t) /n)/n denote the rate of the
womcode. (This is just the capacity per wit of the womeode.)

III. ELEMENTARY OBSERVATIONS

LEMMA 2.

w ((v , . w ((v ,) ') + (4)

Pro@ Concatenate a (va)t-womcode and a (v J -womcode to make a
(v 1 • Vz)t / (w((vl) t) + w ((v J)) womcode. (Represent each value y in Z~,.~
as an ordered pair (y l , Y2), with Yl ~ Zv, and Y2 ~ Z~ 2. Use the womcodes to
record Yl and Y2 separately.) |

LEMMA 3. (w((v) t) is subadditive in t.)

w((vT, +'2) w((v)',) + w((v72). (5)

Proof. Use side-by-side optimal (v) t~- and (@t2-womcodes to represent
the sum (rood v) of the values represented by the two subcodes. To update,
change one subcode to represent the difference (rood v) of the new value to
be represented and the value of the other subcode. This guarantees at least
t~ + t 2 writes. (The alternative approach of writing the new value into one of
two subcodes would need extra wits to indicate which subcode was written
last, unless the zero word is unused in one of the subcodes.) |

The above lemmas (and w(~21)~)= 1) imply that w((2k) t)~k . t. For
small values of k and t, we can derive w((2k) t) as given in Table 2.
(Obviously, w((Zk) 1) = k and w((21) ') = t.)

We do not know the exact values corresponding to the empty positions of
the table.

The (23)3/7 (rate 1.28...) and (22)2/3 (rate 1.33...) womcodes indicated by
the table are special cases of the general "linear" scheme presented in
Section V.

The (22)5/7 (rate 1.42...) womcode indicated by the table is an ad hoe
scheme; we show here how to decode a 7-wit pattern abcdefg. If the pattern
has weight four or less, the value represented is O1 • c01 @ 10 • c io® 11 • c~l,
where c01 = 1 iff ab = 10 or (ab = 11 and one of cd or e f i s 01), c10 = 1 iff

WRITE-ONCE MEMORY

TABLE 2

W((2k) ')

1 2 3 4 5 6

l 1 2 3
2 2 3 5
3 3 5 7
4 4 6
5 5 8
6 6 9
7 7

4 5 6
6 7

cd= 10 or (cd= 11 and one of ab or efis 01), and c ~ = 1 i f f e f = I0 or
(el= 11 and one of ab or cd is 01). (For example, the pat tern 1101100
represents 10. At most one of ab, ed, ef will be l l if another is 01.)

Otherwise the interpretat ion is ab @ cd@ ef@gg. The first three writes
change at most one wit, while the last two might each change two wits.

The following notat ion for the size of the tail of a binomial distr ibution

and a related inverse quanti ty will be useful:

m

i=0

cS(v,m)=min I h ((m + h)) > ~ v l " (7)
h ,

(6)

Note that a (v)t/n-womcode must have n/> m + c~(v,m) if every first
generation codeword must have at least m zeros. We derive a lower bound
Z(v, t) to w((v) t) by generalizing this observat ion:

z(~, o) = o, (8)

and

Z(v,t+l)=Z(v,t)+c~(v,Z(v,t)) for t>~O. (9)

LEMMA 4.

w((v>')/> z(v, O. (~o)

Proof (sketch). By induction on t. The case t = 0 is trivial. A @,}t+ ~/n-
womcode must have at least Z(v, t) zeros in every first-generation codeword,

8 RIVEST AND SHAMIR

and must turn on at least 3(v, Z(v, t)) wits in the worst case on the first write
to have v codewords in the first generation. |

COROLLARY.

w((2k) t)) k + t - 1. (11)

Note that Z(2 ~ , l) = k and Z(2 k , t + l) / > Z (2 k , t) + l for k > 0 . The
following lemma improves this result (by one).

LEMMA 5.

w((2k) ') > ~ k + t for k) 2 and t />3. (12)

Proof. Suppose to the contrary that a (2k)t/(k + t -- 1)-womcode existed
for k/> 2 and t ~> 3. Since Z(2 k, 1) = k, the generation t - 1 codewords must
each have weight less than t. On the other hand, we show that if t >/3 then
for every value y ~ Z2k there is a (t - 1)th generation codeword x with
a(x)=y and weight at least t - I . (For t = 2 the claim fails if the zero-
weight word is in the first generation.) There must be at least 2 k - 1/> 3
different values y associated with first-generation codewords of weight 1 or
more. Thus for every value y @ Z2k there is a (t - 1)th generation codeword
x with a(x) = y and weight exactly t - 1. But then no possible interpretation
for the codeword 1 ~+t-1 is distinct from each of these values (required since
the last k levels are "tight"). This contradiction proves the lemma. II

IV. H o w MANY WITS ARE NEEDED FOR A

FIXED NUMBER OF GENERATIONS, 9

IV.A. How Many Wits Are Needed for Two Generations?

THEOREM 1.

w((v) 2) ~ 1.293815... log(v). (13)

Proof. For any v, choose h to be 3(v, log(v)) and then choose n to satisfy

n - h = flog(v) + log log(v) + 1 - log log(e)l. (14)

We will prove that w((v) 2) ~ n. Choose the first generation representations
arbitrarily as distinct codewords with weight at most h, and randomly assign
to the remaining 2 n - v codewords interpretations from Z v. There are

(v) " - v (15)

WRITE-ONCE MEMORY 9

ways to do this. How many ways do not guarantee two writes? Such a bad
assignment must contain a first-generation codeword x and a value y ~ Zv -
{a(x)} such that no codeword z >~ x represents y. If we select x in one of v
ways, select y in one of the remaining v - 1 ways, assign all codewords z) x
values different than y and assign all other codewords arbitrary values, we
will have counted every bad code at least once examined no more than

v 2 . (v - 1) 2" ~ . (v) 2 " - v - 2 ° - " (16)

codes. Whenever (16) is less than (15) some "good" codes must exist. This
happens when

(v) s n J, (17)

vs~< v --:-sT

which will happen if

2 log(v) K 2" e 1ogl,~) . log(e) (18)

which is implied by

n = h + [log(v) + log log (v) + 1 - log log(e)l. (19)

Thus (19) implies the existence of a (v)t/n-womcode. Since n ~> h + log(v)
(from Lemma 4), we conclude that for an optimal @)2/n-womcode

n = h + log(v) + o(log(v)). (20)

Now the logarithm of the number of words of length n with at most h ones
is

n . H(h/n) + o(n) for h ~ n/2. (21)

(See Peterson and Weldon, 1972, Appendix A or MacWilliams and Sloane,
1977, Chap. 10, Sect. 11.) Since there are v values in the first generation,

n . H(h/n) ÷ o(n) = log(v) (22)

or (since log(v) = n -- h + o(log(v)) and n ~ 2 • log(v))

(n -- h)
H(h/n) - + o(1). (23)

?/

The equation H (p) = 1 - - p has a solution at p = 0 . 2 2 7 0 9 2 1 9 so for an
optimal womcode h/n ~ 0.227 or log(v) ~ n • (1 - 0.227...) or

n ~ 1.29381537. . . . log(v) (24)

which was to the proved. |

10 RIVEST AND SHAMIR

TABLE 3

A ((26>2/7)-Womcode

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

O A H G G F Y L w E Z Y r X f p n D W V z U d j o T w k e l t d u
1 C S R c Q i o z P p i h u e x y O z s j s n i w v e q g f k b m

2 B N M z L b g m K u t b n g f w J w r h k v x y m j p s o q e i
3 l k m q l e k u w t e o s d j v u b d f g e t p y x n l h r z a

The random womcodes of the theorem will have an asymptotic rate of
2/1.29 1.5458 much better than the rate 1.33... womcode of Lemma 1.
However, we could not construct by hand a (2k)Z-womcode of rate higher
than 1.33 Lemma 4 implies that such a scheme must have k = 7, n = 10 or
k ~> 9. Using a computer we found a slightly more efficient method with rate
1 . 3 4

The new scheme is a (26)2/7-womcode (rate = 1.3429...). So a seven-track
paper tape is "reusable" for writing just letterst Row i, column j of Table 3
gives the value (a letter) of the 7-bit string with binary value i • 32 + j . The
first-generation is in upper case. Thus a "T" (0011000) is made into an "h"
by changing bits 1, 2, and 5 (to obtain 1111100). We were unable to find a
(27)2/7-womcode or to prove one does not exist, although we can prove that
a (29)2/7 womcode does not exist.

IV.II. W h a t is P (t) ?

By reasoning similar to that of the proof of Theorem 1, we derived the
following estimates for P (t) . Note how closely the estimates are to t / l o g (t) .

TABLE 4

P(t)(est.) vs. t/log(t)

t P(t) (est.) t/Iog(t)

1 1 . 0 0 0 - -

2 1.294 2.000
3 1.549 1.893
4 1.783 2.000
5 2.003 2.153

10 2.983 3.010
20 4.668 4.628
50 8.960 8.859

100 15.191 15.051
200 26.346 26.164

W R I T E - O N C E M E M O R Y] 1

To demonstrate our main result that P (t) ~ t/log(t), we define an upper
bound to w((v) t) which is asymptotically equal to our lower bound Z(v, t) of
Lemma 4, to within a small additive term.

THEOREM 2. For f ixed t and v sufficiently large, a sufficient condition
for the existence o f a (v)~/n-womcode is the existence o f t numbers l~,
1 <. i <~ t, such that

(a) t . log(v) >~ n >~ [1>/[2 >/"") It >/O,

(b) (, ,) ; / v ,

(c) (btj,) > /v . (t + I) . log(v),for 1 <~ i < t.

Proof. We prove the existence of a @) i n womcode in which all ith
generation codewords contain exactly I i zeros• Condition (b) implies that
there are enough codewords with l~ zeros for the v values of the first
generation. We now show (by a counting argument) that for all i, 1 ~< i < t it
is possible to assign interpretations to the codewords with I;+~ zeros for the
(i + l)th generation in such a way that for everyj, 0 ~<j < v, every codeword
with li zeros is below some codeword with l;+ 1 zeros that has been assigned
interpretation j.

n The total number of ways in which the (6t ,) codewords with li+ J zeros
can assigned values is

v(,,~). (25)

We can overcount the number of "bad" ways of assigning interpretations to
the codewords with li+ 1 zeros (assuming we have already assigned inter-
pretations to the earlier generations), in the following way. Choose a
codeword x with I i zeros, choose a "missing value" y C Z~, assign the (rfl,)
codewords with I;+~ zeros above x with the v - 1 remaining values (other
than y), and assign the other codewords with Ii+l zeros arbitrary inter-
pretations. The number of "bad" ways is thus at most

1"l) I i n [i
,,.+,) V(l,, (26) l , • v . (v - 1) (• ,)-(,,~,).

A "good" way must exist whenever (26) is less than (25). By simplifying this
inequality, we get

n t,,t t !t • v . - - - < 1 . (2 7)

12 RIVEST AND SHAM1R

Since n ~<t. log(v) (otherwise the existence of the desired womcode is
trivial), (~) ~ v t, and thus it is enough to prove

• - < i . (2 8)

By condition (c), (~ l~)) v • log(v). (t + 1), and thus it suffices to prove that

(+) ~.,o~v,. ,+,
v t+l . 1 - <1. (29)

But for large enough v, (1 - (l / v)) ~ approaches I/e, and thus the left-hand
side is approximated by

vt+ 1 . e-LO~V~.~t+ 1~, (30)

which approaches zero as v goes to infinity• |

To find the smallest (or nearly smallest) n for which the existence of a
(v}t-womcode is guaranteed by the theorem, the numbers I i should be chosen
in reverse order (from I t to I 0. The last two numbers can be chosen as

log(v)
I t = ~ + e log log(v), (31)

where c is any constant greater than 1, and

since

It- 1 = log(v) + 2e log log(v), (32)

I, \ l, > 21, - log(v) + 2c log log(v) • (33)

Since e > 1 and t is fixed, this becomes larger than v • log(v) • (t + 1) for v
sufficiently large. The other I;'s can" be chosen as the smallest numbers
satisfying condition (c) of the theorem. Finally, n can be chosen as the
smallest number satisfying (l~) >/v.

We now proceed to analyze the performance of the womcodes described
above, in order to show that their performance is asymptotically equal to
that of the lower bound we proved in Lemma 4. Then we prove our main
theorem (Theorem 4) that P (t) ~ t / l og (t) .

We first introduce some necessary notation. Let

h l vl •

WRITE-ONCE MEMORY 13

(Note the similarity to the definition of in (7).) Then we define

and

log(v)
- - + e log log(v), (35) Y.(v, 0) - 2

Y,(v, 1) = log(v) + 2e log log(v), (36)

Y ~ (v , t + l) = Y ~ (v , t) + 3 ' (v . u . l o g (v) , Y ~ (v , t)) for t / > l . (37)

For convenience in Theorem 3, we define Y(v, t) to be Yiog,,~(v, t); note that
for large v, Y(v, t)) Y t + l (v , t). From this definition it follows that for v
sufficiently large,

w((v)') <.< v(v, t), (38)

since l i = Yt+ 1(v, t - i) for 1 ~ i ~ t and n < Yt+ ~(v, t) in the construction of
last theorem.

THEOREM 3. For t >/ 1,

lira Y(v, t) 1. (39)
~ , ~ z (v , t)

Proof By induction on t. The case t = 1 is trivial. By comparing the
forms of the definitions of Y and Z, we see that it iis enough to prove

lira ~ ' (v . (log(v)) 2. m') _ 1, (40)
~-~o~ 5(v, m)

where m = Z(v, t - 1) and m' = Y(v, t - 1). We observe that

~(v, m) ~< c~'(v, m) ~< ~(v, m) + 1 (41)

if m >~ log(v) (since that implies that 5(v, m) ~ (rn/2)). (Note that in (40)
both m and m' are >~log(v).) Thus we can replace 6' by 5 in (40).
Furthermore, 5(v, m) is a decreasing function of m, so that we can also
replace m' by the smaller value m in (40). In a similar vein, it is simple to
show that m >/log(v) implies that

~(v • (log(v)) 2, m) ~< 3(v, m) + 2log log(v), (42)

and a little more complicated to show that l o g (v) ~ m ~ y . log(v) implies
that

5(v, m) >~ log(v) . (2y. H-'(1/27)). (43)

Combining these observations leads to the desired result. |

14

THEOREM 4.

P r o o f

RIVEST AND SHAMIR

P(t) ~ t / log(t) .

Let n t = Z(v, t). Then we must have

V ~ nt - - n t -1

so we derive

H(n ,_ , /nt) ~ log(v) /n , .

We consider H (p) near p = 0 using the fact that H (p) = H(1 - p) ,

1 - n,_ ,In t ~ H - ' (l o g (v) / n t) .

Near p = 0, H (p) m p . log(l /p) , so H - l (y) ~ - y / l o g (y) :

n t , - log(v) /n ,

nt log(log(v) /n t)

n t - nt_ 1 ~ - l o g (v) / l o g (l o g (v) / n t) ,

dn t ~ - log(v)

dt ~ log(log(v) /n ,) '

at ~ log(n , / log(v)) . dn l

log(v)

I"/t t
log(v) ~ P(t) ~ log(t-----)-" II

(44)

(45)

(46)

47)

(48)

(49)

(50)

(51)

(52)

As a consequence of Theorem 4, for fixed t and large v, an optimal (v) t
womcode will have a rate approximately equal to log(t), with the approx-
imation improving as t increases.

V. WHAT IS 1(l)) 9.

In this section we demonstrate that I (v) = 1 for any v, using a " tabular"
womcode. We also present a " l inear" womcode tha t - -whi le it only shows
that I(v)~< 4, generalizes nicely our (22)z/3-womcode.

W R I T E - O N C E M E M O R Y 15

V.A. The Tabular (v) t / n -Womeode

We assume here that t > v. Let u denote an integer parameter to be chosen
later (imagine that u is about log(n)), Our (v)1/n-womcode will have its
n = r . s wits considered as r=- (u + l) (v - - 1) rows of s = l o g (v) +
t / (u • (v - I)) columns. Each row is divided into a log(v)-wit "header" field
and an (s - l o g (v)) - w i t "count" field. The log(v)-bit value represented by
such a table is the sum (rood v)) of the header field of all rows multiplied by
the number of " l ' s " in their count fields.

To write a value x when the table currently represents y, it suffices to
change a single "0" to a "1" in a row with header x - - y (rood v). If every
row with this header has all ones in its count field, we find a new row which
currently is all zeros in both its header and count fields, change the header to
the desired value, and change one bit of the count field. We can always find
a new row up until u(v - 1) rows are completely "full," since there are only
v - 1 useful header values. (The all-zero value is useless.) Thus we are
guaranteed at least u(v - 1) • (s - log(v)) = t writes.

Since

n = t + t / u + log(v)(u + l) (v - 1),

by choosing u = [log(t)] implies that n = t + o(t).

This code has rate approximately log(v) < log(n). With optimally chosen
parameters , this code has a rate nearly log(n), about twice as good as any
other code presented in this paper.

V.B. The "Linear" Womeode

This scheme has parameters v , t = v/4, and n = v - 1 . The ith wit is
associated with the number i, for 1 ~ i < v. The value represented by any
pattern is the sum (rood v) of the numbers associated with wits in the '-'1"
state. (An alternative definition, useful when v = 2 k, interprets the pattern as
the X O R of the k-bit representations of the numbers associated with wits in
the "1" state. For example, in our (22)2/3-womcode the pattern abc can be
decoded a s 0 1 . a Q 1 0 . b O l l . e .)

We now show t h a t - - a s long as there are more than v /2 z e r o s - - w e can
change the worn to represent a new value by changing at most two wits. Let
z denote the difference (modulo v) of the new value desired, y, and the
current value represented, x. I f the bit associated with z is now "0" we can
simply change it to a "1." Otherwise let S denote the set of numbers
associated with wits which are currently zero, and let T denote the set
t z - - x (m o d v) l x ~ S } . S i n e e l S l = l T l > v / 2 a n d [S L) T I < v - 1 (zero is in
neither set), IS¢3 T I must be >~3. Their overlap indicates a solution to the
equation z = x , + x 2 (rood v) where xl and x 2 are distinct elements of S.

643/55/1-3 2

16 RIVEST AND SHAMIR

The code described above thus has rate roughly log(v)/4 ~ log(n)/4. The
linear womcode described above may have to stop when there are as many
as (v/2) zeros left (which can happen after as few as (v/4) writes). The
following trick allows one to keep going a while longer. Divide the n-wit field
into n/3 blocks of size 3. By writing additional " l ' s " if necessary, force each
block to have either one "1" or three " l ' s " exactly. Those "bad" blocks
having no zeros remaining are now considered as deleted, while each of the
remaining "good" blocks can be used to store one bit (by changing one of its
wits-- the other one is left untouched to indicate that the block is a good
block and not a deleted block). With at least (n - 1)/2 zeros remaining we
are guaranteed of getting at least n i l 2 - I "good" blocks. The recurrence:
t (n) = n / 4 + t(n/12) has the solution t (n) = 3 n / l l + O(1), indicating that
this trick can increase the number of writes we can achieve by a factor of
12/11 (from n/4 to 3n / l l writes). At the moment this coding trick is also
the best general scheme we know of for making use of a "dirty" WOM that
may have been written before in an arbitrary manner (i.e., without any
thought of using some sort of "womcoding" for better utilization).

VI. WHAT IS C(n) 9.

The schemes presented in the last section can be used to show that
C(n) = n . log(n) + o(n . log(n)).

THEOREM 5.

C(n) >1 n log(n) + o(n log(n))

Proof For a given large memory size n, we can use the "tabular"
scheme of secion V.A and choose parameters: l o g (v) = [l o g (n) -
2 log log(n)] with r = [log log(n)J • (v - 1) rows of length s = [n/rJ. (We will
"waste" n - rs wits.) As before, the total number of writes possible is
n - o (n) , proving the theorem. I

It is also possible to show that this result is "best possible":

THEOREM 6.

C(n) <~ n . log(n).

Proof (Intuitively, changing one wit out of n should provide at most
log(n) bits of information.) Consider any (v I vt)/n-womcode. The n-wit
field can undergo at most (t + 1)" < n" "histories" as it progresses from its
first state (all "O's") to its final state (perhaps all " l ' s ") , since we can

WRITE-ONCE MEMORY 1 "7

describe the history by specifying for each of the n wits that it either always
remains "0" or that it is turned to a "1" during one of the t write operations.
On the other hand, the womcode has at least Vl ... v t different acceptable
sequences of length t to handle, each of which must have its own history.
The theorem follows. |

VI. OTHER WOMCODES

Several of our colleagues have become intrigued by the problem of
designing highrate womcodes, and have graciously consented to our
sketching or referencing their preliminary results here.

(i) Professor David Klarner (Department of Mathematics, SUNY
Binghampton), has created an elegant (5)3/5 (rate 1.39...) cyclic womcode,
which works as follows. The first value is represented by 10000 in the first
generation, either 01001 or 00110 in the second generation, and one of
01111, 10110, or 11001 in the third generation. The other four values are
handled similarly, using cyclic rotations of the words given for the first
value. (Since n is prime all the cyclic rotations are distinct.)

(ii) David Leavitt (an undergraduate working with Professor Spyros
Magliveras, Department of Mathematics, University of Nebraska at
Lincoln), has found an even more efficient (7)4/7 (rate 1.60...) cyclic
womcode by extending Klarner's technique. (To appear.)

(iii) James B. Saxe (a graduate student at CMU) has created the
following beautiful (n/2, hi2-1, . . . , 1)In womcode (rate asymptotically
(log(n)/2)), where the two halves of each codeword are the same except that
the left half has an extra "1" bit. The value represented is the number of
zeros in the left half to the left of the extra bit. Each update (except the first),
changes exactly two wits---one in each half.

(iv) Saxe also suggested the following marvelous recursive womcode,
which uses n = 2 k wits, and changes exactly one wit per write. Using f (n) to
denote the capacity of Saxe's code, we shall see that f (2 k) --- k • 2 k- ~, using
the base case f(1)---0, giving a rate of log(n)/2. Partition the n wits into n/2
pairs. With the first n/2 writes we turn on at most one bit in each pair, and
obtain capacity f (n /2)+ (n/2) by using the code recursively on the n/2
pairs, and getting an extra bit/write using the parity of the number of pairs
whose left bit is on. For the second n/2 writes we obtain capacity f(n/2)
recursively on the pairs by turning on their second bits as needed. The
recurrencef(n) = (n/2) + 2f(n/2) gives the desired result.

(v) Saxe has also created a (65, 81, 63)/12 (rage 1.52...) womcode
that can be improved to a (65, 81, 64)/12 (rate 1.53...) womcode if the
"generation number" is externally available when decoding.

18 RIVEST AND SHAMIR

VII. DISCUSSION AND CONCLUSIONS

The results presented in this paper provide much information about the
nature o f the function w((v)t). On the basis of the evidence so far, we
conjecture that

w((v) t) ,,~ max (t, log(v).l_og(t) t)

for large v and t. We expect that this result should follow in a more-or-less
straightforward manner from the results and techniques given here, but we
have not as yet worked through a detailed demonstration. (Exercise for the
reader: prove that w((Zk) k) = 6J(kZ/log(k)).)

The relationship between womcodes and error-correcting codes are
interesting: we can view a womcode as a situation where the channel is
assymmetric (only 0 ~ I errors occur), and where the transmitter knows
where the errors will occur before he has to choose a codeword. Of course,
there are still many differences, since the objective of womcoding is to allow
many "messages" to be sent and the codeword for one message determines
what the "errors" are for the next message.

A more closely related problem may be that of devising codes for random-
access memories that have "stuck bits." Heegard (1981) has some recent
work in this area. Again, however, the problem seems intrinsically different.

Some interesting work has been done on Turing machines that have
"nonerasing" work tapes (e.g., see Minsky, 1967), which is peripherally
related to the research reported here.

We note that our formulation of the problem requires that the decoding
scheme for an (v)t/n-womcode provide a unique interpretation for each
possible pattern of the n wits, independent of how many generations have
been written. In some cases the current "generation number" might also be
available as input to the decoding scheme at no extra cost (in wits). While
this variation might permit some minor performance improvements in some
instances, it remains an open question as to how much this additional infor-
mation might help.

A number of questions need further investigation:

(i) What if there is some restriction on the kinds of updates that
may occur? (For example, what if y can replace x only if y is numerically
greater than x?)

(ii) What advantages are there to representing a different number of
values at each generation?

(iii) What is the complexity of the decoding and updating algorithms
for the best codes?

WRITE-ONCE MEMORY 19

(iv) How can these coding schemes be adapted to handle the
possibi l i ty of errors occurr ing on the worn?

(v) If the underlying s torage medium is viewed as storing a
modula ted digital signal rather than a sequence of bits, what kind of
"womcod ing" should be used to al low updat ing yet to maximize bandwidth
while minimizing modula t ion frequency? (See Brown, 1981; Hecht and
Guida , 1969,)

(vi) Wha t can be said about the average-case behavior of
womcodes?

(vii) W h a t if the storage elements had more than two possible states,
and had a compl ica ted dag that desribed the set of legal state t ransi t ion?

(viii) Wha t truly pract ical womcodes exist?

ACKNOWLEDGMENTS

We would like to thank Eric Brown, Abbas El Gamal, David Klarner, David Leavitt,
Andrew Odlyzko, Michael Rabin, Jim Saxe, and Michael Sipser for their helpful comments
and discussons.

REFERENCES

BROWN, ERIC S. (1981), Digital Data Bases on Optical Videodisks," Bachelor of Science
thesis, MIT, May.

BULTHULS, K., CARASSO, M., HEEMSKERK, J,, KIVITS, P., KLEUTERS, W., AND ZALM, P.
(1979), "Ten Billion Bits on a Disk," IEEE Spectrum, August, pp. 26-33.

(1980), "Videodiscs: A Three-Way Race for a Billion-Dollar Jackpot," Business Week, July
7, pp. 72-81.

GALLAGER, R. G. (1968), "Information Theory and Reliable Communication," Wiley, New
York, 1968).

GOLDSTEIN, C. M. (1982), Optical disk technology and information, Science 215 (4534),
862-868.

HEEGARD, C. (1981), "Capacity and Coding for Computer Memory with Defects," Ph.D.
thesis, Stanford Univ., Dept. of Statistics, Technical Report, No. 45, May.

HECHT, M., AND GUIDA, A. (1969), Delay modulation, Proc. IEEE Lett.
MACWILLIAMS, F. J., AND SLOANE, N. J. A. (1977), "The Theory of Error-Correcting

Codes," North-Holland, Amsterdam.
McLEoD, J. (1981), "Optical Disks loom as replacement for Tape" Electronic Design,

September 30, pp. 97-103.
MINSK'¢, M. (1967), "Computation: Finite and Infinite Machines," Prentice-Hall, Englewood

Cliffs, N. J.
PETERSON, W., nNo WELDON, JR. E. (1972), "Error-Correcting Codes," MIT Press,

Cambridge, Mass.

