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"TROUBLE HIM NOT; HIS WITS ARE GONE."  KING LEAR, IILVi.89 

Storage media such as digital optical disks, PROMS, or paper tape consist of a 
number of  "write-once" bit positions (wits); each wit initially contains a "0"  that 
may later be irreversibly overwritten with a "1." It is demonstrated that such 
"write-once memories" (woms) can be "rewritten" to a surprising degree. For 
example, only 3 wits suffice to represent any 2-bit value in a way that can later be 
updated to represent any other 2-bit value. For large k, 1.29.... k wits suffice to 
represent a k-bit value in a way that can be similarly updated. Most surprising, 
allowing t writes of  a k-bit value requires only t + o(t) wits, for any fixed k. For 
fixed t, approximately k.  t/log(t) wits are required as k ~  c~. An n-wit W O M  is 
shown to have a "capacity" (i.e., k • t when writing a k-bit value l times) of up to 
n • log(n) bits. 

I. INTRODUCTION 

Digital optical disks (a variation of the "video disks" used to store analog 
video data) are an exciting new storage medium. A single 12-in. disk costing 
$100 can be used to store o v e r  1011 bits of data-- the equivalent of 40 reels 
of magnetic tape--and to provide access to any of it in 1/10 sec. Such an 
order-of-magnitude improvement in the cost-performance of memory 
technology can have dramatic effects. (See Business Week, 1980; McLeod, 
1981; Goldstein, 1982.) 

However, such capability is achieved at the cost of making the writing 
process irreversible. The disks are used as follows. Each disk is manufac- 
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tured with a thin reflective coating of tellurium. To write on the disk, a laser 
is used to melt submicron pits in the tellurium at specified positions, 
changing those positions from their virgin "0" state to a "1" state. To read 
the disk, the laser (at low power) illuminates each position on the disk; the 
lower reflectivity of the pits is easily sensed. 

The tremendous capacities and cheap cost per bit of digital optical disks 
provides strong motivation to examine closely their one drawback--their  
"write-once" nature. The purpose of this paper is thus to explore the true 
capabilities of such "write-once memories" (or woms). Other familiar 
examples of woms are punched paper tape, punched cords, and PROMS 
(programmable read-only memories in which the wits are microscopic fuses 
that can be selectively blown). 

Large woms might naturally be used to store data that is more or less 
static: programs, documents, pictures, data bases, or archival storage dumps. 
If  the data requires updating, the worn can be replaced by a freshly written 
worn. A large worn can be divided into blocks that are used up as needed; a 
index on an associated magnetic disk can keep track of the valid blocks. The 
magnetic disk can be eliminated by using linked-list or tree-like data 
structures on the wom itself to link obsolete blocks to their replacements, at 
some cost in terms of access time. 

More formally, we model a worn as an array of "write-once bits" (or wits) 
which are manufactured in a "0"  state but which can later be independently 
but irreversibly transformed into a "1" state. (We understand that some of 
the current recorder-player designs for digital optical disks are not capable 
of selectively changing individual zero bits within a previously written block. 
However, this seems to be more a matter of engineering than of fun- 
damentals.) 

The main result of this paper is that by using appropriate coding 
techniques, a wom can be "rewritten" many times, and that its "bit-capacity" 
is much greater than the number of its wits. Many of the coding techniques 
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Fro. 1. The (22)2/3-worncode on the Boolean 3-cube. 
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TABLE 1 

A (22)2/3 Womcode 

X r(x) #(X) 

O0 000 111 
O1 100 O11 
l0 010 101 
11 001 110 

proposed here are simple to implement, and can have a significant impact  on 
the cost of  using woms. 

As an example of  the kind of  behavior we are interested in, the following 
coding scheme was a prime "motivat ing example"  for this research. 

LEMMA 1. Only 3 wits are needed to "write 2 bits twice." 

Proof We show how to represent a 2-bit value x in 3 wits so that it can 
later be changed to represent any other 2-bit value y. First, represen t x with 
the pattern r(x) given in Table 1. Later, a value y (y  ¢ x) can be written by 
changing the pattern to r'(y). (If  x = y  no change is made).  Observe that  
r'(y) will have ones wherever r(x) does, so that we need only change zeros 
to ones. 

Decoding is easy: the memory  word abc represents the 2-bit value (b @ e), 
(a @ e), no matter whether the worn has been written once or twice. | 

Figure 1 gves a picture of  the Boolean 3-cube illustrating how the 3-wit 
codewords are each assigned 2-bit values to represent. 

II. NOrATION 

Let weight of a binary codeword be the number  of ones it contains. Let 
x @ y  denote the bitwise X O R  of the bit vectors x and y (assumed to have 
the same length). We say that a binary word x = Xl '." Xr is "above"  another 
binary word Y---Yl""Y, (denoted x>~y) if r = s  and x l ) y  i for l<~t<~r .  
Let log(x) denote the logarithm (base 2) of  x (or, if the context requires an 
integer value, Ilog2(x)}). We use Z~. to denote the set {0, 1 ..... v - 1 }, and Z~ 
to denote the set of  all binary words of  length n. We say " f (n )~  g(n)" if 
l im,~ f (n) /g(n)  = 1. (The variable being taken to the limit should be clear 
from the context.) We also let H(p) denote the "entropy function" H(p)= 
p log( l /p )  + (1 - - p )  log( l / (1  --p))o 
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A coding scheme that uses n wits to represent one of v values so that it 
can be written a total of t times (i.e., written once and changed t - 1 times) 
we call a "(v) t /n-womcode '' (read: a "v t-times into n-wit womcode"). The 
"/n" may be dropped for an optimal worn-code (with minimal n) (read: an 
"optimal v t-times womcode') .  The general case--where the number of 
values may differ from generation to generat ion--  we call a "(v~,..., vt)/n- 
womcode" (read: a "v~ to v~ into n-wit womcode"); here the value stored on 
the ith write may be any one of {0 ..... v i - 1 }. 

Let w((vl , . . . ,v t)  ) denote the least n for which a (vl ..... vt)/n-womcode 
exists. Similarly, we use w((v)  t) to denote the number of wits needed by an 
optimal (v) t womcode. We are interested in characterizing the behavior of 
w((v) t) for large values of v or t as well as finding "practical" coding 
schemes for small values of v or t. 

It seems at first paradoxical that w((v)  t) < log(v) ,  t could happen. 
Intuitively, the reason is that only the last value written needs to be 
accessible--previous values may become irretrievable. In fact, if all 
previously written values were always accessible then log(v) • t wits would be 
required. 

To make our definition of a womcode precise, we note that a (v~ ..... vt)/n 
womcode can be defined to consist of the following parts (here let 
v = max(v~ ..... vt)): 

(1) An interpretation function a that maps each x ~  Z~ to a value 
a(x) in Z~, 

(2) An update function ~ which gives for any x E Z~ and for any 
value y in Zv, either " i "  (i.e., undefined), or else a codeword p ( x , y ) =  
z E Z~ such that a(z) = y  and z ) x. 

We say that a and p define a correct @~,..., vt)/n-womcode if they 
"guarantee at least t writes" as defined below. In order to define this 
condition we first make the following auxiliary definitions. 

An acceptable sequence (il ..... im) for a @1,..., vt)/n-womcode satisfies the 
conditions that O ~ m ~ < t  and each ii, l~<j~<m, is in Z~/  Note that in 
particular the null sequence 2 is acceptable. 

We define the "write function" p mapping acceptable sequences to 
codewords (or L)  as the iteration of p starting from the all-zero word 0 n 
(corresponding to the "initial state" of the wom) by the following equations: 

p((i, ..... @) = 0", if j = O; 

=fl(p(( i  1 ..... i j _ l ) ) ,  ij), if j )  1. 

(We assume that # ( L , y ) =  2_ for all y.) We say that an acceptable sequence 
"arrives at x" if that sequence is mapped by p to x. 
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We say that a codeword x is "used in generation m," or "is an ruth 
generation codeword" if there is an acceptable sequence of length m that 
arrives at x. A codeword x is said to be "unused" if no acceptable sequence 
of positive length arrives at x, otherwise we say x is "used." 

If every codeword belongs to at most one generation we call the womcode 
"synchronized"--since all acceptable sequences that arrive at a codeword 
word arrive there "at the same time" (i.e., at the same generation). Otherwise 
the womcode is called "unsynchronized." With a synchronized womcode one 
can always determine how many generations have been written. Note that 
our (22)2/3 womcode is not synchronized since 000 belongs to the zeroth, 
first, and second generations. We say that a womcode is "almost 
synchronized" if the all-zero word is the only codeword that belongs to more 
than one generation, and it belongs only to the zeroth and first generations. 

The laminar womcodes are an interesting special case of the synchronized 
womcodes: a womcode is laminar if it is synchronized and the weight of 
every (used) codeword determines its generation. (That is, no two codewords 
of different generations have the same weight.) 

We say that the womcode defined by a and ~ "guarantees at least t 
writes" if no acceptable sequence of length t arrives at L. Tbis completes our 
formal definition of a @1 ..... vt}/n-womcode defined by a and /.t; such a 
womcode is correct if it guarantees at least t writes. 

We will often identify an interpretation a(x) with its binary representation. 
(For example, in a (2k}t/n-womcode each n-bit codeword represents a k-bit 
word.) 

We would like to note that we initially studied only the (2k}t/n-womcodes, 
but that we have since seen enough interesting examples of womcodes of the 
more general form to warrant including the more general definition here. 

We now introduce our three "complexity measures": P, I, and C. Let P(t) 
denote the "penalty expansion factor" needed to guarantee t writes of values 
from Z~, for large v, compared to that needed for just a single write, 

P(t) = lira w((v}t)  
o - ~  log(v)  (1) 

We will prove that P(2) = 1.29.., and P(t) ,,~ t/log(t). 
Let I(v), denote the asymptotic "incremental cost" of increasing t by one 

for a (v)t-womcode, 

I(v) = lim w((v}t) 
t-~o~ t (2) 

We shall prove the surprising result that I(v)= 1. 
We define the apparent capacity (in bits) of a (v I ,..., vt}/n-womcode to be 
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log(v I . . -vt);  we denote this a s  C ( ( / . )  1 . . . . .  vt)/n ). Similarly, let C(n) denote 
the apparent capacity (in bits) of an n-wit memory field: 

C(n) = max{log(v I ... vt) I w((v 1 . . . . .  Ul)) 4 n}. (3) 

We shall demonstrate that C(n) = n • log(n) + o(n • log(n)). As an auxiliary 
definition, we let R((v  1 ..... vt) /n) = C((vl  ..... v t) /n)/n denote the rate of the 
womcode. (This is just the capacity per wit of the womeode.) 

III. ELEMENTARY OBSERVATIONS 

LEMMA 2. 

w ( ( v ,  . w ( ( v , ) ' )  + (4) 

Pro@ Concatenate a (va)t-womcode and a (v J -womcode  to make a 
(v 1 • Vz)t / (w((vl)  t) + w ( ( v J ) )  womcode. (Represent each value y in Z~,.~ 
as an ordered pair (y l ,  Y2), with Yl ~ Zv, and Y2 ~ Z~ 2. Use the womcodes to 
record Yl and Y2 separately.) | 

LEMMA 3. (w((v)  t) is subadditive in t.) 

w((vT, +'2) w((v)',) + w((v72). (5) 

Proof. Use side-by-side optimal (v)  t~- and (@t2-womcodes to represent 
the sum (rood v) of the values represented by the two subcodes. To update, 
change one subcode to represent the difference (rood v) of the new value to 
be represented and the value of the other subcode. This guarantees at least 
t~ + t 2 writes. (The alternative approach of writing the new value into one of 
two subcodes would need extra wits to indicate which subcode was written 
last, unless the zero word is unused in one of the subcodes.) | 

The above lemmas (and w(~21)~)= 1) imply that w( (2k ) t )~k  . t. For 
small values of k and t, we can derive w((2k) t) as given in Table 2. 
(Obviously, w((Zk) 1) = k and w((21) ') = t.) 

We do not know the exact values corresponding to the empty positions of 
the table. 

The (23)3/7 (rate 1.28...) and (22)2/3 (rate 1.33...) womcodes indicated by 
the table are special cases of the general "linear" scheme presented in 
Section V. 

The (22)5/7 (rate 1.42...) womcode indicated by the table is an ad hoe 
scheme; we show here how to decode a 7-wit pattern abcdefg. If the pattern 
has weight four or less, the value represented is O1 • c01 @ 10 • c io® 11 • c~l, 
where c01 = 1 iff ab = 10 or (ab = 11 and one of cd or e f i s  01), c10 = 1 iff 
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TABLE 2 

W((2k) ') 

1 2 3 4 5 6 

l 1 2 3 
2 2 3 5 
3 3 5 7 
4 4 6 
5 5 8 
6 6 9 
7 7 

4 5 6 
6 7 

cd= 10 or (cd= 11 and one of ab or efis 01), and c ~ =  1 i f f e f =  I0 or 
(el= 11 and one of  ab or cd is 01). (For  example,  the pat tern 1101100 
represents 10. At  most one of  ab, ed, ef will be l l  if another is 01.) 

Otherwise the interpretat ion is ab @ cd@ ef@gg. The first three writes 
change at most  one wit, while the last two might each change two wits. 

The following notat ion for the size of the tail  of  a binomial  distr ibution 

and a related inverse quanti ty will be useful: 

m 

i=0 

cS(v,m)=min I h ( ( m + h ) ) > ~ v l  " (7) 
h , 

(6) 

Note that  a (v)t/n-womcode must have n/> m + c~(v,m) if every first 
generation codeword must  have at least m zeros. We derive a lower bound 
Z(v, t) to w((v) t) by generalizing this observat ion:  

z(~, o) = o, (8) 

and 

Z(v,t+l)=Z(v,t)+c~(v,Z(v,t))  for t>~O. (9) 

LEMMA 4. 

w((v>')/> z(v, O. (~o) 

Proof (sketch). By induction on t. The case t = 0 is trivial. A @,}t+ ~/n- 
womcode  must  have at least Z(v, t) zeros in every first-generation codeword,  
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and must turn on at least 3(v, Z(v, t)) wits in the worst case on the first write 
to have v codewords in the first generation. | 

COROLLARY. 

w((2k) t ) )  k + t -  1. (11) 

Note that Z(2 ~ , l ) = k  and Z(2 k , t + l ) / > Z ( 2  k , t ) + l  for k > 0 .  The 
following lemma improves this result (by one). 

LEMMA 5. 

w((2k) ' ) > ~ k + t  for k ) 2  and t />3.  (12) 

Proof. Suppose to the contrary that a (2k)t/(k + t -- 1)-womcode existed 
for k/> 2 and t ~> 3. Since Z(2 k, 1 ) =  k, the generation t -  1 codewords must 
each have weight less than t. On the other hand, we show that if t >/3 then 
for every value y ~ Z2k there is a ( t -  1)th generation codeword x with 
a(x)=y  and weight at least t - I .  (For t = 2  the claim fails if the zero- 
weight word is in the first generation.) There must be at least 2 k -  1/> 3 
different values y associated with first-generation codewords of weight 1 or 
more. Thus for every value y @ Z2k there is a ( t -  1)th generation codeword 
x with a(x) = y and weight exactly t - 1. But then no possible interpretation 
for the codeword 1 ~+t-1 is distinct from each of these values (required since 
the last k levels are "tight"). This contradiction proves the lemma. II 

IV. H o w  MANY WITS ARE NEEDED FOR A 

FIXED NUMBER OF GENERATIONS, 9 

IV.A. How Many Wits Are Needed for Two Generations? 

THEOREM 1. 

w((v) 2) ~ 1.293815... log(v). (13) 

Proof. For any v, choose h to be 3(v, log(v)) and then choose n to satisfy 

n - h = flog(v) + log log(v) + 1 - log log(e)l. (14) 

We will prove that w((v) 2) ~ n. Choose the first generation representations 
arbitrarily as distinct codewords with weight at most h, and randomly assign 
to the remaining 2 n - v  codewords interpretations from Z v. There are 

(v) " - v  (15) 
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ways to do this. How many ways do not guarantee two writes? Such a bad 
assignment must contain a first-generation codeword x and a value y ~ Zv - 
{a(x)} such that no codeword z >~ x represents y. If  we select x in one of  v 
ways, select y in one of the remaining v - 1 ways, assign all codewords z ) x 
values different than y and assign all other codewords arbitrary values, we 
will have counted every bad code at least once examined no more than 

v 2 . ( v -  1)  2" ~ .  ( v )  2 " - v - 2 ° - "  (16) 

codes. Whenever (16) is less than (15) some "good"  codes must exist. This 
happens when 

( v ) s n  J, (17) 

vs~< v --:-sT 

which will happen if 

2 log(v) K 2" e 1ogl,~) . log(e) (18) 

which is implied by 

n = h + [log(v) + log log (v) + 1 - log log(e)l. (19) 

Thus (19) implies the existence of  a (v)t/n-womcode. Since n ~> h + log(v) 
(from Lemma 4), we conclude that for an optimal @)2/n-womcode 

n = h + log(v) + o(log(v)). (20) 

Now the logarithm of the number of  words of  length n with at most h ones 
is 

n .  H(h/n) + o(n) for h ~ n/2. (21) 

(See Peterson and Weldon, 1972, Appendix A or MacWilliams and Sloane, 
1977, Chap. 10, Sect. 11.) Since there are v values in the first generation, 

n . H(h/n) ÷ o(n) = log(v) (22) 

or (since log(v) = n -- h + o(log(v)) and n ~ 2 • log(v)) 

(n -- h) 
H(h/n) - + o(1). (23) 

?/ 

The equation H ( p ) =  1 - - p  has a solution at p = 0 . 2 2 7 0 9 2 1 9  .... so for an 
optimal womcode h/n ~ 0.227 .... or log(v) ~ n • (1 - 0.227...) or 

n ~ 1.29381537. . . . log(v)  (24) 

which was to the proved. | 
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TABLE 3 

A ((26>2/7)-Womcode 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3  
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1  

O A H G G F Y L  w E Z  Y r  X f  p n D W V z  U d j  o T w k e  l t d u  
1 C S R  c Q i o z P p  i h u e x y O z  s j s n i w v e q g f k b m  

2 B N M z L b g m K u  t b n g f w J w r  h k v x y m j p s o q e i  
3 l k m  q l e k u w t e o s d j v u b d f g e t p y x n l h r z a 

The random womcodes of  the theorem will have an asymptotic rate of  
2/1.29 . . . .  1.5458 .... much better than the rate 1.33... womcode of  Lemma 1. 
However, we could not construct by hand a (2k)Z-womcode of  rate higher 
than 1.33 .... Lemma 4 implies that such a scheme must have k = 7, n = 10 or 
k ~> 9. Using a computer we found a slightly more efficient method with rate 
1 . 3 4  .... 

The new scheme is a (26)2/7-womcode (rate = 1.3429...). So a seven-track 
paper tape is "reusable" for writing just letterst Row i, column j of  Table 3 
gives the value (a letter) of  the 7-bit string with binary value i • 32 + j .  The 
first-generation is in upper case. Thus a "T"  (0011000) is made into an "h"  
by changing bits 1, 2, and 5 (to obtain 1111100). We were unable to find a 
(27)2/7-womcode or to prove one does not exist, although we can prove that 
a (29)2/7 womcode does not exist. 

IV.II. W h a t  is P ( t ) ?  

By reasoning similar to that of  the proof  of  Theorem 1, we derived the 
following estimates for P ( t ) .  Note how closely the estimates are to t / l o g ( t ) .  

TABLE 4 

P(t)(est.) vs. t/log(t) 

t P(t)  (est.) t/Iog(t) 

1 1 . 0 0 0  - -  

2 1.294 2.000 
3 1.549 1.893 
4 1.783 2.000 
5 2.003 2.153 

10 2.983 3.010 
20 4.668 4.628 
50 8.960 8.859 

100 15.191 15.051 
200 26.346 26.164 
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To demonstrate our main result that P ( t ) ~  t/log(t), we define an upper 
bound to w((v) t) which is asymptotically equal to our lower bound Z(v, t) of 
Lemma 4, to within a small additive term. 

THEOREM 2. For f ixed  t and v sufficiently large, a sufficient condition 
for the existence o f  a (v)~/n-womcode is the existence o f  t numbers l~, 
1 <. i <~ t, such that 

(a) t .  log(v) >~ n >~ [1>/[2 >/"" ) It >/O, 

(b) ( , , ) ; / v ,  

(c) (btj,) > /v .  (t + I ) .  log(v),for 1 <~ i < t. 

Proof. We prove the existence of a @ ) i n  womcode in which all ith 
generation codewords contain exactly I i zeros• Condition (b) implies that 
there are enough codewords with l~ zeros for the v values of the first 
generation. We now show (by a counting argument) that for all i, 1 ~< i < t it 
is possible to assign interpretations to the codewords with I;+~ zeros for the 
(i + l)th generation in such a way that for everyj,  0 ~<j < v, every codeword 
with li zeros is below some codeword with l;+ 1 zeros that has been assigned 
interpretation j. 

n The total number of ways in which the (6t ,)  codewords with li+ J zeros 
can assigned values is 

v(,,~). (25) 

We can overcount the number of "bad" ways of assigning interpretations to 
the codewords with li+ 1 zeros (assuming we have already assigned inter- 
pretations to the earlier generations), in the following way. Choose a 
codeword x with I i zeros, choose a "missing value" y C Z~, assign the (rfl,) 
codewords with I;+~ zeros above x with the v -  1 remaining values (other 
than y), and assign the other codewords with Ii+l zeros arbitrary inter- 
pretations. The number of "bad" ways is thus at most 

1"l) I i n [i 
,,.+,) V(l,, (26) l ,  • v .  ( v -  1 ) (  • ,)-(,,~,). 

A "good" way must exist whenever (26) is less than (25). By simplifying this 
inequality, we get 

n t,,t t !t • v .  - - -  < 1 .  ( 2 7 )  
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Since n ~<t. log(v) (otherwise the existence of the desired womcode is 
trivial), (~) ~ v t, and thus it is enough to prove 

• - < i .  ( 2 8 )  

By condition (c), (~ l~ ) )  v • log(v). (t + 1), and thus it suffices to prove that 

( + )  ~.,o~v,. ,+, 
v t+l .  1 -  <1.  (29) 

But for large enough v, (1 - ( l / v ) )  ~ approaches I/e, and thus the left-hand 
side is approximated by 

vt+ 1 . e-LO~V~.~t+ 1~, (30) 

which approaches zero as v goes to infinity• | 

To find the smallest (or nearly smallest) n for which the existence of a 
(v}t-womcode is guaranteed by the theorem, the numbers I i should be chosen 
in reverse order (from I t to I 0. The last two numbers can be chosen as 

log(v) 
I t = ~ + e log log(v), (31) 

where c is any constant greater than 1, and 

since 

It- 1 = log(v) + 2e log log(v), (32) 

I, \ l, > 21, - log(v) + 2c log log(v) • (33) 

Since e > 1 and t is fixed, this becomes larger than v • log(v) • (t + 1) for v 
sufficiently large. The other I;'s can" be chosen as the smallest numbers 
satisfying condition (c) of the theorem. Finally, n can be chosen as the 
smallest number satisfying (l~) >/v. 

We now proceed to analyze the performance of the womcodes described 
above, in order to show that their performance is asymptotically equal to 
that of the lower bound we proved in Lemma 4. Then we prove our main 
theorem (Theorem 4) that P ( t )  ~ t / l og ( t ) .  

We first introduce some necessary notation. Let 

h l vl • 
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(Note the similarity to the definition of in (7).) Then we define 

and 

log(v) 
- -  + e log log(v), (35) Y.(v, 0 ) -  2 

Y,(v,  1) = log(v) + 2e log log(v), (36) 

Y ~ ( v , t + l ) = Y ~ ( v , t ) + 3 ' ( v . u . l o g ( v ) , Y ~ ( v , t ) )  for t / > l .  (37) 

For  convenience in Theorem 3, we define Y(v, t) to be Yiog,,~(v, t); note that 
for large v, Y(v, t ) ) Y t + l ( v ,  t). From this definition it follows that for v 
sufficiently large, 

w((v)')  <.< v(v, t), (38) 

since l i = Yt+ 1( v, t -  i) for 1 ~ i ~ t and n < Yt+ ~(v, t) in the construction of 
last theorem. 

THEOREM 3. For t >/ 1, 

lira Y(v, t) 1. (39) 
~ , ~  z ( v ,  t) 

Proof  By induction on t. The case t = 1 is trivial. By comparing the 
forms of the definitions of Y and Z, we see that it iis enough to prove 

lira ~ ' ( v .  (log(v)) 2. m' )  _ 1, (40) 
~-~o~ 5(v, m) 

where m = Z(v,  t - 1) and m' = Y(v, t - 1). We observe that 

~(v, m) ~< c~'(v, m) ~< ~(v, m) + 1 (41) 

if m >~ log(v) (since that implies that 5(v, m ) ~  (rn/2)). (Note that in (40) 
both m and m' are >~log(v).) Thus we can replace 6' by 5 in (40). 
Furthermore,  5(v, m) is a decreasing function of m, so that we can also 
replace m' by the smaller value m in (40). In a similar vein, it is simple to 
show that m >/log(v) implies that 

~(v • (log(v)) 2, m) ~< 3(v, m) + 2log log(v), (42) 

and a little more complicated to show that l o g ( v ) ~  m ~ y .  log(v) implies 
that 

5(v, m) >~ log(v) .  (2y.  H-'(1/27) ). (43) 

Combining these observations leads to the desired result. | 
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THEOREM 4. 

P r o o f  

RIVEST AND SHAMIR 

P(t )  ~ t / log(t) .  

Let n t = Z(v,  t). Then we must have 

V ~ nt - -  n t -1  

so we derive 

H(n ,_  , /nt)  ~ log(v ) /n , .  

We consider H ( p )  near p = 0 using the fact that H ( p )  = H(1 - p ) ,  

1 - n,_ ,In t ~ H - ' ( l o g ( v ) / n t ) .  

Near p = 0, H ( p )  m p .  log( l /p) ,  so H - l ( y )  ~ - y / l o g ( y ) :  

n t , - log(v) /n ,  

nt log( log(v) /n t )  

n t - nt_ 1 ~ - l o g ( v ) / l o g ( l o g ( v ) / n t ) ,  

dn t ~ - log(v) 

dt ~ log( log(v ) /n , ) '  

at ~ log(n , / log(v) )  . dn l 

log(v) 

I"/t t 
log(v) ~ P(t )  ~ log(t-----)-" II 

(44) 

(45) 

(46) 

47) 

(48) 

(49) 

(50) 

(51) 

(52) 

As a consequence of Theorem 4, for fixed t and large v, an optimal (v)  t 
womcode  will have a rate approximately equal to log(t), with the approx- 
imation improving as t increases. 

V. WHAT IS 1(l)) 9. 

In this section we demonstrate  that I ( v ) =  1 for any v, using a " tabular"  
womcode.  We also present a " l inear"  womcode tha t - -whi le  it only shows 
that  I(v)~< 4, generalizes nicely our (22)z/3-womcode.  
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V.A. The Tabular ( v ) t / n -Womeode  

We assume here that  t > v. Let u denote an integer parameter  to be chosen 
later (imagine that  u is about log(n)), Our (v)1/n-womcode will have its 
n = r . s  wits considered as r=- (u + l ) ( v - - 1 )  rows of  s = l o g ( v ) +  
t / (u • ( v -  I))  columns. Each row is divided into a log(v)-wit "header"  field 
and an ( s - l o g ( v ) ) - w i t  "count"  field. The log(v)-bit value represented by 
such a table is the sum (rood v)) of  the header field of all rows multiplied by 
the number  of  " l ' s "  in their count fields. 

To  write a value x when the table currently represents y, it suffices to 
change a single "0"  to a "1"  in a row with header x - - y  (rood v). If  every 
row with this header has all ones in its count field, we find a new row which 
currently is all zeros in both its header and count fields, change the header to 
the desired value, and change one bit of the count field. We can always find 
a new row up until u(v - 1) rows are completely "full," since there are only 
v - 1  useful header values. (The all-zero value is useless.) Thus we are 
guaranteed at least u(v - 1) • (s - log(v)) = t writes. 

Since 

n = t +  t / u +  log(v)(u + l ) ( v -  1), 

by choosing u = [log(t)] implies that n = t + o(t). 

This code has rate approximately log(v) < log(n). With optimally chosen 
parameters ,  this code has a rate nearly log(n), about twice as good as any 
other code presented in this paper. 

V.B. The "Linear"  Womeode 

This scheme has parameters  v , t =  v/4,  and n =  v - 1 .  The ith wit is 
associated with the number  i, for 1 ~ i < v. The value represented by any 
pattern is the sum (rood v) of  the numbers associated with wits in the '-'1" 
state. (An alternative definition, useful when v = 2 k, interprets the pattern as 
the X O R  of the k-bit representations of  the numbers associated with wits in 
the "1"  state. For  example, in our (22)2/3-womcode the pattern abc can be 
decoded a s 0 1 . a Q 1 0 . b O  l l . e . )  

We now show t h a t - - a s  long as there are more than v /2  z e r o s - - w e  can 
change the worn to represent a new value by changing at most  two wits. Let 
z denote the difference (modulo v) of  the new value desired, y, and the 
current value represented, x. I f  the bit associated with z is now "0"  we can 
simply change it to a "1."  Otherwise let S denote the set of  numbers  
associated with wits which are currently zero, and let T denote the set 
t z - - x ( m o d v )  l x ~ S } . S i n e e l S l = l T l > v / 2 a n d [ S L ) T  I < v - 1  (zero is in 
neither set), IS¢3 T I must  be >~3. Their overlap indicates a solution to the 
equation z = x ,  + x 2 (rood v) where xl and x 2 are distinct elements of S. 

643/55/1-3 2 



16 RIVEST AND SHAMIR 

The code described above thus has rate roughly log(v)/4 ~ log(n)/4. The 
linear womcode described above may have to stop when there are as many 
as (v/2) zeros left (which can happen after as few as (v/4) writes). The 
following trick allows one to keep going a while longer. Divide the n-wit field 
into n/3 blocks of size 3. By writing additional " l ' s "  if necessary, force each 
block to have either one "1" or three " l ' s "  exactly. Those "bad" blocks 
having no zeros remaining are now considered as deleted, while each of the 
remaining "good" blocks can be used to store one bit (by changing one of its 
wits-- the other one is left untouched to indicate that the block is a good 
block and not a deleted block). With at least ( n -  1)/2 zeros remaining we 
are guaranteed of getting at least n i l 2  - I "good" blocks. The recurrence: 
t ( n ) = n / 4  + t(n/12) has the solution t ( n ) =  3 n / l l  + O(1), indicating that 
this trick can increase the number of writes we can achieve by a factor of 
12/11 (from n/4 to 3n / l l  writes). At the moment this coding trick is also 
the best general scheme we know of for making use of a "dirty" WOM that 
may have been written before in an arbitrary manner (i.e., without any 
thought of using some sort of "womcoding" for better utilization). 

VI. WHAT IS C(n) 9. 

The schemes presented in the last section can be used to show that 
C(n) = n . log(n) + o(n . log(n)). 

THEOREM 5. 

C(n) >1 n log(n) + o(n log(n)) 

Proof  For a given large memory size n, we can use the "tabular" 
scheme of secion V.A and choose parameters: l o g ( v ) = [ l o g ( n ) -  
2 log log(n)] with r = [log log(n)J • (v - 1) rows of length s = [n/rJ. (We will 
"waste" n -  rs wits.) As before, the total number of writes possible is 
n - o ( n ) ,  proving the theorem. I 

It is also possible to show that this result is "best possible": 

THEOREM 6. 

C(n) <~ n . log(n). 

Proof  (Intuitively, changing one wit out of n should provide at most 
log(n) bits of information.) Consider any (v I ..... vt)/n-womcode. The n-wit 
field can undergo at most (t + 1)" < n" "histories" as it progresses from its 
first state (all "O's") to its final state (perhaps all " l ' s " ) ,  since we can 
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describe the history by specifying for each of the n wits that it either always 
remains "0" or that it is turned to a "1" during one of the t write operations. 
On the other hand, the womcode has at least Vl ... v t different acceptable 
sequences of length t to handle, each of which must have its own history. 
The theorem follows. | 

VI. OTHER WOMCODES 

Several of our colleagues have become intrigued by the problem of 
designing highrate womcodes, and have graciously consented to our 
sketching or referencing their preliminary results here. 

(i) Professor David Klarner (Department of Mathematics, SUNY 
Binghampton), has created an elegant (5)3/5 (rate 1.39...) cyclic womcode, 
which works as follows. The first value is represented by 10000 in the first 
generation, either 01001 or 00110 in the second generation, and one of 
01111, 10110, or 11001 in the third generation. The other four values are 
handled similarly, using cyclic rotations of the words given for the first 
value. (Since n is prime all the cyclic rotations are distinct.) 

(ii) David Leavitt (an undergraduate working with Professor Spyros 
Magliveras, Department of Mathematics, University of Nebraska at 
Lincoln), has found an even more efficient (7)4/7 (rate 1.60...) cyclic 
womcode by extending Klarner's technique. (To appear.) 

(iii) James B. Saxe (a graduate student at CMU) has created the 
following beautiful (n/2, hi2-1, . . . ,  1)In womcode (rate asymptotically 
(log(n)/2)), where the two halves of each codeword are the same except that 
the left half has an extra "1" bit. The value represented is the number of 
zeros in the left half to the left of the extra bit. Each update (except the first), 
changes exactly two wits---one in each half. 

(iv) Saxe also suggested the following marvelous recursive womcode, 
which uses n = 2 k wits, and changes exactly one wit per write. Using f (n)  to 
denote the capacity of Saxe's code, we shall see that f (2  k) --- k • 2 k- ~, using 
the base case f(1)---0,  giving a rate of log(n)/2. Partition the n wits into n/2 
pairs. With the first n/2 writes we turn on at most one bit in each pair, and 
obtain capacity f (n /2 )+ (n/2) by using the code recursively on the n/2 
pairs, and getting an extra bit/write using the parity of the number of pairs 
whose left bit is on. For the second n/2 writes we obtain capacity f(n/2) 
recursively on the pairs by turning on their second bits as needed. The 
recurrencef(n) = (n/2) + 2f(n/2) gives the desired result. 

(v) Saxe has also created a (65, 81, 63)/12 (rage 1.52...) womcode 
that can be improved to a (65, 81, 64)/12 (rate 1.53...) womcode if the 
"generation number" is externally available when decoding. 
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VII. DISCUSSION AND CONCLUSIONS 

The results presented in this paper provide much information about the 
nature o f  the function w((v)t). On the basis of the evidence so far, we 
conjecture that 

w((v) t) ,,~ max (t, log(v).l_og(t) t ) 

for large v and t. We expect that this result should follow in a more-or-less 
straightforward manner from the results and techniques given here, but we 
have not as yet worked through a detailed demonstration. (Exercise for the 
reader: prove that w((Zk) k) = 6J(kZ/log(k)).) 

The relationship between womcodes and error-correcting codes are 
interesting: we can view a womcode as a situation where the channel is 
assymmetric (only 0 ~  I errors occur), and where the transmitter knows 
where the errors will occur before he has to choose a codeword. Of course, 
there are still many differences, since the objective of womcoding is to allow 
many "messages" to be sent and the codeword for one message determines 
what the "errors" are for the next message. 

A more closely related problem may be that of devising codes for random- 
access memories that have "stuck bits." Heegard (1981) has some recent 
work in this area. Again, however, the problem seems intrinsically different. 

Some interesting work has been done on Turing machines that have 
"nonerasing" work tapes (e.g., see Minsky, 1967), which is peripherally 
related to the research reported here. 

We note that our formulation of the problem requires that the decoding 
scheme for an (v)t/n-womcode provide a unique interpretation for each 
possible pattern of the n wits, independent of how many generations have 
been written. In some cases the current "generation number" might also be 
available as input to the decoding scheme at no extra cost (in wits). While 
this variation might permit some minor performance improvements in some 
instances, it remains an open question as to how much this additional infor- 
mation might help. 

A number of questions need further investigation: 

(i) What if there is some restriction on the kinds of updates that 
may occur? (For example, what if y can replace x only if y is numerically 
greater than x?) 

(ii) What advantages are there to representing a different number of 
values at each generation? 

(iii) What is the complexity of the decoding and updating algorithms 
for the best codes? 



WRITE-ONCE MEMORY 19 

(iv) How can these coding schemes be adapted to handle the 
possibi l i ty  of  errors occurr ing on the worn? 

(v) If  the underlying s torage medium is viewed as storing a 
modula ted  digital  signal rather than a sequence of bits, what  kind of  
"womcod ing"  should be used to al low updat ing yet to maximize  bandwidth  
while minimizing modula t ion  frequency? (See Brown, 1981; Hecht  and 
Guida ,  1969,) 

(vi) Wha t  can be said about  the average-case behavior  of 
womcodes?  

(vii) W h a t  if the storage elements had more than two possible states, 
and had a compl ica ted  dag that  desribed the set of legal state t ransi t ion? 

(viii) Wha t  truly pract ical  womcodes  exist? 
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