Learning Complicated Concepts Reliably and Usefully
(Extended Abstract)

Ronald L. Rivest* and Robert Sloan†
MIT Lab. for Computer Science
Cambridge, Mass. 02139 USA

Abstract
We show how to learn from examples (Valiant style) any concept representable as a boolean function or circuit, with the help of a teacher who breaks the concept into subconcepts and teaches one subconcept per lesson. Each subconcept corresponds to a gate in the boolean circuit. The learner learns each subconcept from examples which have been randomly drawn according to an arbitrary probability distribution, and labeled as positive or negative instances of the subconcept by the teacher. The learning procedure runs in time polynomial in the size of the circuit. The learner outputs not the unknown boolean circuit, but rather a program which, for any input, either produces the same answer as the unknown boolean circuit, or else says "I don't know." Thus the output of this learning procedure is reliable. Furthermore, with high probability the output program is nearly always useful in that it says "I don't know" very rarely. A key technique is to maintain a hierarchy of explicit "version spaces." Our main contribution is thus a learning procedure whose output is reliable and nearly always useful; this has not been previously accomplished within Valiant's model of learnability.

1 Introduction
The field of inductive inference has been greatly broadened by Valiant's seminal paper [Valiant, 1984] on "probably approximately correct" identification. He gave an excellent definition of what it means to learn—a concept (for instance, a boolean function) from examples. Moreover, in that paper, and in a number of subsequent papers, (eg.: [Haussler, 1986; Kearns et al., 1987a; Pitt and Valiant, 1986]) algorithms were given showing how to efficiently learn various different concept classes.

Thus the good news is that we now have one crisp definition of concept learning, and a number of algorithms for efficiently learning various classes of concepts. The bad news is that Valiant presents strong evidence [Valiant, 1984] that learning arbitrary polynomial size circuits is computationally intractable, and Pitt and Valiant [Pitt and Valiant, 1986] show that learning certain particular interesting classes of boolean functions, for instance, boolean threshold formulae, is NP complete.

In this paper we will examine one path around this obstacle—a way that a suitably helpful teacher can teach any polynomial size boolean function.

1.1 Hierarchical learning
The way we will escape the infeasibility of learning arbitrary concepts is by first learning relevant subconcepts of the target concept, and then learning the target concept itself.

Learning by first learning relevant subconcepts has been a useful technique elsewhere in the field of learning:

- Cognitive psychologists believe that one way humans learn is by first organizing simple knowledge into "chunks," and then using these chunks as subconcepts in later learning [Miller, 1956].
- In the artificial intelligence community, the builders of the Soar computer learning system have built a system that saves useful "chunks" of knowledge acquired in the current learning task for use as subconcepts in future learning tasks [Laird et al., 1984; Laird et al., 1986]. Also, the Sierra system learns how to do arithmetic in a manner broadly similar to what we will suggest; it learns "one subprocedure per lesson." [Van-Lehn, 1987]
- Within the framework of theoretical inductive inference, Angluin et. al. [Angluin et al., 1987] recently showed how to learn certain otherwise unlearnable recursive functions by first learning relevant subconcepts.

1.2 Review of Valiant Model
Before we can discuss our results, we first give a brief review of Valiant's learnability model. For a more lengthy discussion of the model and recent results obtained using it, we refer the reader to the excellent survey article [Kearns et al., 1987b].

We will say that an algorithm learns from examples if it can, in a feasible (polynomial) amount of time, find (with high probability), a rule that is highly accurate. Now we must define what we mean by such terms as "find a rule," "with high probability," and "highly accurate."
In order to precisely define learnability, we must first specify what it is we are trying to learn. For the purposes of this paper, imagine a universe \(U \) of objects each having \(n \) attributes. In this paper we assume the attributes are binary, although this assumption is not crucial to the learnability model. For instance, \(U \) might be the inhabitants of the U. S., and the attributes might include Sex, Age<19, Income<1900, and IsInCollege. Formally, \(U = \{0, 1\}^n \).

A concept, \(c \), is a rule that splits \(U \) into positive instances and negative instances. Given that we have \(U = \{0, 1\}^n \), possible representations for concepts would include truth tables, boolean formulas, and boolean circuits. (See [Hausser, 1987].) We say that the number of bits required to write down \(c \) in whatever representation we have chosen. A concept class is a set of all concepts defined on \(U \).

If \(U \) is the inhabitants of the U. S., concepts would include both the rather simple concept left-handed adult males, defined by the obvious conjunction, and the doubtless more complicated concept, people required to pay at least five hundred dollars in federal income tax. An example of a concept class would be tax brackets which would include the concepts people paying no income tax and people required to pay at least five hundred dollars in federal income tax.

We assume that our algorithm trying to learn concept \(c \) has available to it a black box called EXAMPLES, and that each call to the black box returns a labeled example, \((x, s)\), where \(x \in U \) is an instance, and \(s \) is either + or - according to whether \(x \) is a positive or negative instance of the target concept \(c \). Furthermore, the EXAMPLES box generates the instances \(x \) according to some probability distribution \(D \) on \(U \). We make no assumptions whatsoever about the nature of \(D \), and our learner will not be told what \(D \) is.

DEFINITION. Let \(C \) be a class of concepts. We say algorithm \(A \) probably approximately correctly learns (pac learns) \(C \) if and only if there is a polynomial \(P \) such that
\[
(Vn)(\forall c \in C)(\forall D)(\forall \epsilon > 0)(\forall \delta > 0), A, \text{ given only } n, \epsilon, \delta \text{ and access to EXAMPLES}(c), \text{ halts in time } P(n, |c|, \frac{1}{\epsilon}, \frac{1}{\delta}), \text{ and outputs some representation of a concept, } c', \text{ that with probability at least } 1 - \delta \text{ has the property}
\[
\sum_{c' \neq c} D(x) < \epsilon.
\]

We will say that a concept class \(C \) is pac learnable if there exists some algorithm that pac learns \(C \).

Discussion of the Definition

Intuitively, we are saying that the learner is supposed to do the following:

1. Ask nature for a random set of examples of the target concept.
2. Run in polynomial time.
3. Output a formula that with high probability agrees with the target concept on most of the instances.

We think of Nature as providing examples to the learner according to the (unknown) probability that the examples occur in Nature. Though the learner does not know this probability distribution, he does know that his formula needs to closely approximate the target concept only for this probability distribution.

Intuitively, there may be some extremely bizarre but low probability examples that occur in Nature, and it would be unreasonable to demand the learner's output formula classify them correctly. Hence we require only approximate correctness. Moreover, with some very low but nonzero probability, the examples the learner received from Nature might all have been really bizarre. Therefore we cannot require the learner to always output an approximately correct formula; we only require that the learner do so with high probability.

Further discussion of the motivation for this model may be found in [Blumer et al., 1986] and, of course, [Valiant, 1984] which introduced this model.

1.3 A new variation on the Valiant model

We introduce here a new definition of learning which is very similar to but more stringent than pac learning. In pac learning, the learner must give as output a concept in whatever representation is being worked with—say circuits. Our learner is instead supposed to give a (polynomial time) program taking instances as input, and having three possible outputs: "Yes," "No," and "I don't know."

DEFINITION. We call learning algorithm \(A \) reliably if the program output by \(A \) says "Yes" only on positive instances, and says "No" only on negative instances of the target concept.

Of course, given that definition of reliable, it is very easy to design a reliable learning algorithm: Have the learning algorithm look at no examples, and output the program which just gives the useless answer "I don't know" on all instances. Thus we are led to the following definition, analogous to pac learning:

DEFINITION. Let \(C \) be a class of concepts. We say algorithm \(A \) reliably probably almost always usefully learns \(C \) if and only if there is a polynomial \(P \) such that
\[
(Vn)(\forall c \in C)(\forall D)(\forall \epsilon > 0)(\forall \delta > 0), A, \text{ given only } n, \epsilon, \delta \text{ and access to EXAMPLES}(c), \text{ halts in time } P(n, |c|, \frac{1}{\epsilon}, \frac{1}{\delta}), \text{ and outputs a program } Q \text{ such that}
\]

1. \((\forall x)Q(x) = \text{Yes} \Rightarrow c(x) = 1, \text{ and } Q(x) = \text{No} \Rightarrow c(x) = 0. (A \text{ is reliable.})
2. With probability at least \(1 - \delta\),
\[
\sum D(x) < \epsilon.
\]

\((A \text{ is probably almost always useful.})

The above definition is similar to the definition of pac learning, in that both definitions require the learner to find some concept that probably agrees with the target concept most of the time. Our new definition is stronger than pac learning in that we require, in addition, that the output of learner must never misclassify an instance. It must somehow "know enough" to say "I don't know," rather than to misclassify.

In this paper we will present an algorithm that reliably probably almost always usefully learns.
2 How to learn: sketch

The original definition of pac learning has many desirable features. Not least among them is that efficient algorithms for pac learning a number of interesting concept classes are now known. Of course, we do not always know a priori that the concept we want to learn is going to be in 3CNF or 7DNF or what have you. We would like to have an algorithm that can pac learn regardless of what class the target concept is drawn from. More precisely, we would like to have an algorithm that could pac learn the class of all functions that can be represented by a polynomial size boolean formula (or, similarly, a polynomial size boolean circuit).

Unfortunately, this goal is unlikely to be attainable. As is explained in [Valiant, 1984], assuming that one way functions exist (an assumption which we feel is likely to be correct), the class of polynomial size boolean formula is not pac learnable.

Thus we are driven to look for some way of learning arbitrary boolean formulas. Our solution is to learn in a hierarchical manner. First we will pac learn some important subconcepts of the target concept, and then we will pac learn the final concept as a function of these subconcepts.

To be more precise, our method is as follows: We learn our first subconcept knowing that it must be some simple boolean function of the instance attributes. We learn each following subconcept knowing that it must be some simple boolean function of the instance attributes and previously learned subconcepts. Ultimately we learn the original target concept as some simple boolean function of the instance attributes and all of the previously learned subconcepts.

Consider, for instance, the concept of one's dependents, as defined by the IRS.1

\[\text{dependent} = (\frac{1}{2}\text{SupportFromMe}) \land \neg\text{FiledJointReturn} \land [(\text{Income} \land 1900) \land (\text{MyChild} \lor \text{MyParent}) \lor (\text{MyChild} \land \text{Age} < 19 \lor \text{IsInCollege})] \]

One can readily imagine such a complicated definition being too hard to learn from examples. On the other hand, if we first teach some simple subconcepts, such as "MyChild \lor MyParent," and "Age<19 \lor IsInCollege," and next teach some harder subconcepts as functions of those, and then finally the dependent concept as a function of all previously learned subconcepts, then the learning task becomes easier.

Moreover, because we break the target concept into very simple subconcepts, we can develop a learning protocol that has one very nice feature absent from ordinary pac learning—our learner knows when it is confused. (Formally, we will achieve reliable, probably almost always useful learning.) Continuing with the above example, we probably do not need to force our learner/taxpayer to learn the concept dependent perfectly. It is acceptable if the learner is unable to correctly classify certain unusual, very low probability instances such as, say, the case of "your underage great-great-granddaughter when all intervening generations are deceased." The probability of such an instance occurring is extremely low. Nevertheless, it would be desirable, if one ever did encounter such an "ever so great" grandchild, to be able to say, "I don't know if she is an instance of a dependent," rather than to misclassify her.

Our learner can, if desired, do precisely that—output a short fast program taking instances as its input and having the three outputs, "Yes" (dependent), "No" (not a dependent), and "I don't know." This program is guaranteed to be correct whenever it gives a "Yes" or "No" classification, and moreover, with probability 1 - \(\delta\) it says "I don't know" about at most a fraction \(\epsilon\) of all people. In short, it meets our definition of reliable, probably almost always useful learning.

2.1 Notation

Before showing how to break our target concept, \(t\), into pieces, we must first specify the problem more precisely. For convenience' sake only, we will assume \(t\) is represented as a straight-line program: Let the inputs to \(t\) be \(x_1, \ldots, x_n\), and call the output \(y_t\) (\(l\) being the number of lines.) The \(i\)-th line of the program for \(t\), for \(1 \leq i \leq l\) is of the form:

\[y_i = z_i \circ z_{i+1} \]

where \(\circ\) is one of the two boolean operators \(\lor\) and \(\land\), and every \(z_{i+1}\) is either a literal, or else \(y_j\) or \(y_k\) for some previously computed \(y_j\) (i.e., \(j < i\)).\(^2\) We say \(l\) is the size of such a straight line program. In Figure 1 we show a straight line program for the dependent concept defined in equation 1 above.

2.2 An easy but trivial way to learn

As a first attempt to develop a protocol for learning our arbitrary \(t\) piece by piece, we might try the following: Have the teacher supply not only examples, but also the pieces—the \(y_i\). In particular, let the \(y_i\) be rearranged in some arbitrary order, \(y_j, \ldots, y_i\). Now, each time the learner requests an example, he gets more than just a labeled example drawn according \(D\). The learner receives \(x_1, \ldots, x_n\#y_1, \ldots, y_i\) (and its label). Given all this help,

\(^1\)What follows is, in fact, a great oversimplification of the IRS definition.

\(^2\)Note that straight line programs are equivalent to circuits, with lines being equivalent to the gates of the circuit, topologically sorted.
it turns out to be easy to learn. It is not hard for the learning algorithm to determine which of the other variables a given variable depends on.

This solution is not very satisfying, however, since it requires that the learner receive a large amount of “extra help” with each and every example. In essence, it would mean that every time our learner was given an example while learning dependent, he would have to be told whether it was a child in college, whether it was a relative, and so on. Our approach will be to first teach the learner about \(y_1 \) for a while, assume the learner has learned \(y_1 \), then move on to \(y_2 \), never to return to \(y_1 \), and so on.

2.3 High level view of our solution

The learning proceeds as follows: As in regular PAC learning, there will be one fixed probability distribution, \(D \), on examples throughout; the teacher is not allowed to help the student by altering it.

There will be \(l \) rounds. The teacher will move from round \(i \) to round \(i + 1 \) when the learner tells him to do so. In round \(i \), the learner is going to learn \(y_i \).

When our learner requests an example during round \(i \), the teacher will give the learner a pair, \((x_1, \ldots, x_n, s)\), where \(x_1, \ldots, x_n \) is drawn according to \(D \), and \(s \) tells whether \(x_1, \ldots, x_n \) is a positive or negative instance of \(y_i \). In other words, in round \(i \), \(s \) gives the truth value of \(y_i(x_1, \ldots, x_n) \) (rather than the truth value of \(t(x_1, \ldots, x_n) \)).

During each round \(i \), the learner tries to \(c' = c/p_1(n) \), \(\delta' = \delta/p_2(n) \) learn the concept \(y_i \) where \(p_1 \) and \(p_2 \) are polynomials to be determined. This learning task at first glance appears to be extremely simple, because \(y_i \) must be a simple conjunction or disjunction of \(x_1, \ldots, x_n \) and \(y_1, \ldots, y_{i-1} \) (and perhaps their negations). The catch is that while the learner gets the true values for \(x_1, \ldots, x_n \) he only gets his computed values for \(y_1, \ldots, y_{i-1} \), and these computed values are at best probably approximately correct.

For instance, it might be that the true formula for \(y_i \) is \(y_1 \land y_2 \). However, the values of \(y_1 \) and \(y_2 \) are not inputs to the learning algorithm. The only knowledge the learner has about \(y_1 \) and \(y_2 \) are the formulas, \(y_1, y_2 \) that he has pac learned. It may well be that the learner calls EXAMPLES and gets back a particular \(x_1, \ldots, x_n \) and the information that \(y_i(x_1, \ldots, x_n) \) is true, and indeed, \(y_1(x_1, \ldots, x_n) \) is true, but both \(y_1(x_1, \ldots, x_n) \) and \(y_2(x_1, \ldots, x_n) \) evaluate to false.

Our job will be to show how to do this learning in such a manner that at the end, when we have a representation for \(y_i \) in terms of all the \(x_i \) and \(y_j \) and we substitute the \(x_i \) back in for the \(y_j \), the final expression, \(y_i(x_1, \ldots, x_n) \) \(\epsilon \)-approximates the target concept with probability \(1 - \delta \).

In fact, as we said above, we will do something stronger. Our learner will not merely pac learn, but will reliably, probably almost always usefully learn.

A key technique

The technique we use to achieve this goal is having the learner learn and maintain a list of all possible candidates for a given \(y_i \). For each subconcept \(y_i \), we explicitly maintain the “most specific” list of the version space representation [Mitchell, 1977].

The reason we can maintain this list is that the set of all the possible candidates for any particular \(y_i \) is of polynomial length: Recall that the target function \(t \) is specified by a straight line program. Let \(K \) be the total number of possible distinct lines, \(z_{1,0} z_{1,2} \).

\[
K = \frac{8(n + 1)}{2^l}
\]

The important thing to notice is that \(K \) is polynomial in \(n \) and \(l \), the size of the (representation of) the target concept. \(K \) takes on the particular value it does because each \(y_i \) is in the class \(1CNF \cup DNF \), but the only thing special about \(1CNF \cup DNF \) is that it is of polynomial size. Our technique will work equally well using any polynomial-size concept class.

We exploit this technique by designing an algorithm with three fundamental parts:

1. In round \(i \) we get various examples of \(y_i \). We will say that an example, \((x_1, \ldots, x_n, s)\), is “good” if for every previously learned \(y_j \), \(1 \leq j < i \), all the formulas in the list for \(y_j \) take on the same truth value on \(x_1, \ldots, x_n \). Since one of the formulas in the list for \(y_j \) is the correct one, in every good example all the \(y_j \)'s are computed correctly. We begin by filtering our examples to obtain a set of good examples.

2. Given good examples, we can be certain of the values of the \(y_j \), so we can proceed to learn \(y_i \) as a function of the attributes \(x_1, \ldots, x_n, y_1, \ldots, y_{i-1} \).

3. Finally, we need something to specify the algorithm that we output at the end of round \(l \).

3 Detailed specification of our learning protocol

We assume in this paper that the learner is given \(l \), the length of the straight line program, at the beginning of the learning protocol. This assumption will make the presentation simpler and clearer. The learner can in fact do equally well without being given \(l \). (Details omitted.)

3.1 Learning \(y_i \)

During each round \(i \), the learner simply needs to learn \(y_i \) as a function of the input literals and previous \(y_j \) and \(y_i \). Moreover, the formula for \(y_i \) will be in the class \(1CNF \cup DNF \). There are at most \(K \) candidates for the formula for \(y_i \).

The traditional method of \(c', \delta' \) pac learning a concept \(y_i \) that is one of at most \(K \) functions of \(x_1, \ldots, x_n, y_1, \ldots, y_{i-1} \), where the values of those attributes is known perfectly is the following [Valiant, 1984; Blumer et al., 1987]:

The learner chooses

\[
m \geq \frac{1}{\delta'} \left(\ln(K) + \ln\left(\frac{1}{\delta'} \right) \right)
\]

and obtains \(m \) labeled instances from EXAMPLES. The learner then checks the candidates for the formula for \(y_i \) (at most \(K \)) one by one until one is found that is one consistent with all \(m \) examples, and outputs that candidate.

We could use exactly this method for our \(c', \delta' \) learning of \(y_1 \), since we do always get the correct values of the instance.
attributes when we request a labeled example in round 1 of our learning. In fact, we will use this method, except that we will check all the possible formulas for \(y_i \), and "output" the set of all the formulas that were consistent with all \(m \) examples. (Learning \(y_i \) is merely an internal subroutine used in the first stage of a multi-stage learning protocol; we don't really output anything at this point.)

The idea of using a set here is that, when all functions in the set agree, we know we have the correct value of \(y_i \). Otherwise we know we "don't know" \(y_i \).

Definition. Let \(F = \{ f_1, \ldots, f_i \} \) be a set of boolean formulas, each of the same number of variables, say \(n \). We say \(F \) is coherent on \(x_1, \ldots, x_n \) if \(f_1(x_1, \ldots, x_n) = f_2(x_1, \ldots, x_n) = \cdots = f_i(x_1, \ldots, x_n) \).

Let \(F_1 = \{ f_{1,1}, f_{1,2}, \ldots, f_{1,n} \} \) be the set of formulas we learned for \(y_1 \). Notice that for an arbitrary example, \(x_1, \ldots, x_n \), if \(F_1 \) is coherent on \(x_1, \ldots, x_n \), then the common value of the formulas must be the true value for \(y_1(x_1, \ldots, x_n) \). The reason is that we know the true formula for \(y_1 \) is contained in \(F_1 \).

Thus, in order to learn an arbitrary \(y_i \), we are led to use

Procedure ConsistentSetLearner (hereinafter CSL)

Inputs: \(i; F_1, \ldots, F_{i-1} \) (previously learned formula sets for \(y_1, \ldots, y_{i-1} \)); \(n, \epsilon', \) and \(\delta' \).

Output: \(F_i \), a set of formulas for \(y_i \), or "Fail."

Pick \(m \) according to equation 3. Repeat the following until either \(m \) "good" examples have been obtained, or else 2\(m \) attempts have been made. In the latter case, output "Fail."

Obtain an example, \(x_1, \ldots, x_n \), by calling EXAMPLES. If every \(F_j \), \(1 \leq j \leq i - 1 \), is coherent on \(x_1, \ldots, x_n \), consider \(x_1, \ldots, x_n \) to be "good," and save it. If not, discard it. Once \(m \) "good" examples have been obtained, output all candidate formulas for \(y_i \) (as a function of \(x_1, \ldots, x_n \) and \(y_1, \ldots, y_{i-1} \)) that are consistent with all \(m \) "good" examples.

The key thing to note in Procedure CSL is that once an example has been found to be good, then—for that example—we know not only the values of the instance attributes \(x_1, \ldots, x_n \), but also the values of \(y_1, \ldots, y_{i-1} \).

3.2 Learning the target concept

Procedure CSL does indeed give us a way to learn our target concept \(t \) once we calculate appropriate values for \(\epsilon' \) and \(\delta' \).

Theorem 1 Let \(\epsilon' = \epsilon/|K| \). Let \(\delta' = \delta/|I| \). Call CSL(1), CSL(2), ..., CSL(\(t \)). Then,

1. with probability at least \(1 - \delta \),
 - no call ever returns "Fail," and,
 - with probability at least \(1 - \epsilon \) every \(F_i \) is coherent on a randomly drawn instance, \(x_1, \ldots, x_n \)
2. if every \(F_i \) is coherent on \(x_1, \ldots, x_n \), then \(y_t(x_1, \ldots, x_n) \) (making the appropriate substitutions for intermediate \(y_i \)) correctly classifies \(x_1, \ldots, x_n \).

(Proof omitted.)

Thus we get as our output a simple program that with probability \(1 - \delta \) classifies most examples correctly, and "knows," because it found some incoherent \(F_i \), when it is given one of the rare examples it can't classify.

On the other hand, if we really want to simply pac learn, and output a boolean circuit, we can do that as well by doing the following: Pick any formula for \(y_1 \) from \(F_1 \) to obtain a gate computing \(y_1 \). Use this gate wherever \(y_1 \) is called for later. In the same manner, pick any formula from \(F_2 \) to be a gate for computing \(y_2 \). Continue in this fashion until we finally have a circuit for \(y_t \) taking only variables \(x_1, \ldots, x_n \) as inputs.

Corollary 1 If we run the process described in Theorem 1, and then convert to a boolean circuit as described above, this process pac learns.

3.3 Noise

We note here that the above procedure can be modified to tolerate a small amount of malicious noise [Valiant, 1985] or a somewhat larger amount of random labeling noise [Angluin and Laird, 1988], although the behavior we get from our algorithm is not quite as good as probably almost always useful.

4 Summary and conclusions

In this paper, we have shown how to learn complicated concepts by breaking them into subconcepts. The key idea we used was maintaining a list of all possible candidates (the "version spaces") for the correct subconcept, instead of simply picking some one candidate. For the purposes of this paper, we were concerned with the class ICNF U 1DNF, but our method is applicable to any polynomial size class. We expect that this particular method will prove to have other applications.

We believe this general approach is the philosophically correct way to do inductive inference, since what distinguishes induction from deduction is that in induction one can never be completely certain that one has learned correctly. (See [Kugel, 1977].) It is always possible that one will see a counterexample to one's current favorite theory. This idea of maintaining a list of all the candidates for the correct "answer" has recently born fruit elsewhere in the field of inductive inference as well, in a new model of recursion theoretic inductive inference [Rivest and Sloan, 1988], and in a method for inference of simple assignment automata [Shapiro, 1988].

Another contribution of this paper has been to introduce the notion of learning that is reliable, and probably almost always useful, and to give a learning procedure that achieves such learning.

In fact, our learning procedure is in one sense not merely reliable, but even better: Because it has maintained candidate sets for all subconcepts, it need not simply output "I don't know," on difficult instances. It has maintained enough information to be able to know which subconcept is causing it to output "I don't know." Thus, in a learning environment where it is appropriate to do so, our learning procedure can go back and request more help from the teacher on that particular subconcept.

Acknowledgments

We would like to thank the anonymous readers whose comments contributed to both the clarity and content of this paper.
References

