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Abstract 

We show how to learn from examples (Valiant 
style) any concept representable as a boolean 
function or circuit, with the help of a teacher 
who breaks the concept into subconcepts and 
teaches one subconcept per lesson. Each subcon- 
cept corresponds to a gate in the boolean circuit. 
The learner learns each subconcept from exam- 
ples which have been randomly drawn according 
to an arbitrary probability distribution, and la- 
beled as positive or negative instances of the sub- 
concept by the teacher. The learning procedure 
runs in time polynomial in the size of the circuit. 
The learner outputs not the unknown boolean cir- 
cuit, but rather a program which, for any input, 
either produces the same answer as the unknown 
boolean circuit, or else says “I don’t know.” Thus 
the output of this learning procedure is reliable. 
Furthermore, with high probability the output 
program is nearly always useful in that it says 
“I don’t know” very rarely. A key technique is to 
maintain a hierarchy of explicit “version spaces.” 
Our main contribution is thus a learning proce- 
dure whose output is reliable and nearly always 
useful; this has not been previously accomplished 
within Valiant’s model of learnability. 

The field of inductive inference has been greatly broad- 
ened by Valiant’s seminal paper [Valiant, 19841 on “prob- 
ably approximately correct” identification. He gave an ex- 
cellent definition of what it means to learn-in a reason- 
able amount of time-a concept (for instance, a boolean 
function) from examples. Moreover, in that paper, and 
in a number of subsequent papers, (eg.: [Haussler, 1986; 
Kearns et al., 1987a; Pitt and Valiant, 19861) algorithms 
were given showing how to efficiently learn various different 
concept classes. 

Thus the good news is that we now have one crisp def- 
inition of concept learning, and a number of algorithms 
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for efficiently learning various classes of concepts. The 
bad news is that Valiant presents strong evidence [Valiant, 
19841 that learning arbitrary polynomial size circuits is 
computationally intractable, and Pitt and Valiant [Pitt 
and Valiant, 19861 show that learning certain particular in- 
teresting classes of boolean functions, for instance, boolean 
threshold formulas, is NP-complete. 

In this paper we will examine one path around this 
obstacle-a way that a suitably helpful teacher can teach 
any polynomial size boolean function. 

1.1 ierarchical learning 
The way we will escape the infeasibility of learning arbi- 
trary concepts is by first learning relevant subconcepts of 
the target concept, and then learning the target concept 
itself. 

Learning by first learning relevant subconcepts has been 
a useful technique elsewhere in the field of learning: 

b 

1.2 

Cognitive psychologists believe that one way humans 
learn is by first organizing simple knowledge into 
“chunks,” and then using these chunks as subconcepts 
in later learning [Miller, 19561. 

In the artificial intelligence community, the builders of 
the Soar computer learning system have built a sys- 
tem that saves useful “chunks” of knowledge acquired 
in the current learning task for use as subconcepts 
in future learning tasks [Laird et al., 1984; Laird et 
al., 19861. Also, the SIERRA system learns how to do 
arithmetic in a manner broadly similar to what we will 
suggest; it learns “one subprocedure per lesson.” [Van- 
Lehn, 19871 

Within the framework of theoretical inductive infer- 
ence, Angluin et. al. [Angluin et al., 19871 recently 
showed how to learn certain otherwise unlearnable 
recursive functions by first learning relevant subcon- 
cepts. 

e-view of Valiant Model 
Before we can discuss our results, we first give a brief re- 
view of Valiant’s learnability model. For a more lengthy 
discussion of the model and recent results obtained using it, 
we refer the reader to the excellent survey article [Kearns 
et al., 1987b]. 

We will say that an algorithm learns from examples if it 
can, in a feasible (polynomial) amount of time, find (with 
high probability), a rule that is highly accurate. Now we 
must define what we mean by such terms as “find a rule,” 
“with high probability,” and “highly accurate.” 
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In order to precisely define learnability, we must first 
specify what it is we are trying to learn. For the purposes 
of this paper, imagine a universe U of objects each having 
n attributes. In this paper we assume the attributes are 
binary, although this assumption is not crucial to the learn- 
ability model. For instance, U might be the inhabitants of 
the U. S., and the attributes might include Sex, Age<lS, 
Income<1900, and IsInCollege. Formally, U = (0, lln. 

A concept, c, is a rule that splits U into positive instances 
and negative instances. Given that we have U = (0, l}“, 
possible representations for concepts would include truth 
tables, boolean formulas, and boolean circuits. (See [Haus- 
sler, 19871.) We say that the length of concept c, /cl, is the 
number of bits required to write down c in whatever rep- 
resentation we have chosen. A concept class is a set of 
concepts all defined on U. 

If U is the inhabitants of the U. S., concepts would 
include both the rather simple concept left-handed adult 
mules, defined by the obvious conjunction, and the doubt- 
less more complicated concept, people required to pay at 
Zeust five hundred doldurs in federal income tax. An ex- 
ample of a concept class would be TAX BRACKETS which 
would include the concepts people paying no income tax 
and peopde required to pay at least five hundred dollars in 
federud income tax. 

We assume that our algorithm trying to learn concept 
c has available to it a black box called EXAMPLES, and 
that each call to the black box returns a labeled example, 
(2, s), where x E U is an instance, and s is either + or - 
according to whether z is a positive or negative instance of 
the target concept c. Furthermore, the EXAMPLES box 
generates the instances x according to some probability 
distribution D on U. We make no assumptions whatsoever 
about the nature of D, and our learner will not be told 
what D is. 

DEFINITION. Let C be a class of concepts. We say 
algorithm A probably upproximutedy correctly learn (pat 
learns) C if and only if there is a polynomial P such that 
(Vn)(Vc E C)(VD)(Vc > O)(VS > 0), A, given only 7,~” 
and access to EXAMPLES(c), halts in time P(n, 1~1, :, 5), 
and outputs some representation of a concept, c’ that with 
probability at least 1 - S has the property 

‘);7 D(x) < E. 
c’(z)#c(z) 

We will say that a concept class C is put 
there exists some algorithm that pat learns C. 

learnable if 

Discussion of the Definition 

Intuitively, we are saying that the learner is supposed to 
do the following: 

1. Ask nature 
concept. 

for a random set of examples of the target 

2. Run in polynomial time. 
3. Output a formula that 

with the target concept 
with high probability agrees 
on most of the instances. 

We think of Nature as providing examples to the learner 
according to the (unknown) probability that the examples 
occur in Nature. Though the learner does not know this 
probability distribution, he does know that his formula 

needs to closely approximate the target concept only for 
this probability distribution. 

Intuitively, there may be some extremely bizarre but low 
probability examples that occur in Nature, and it would be 
unreasonable to demand the learner’s output formula clas- 
sify them correctly. Hence we require only approximate 
correctness. Moreover, with some very low but nonzero 
probability, the examples the learner received from Nature 
might all have been really bizarre. Therefore we cannot 
require the learner to always output an approximately cor- 
rect formula; we only require that the learner do so with 
high probability. 

Further discussion of the motivation for this model may 
be found in [Blumer et al., 19861 and, of course, [Valiant, 
19841 which introduced this model. 

1.3 A new variation on the Valiant 
model 

We introduce here a new definition of learning which is 
very similar to but more stringent than pat learning. In 
pat learning, the learner must give as output a concept 
in whatever representation is being worked with-say cir- 
cuits. Our learner is instead supposed to give a (polyno- 
mial time) program taking instances as input, and having 
three possible outputs: “Yes,” “No,” and “I don’t know.” 

DEFINITION. We call learning algorithm A rediubde if the 
program output by A says “Yes” only on positive instances, 
and says “No” only on negative instances of the target 
concept. 

Of course, given that definition of reliable, it is very easy 
to design a reliable learning algorithm: Have the learning 
algorithm look at no examples, and output the program 
which just gives the useless answer “I don’t know” on all 
instances. Thus we are led to the following definition, anal- 
ogous to pat learning: 

DEFINITION. Let C be a class of concepts. We say algo- 
rithm A reliably probably almost always usefully learns C 
if and only if there is a polynomial P such that (Vn)(Vc E 
C)(VD)(Vc > O)(VS > 0), A, given only n, E, S and access to 
EXAMPLES(c), halts in time P(n, ]c] , $, i), and outputs 
a program & such that 

1. (Vx)Q(z) = Yes + c(x) = 1, and Q(x) = No j 
c(x) = 0. (A is reliable.) 

2. With probability at least 1 - 6, 

D(x) < E. 
Q(c)=1 don’t know 

(A is probably almost always useful.) 

The above definition is similar to the definition of pat 
learning, in that both definitions require the learner to find 
some concept that probably agrees with the target concept 
most of the time. Our new definition is stronger than pat 
learning in that we require, in addition, that the output of 
learner must never misclassify an instance. It must some- 
how “know enough” to say “I don’t know,” rather than to 
misclassify. 

In this paper we will present an algorithm 
probably almost always usefully learns. 

that reliably 
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2 ow to learn: sketch 
The original definition of pat learning has many desirable 
features. Not least among them is that efficient algorithms 
for pat learning a number of interesting concept classes are 
now known. Of course, we do not always know a priori 
that the concept we want to learn is going to be in 3CNF 
or 7DNF or what have you. We would like to have an 
algorithm that can pat learn regardless of what class the 
target concept is drawn from. More precisely, we would 
like to have an algorithm that could pat learn the class of 
all functions that can be represented by a polynomial size 
boolean formula (or, similarly, a polynomial size boolean 
circuit). 

Unfortunately, this goal is unlikely to be attainable. As 
is explained in [Valiant, 19841, assuming that one way func- 
tions exist (an assumption which we feel is likely to be cor- 
rect), the class of polynomial size boolean formula is not 
pat learnable. 

Thus we are driven to look for some way of learning ar- 
bitrary boolean formulas. Our solution is to learn in a hi- 
erarchical manner. First we will pat learn some important 
subconcepts of the target concept, and then we will pat 
learn the final concept as a function of these subconcepts. 

To be more precise, our method is as follows: We learn 
our first subconcept knowing that it must be some simple 
boolean function of the instance attributes. We learn each 
following subconcept knowing that it must be some some 
simple boolean function of the instance attributes and pre- 
viously learned subconcepts. Ultimately we learn the origi- 
nal target concept as some simple boolean function of the 
instance attributes and all of the previously subconcepts. 

Consider, for instance, the concept of one’s dependents, 
as defined by the IRS.’ 

1 
dependent = (> -SupportFromMe)A 

2 
TFiledJointReturn A [(Income < 1900 A 
(MyChild V MyParent)) V (MyChild A 
(Age < 19 V IsInCollege))]. (1) 

One can readily imagine such a complicated definition be- 
ing too hard to learn from examples. On the other hand, 
if we first teach some simple subconcepts, such as “My- 
Child V MyParent,” and “Age<19 V IsInCollege,” and 
next teach some harder subconcepts as functions of those, 
and then finally the dependent concept as a function of 
all previously learned subconcepts, then the learning task 
becomes easier. 

Moreover, because we break the target concept into very 
simple subconcepts, we can develop a learning protocol 
that has one very nice feature absent from ordinary pat 
learning-our learner knows when it is confused. (For- 
mally, we will achieve reliable, probably almost always 
useful learning.) Continuing with the above example, we 
probably do not need to force our learner/taxpayer to learn 
the concept dependent perfectly. It is acceptable if the 
learner is unable to correctly classify certain unusual, very 
low probability instances such as, say, the case of “your 
underage great-great-great-granddaughter when all inter- 
vening generations are deceased.” The probability of such 

‘What follows is, in fact, a great oversimplification of the 
IRS definition. 

Input variables: FiledJointReturn, > $SupportFromMe, 
MyChild, MyParent, Age<lS, IsInCollege, Income<1900. 
Output: dependent = 97. 

Yl = (> :SupportFromMe) A TFiledJointReturn 

Y2 = MyChild V MyParent 

Y3 = Age < 19 V IsInCollege 

Y4 = Income < 1900 A y2 

Y5 = MyChild A y3 

YS = Y4 v Y5 

Y7 = YI A Y6 

Figure 1: A straight line program for dependent 

an instance occurring is extremely low. Nevertheless, it 
would be desirable, if one ever did encounter such an “ever 
so great” grandchild, to be able to say, “I don’t know if she 
is an instance of a dependent,” rather than to misclassify 
her. 

Our learner can, if desired, do precisely that-output a 
short fast program taking instances as its input and having 
the three outputs, “Yes” (dependent), “No” (not a depen- 
dent), and “I don’t know.” This program is guaranteed 
to be correct whenever it gives a “Yes” or “No” classifica- 
tion, and moreover, with probability 1 - 6 it says “I don’t 
know” about at most a fraction E of all people. In short, 
it meets our definition of reliable, probably almost always 
useful learning. 

2.1 Notation 
Before showing how to break our target concept, t, into 
pieces, we must first specify the problem more precisely. 
For convenience’ sake only, we will assume t is repre- 
sented as a straight-line program: Let the inputs to t be 
El,*..,~tz, and call the output ye. (I being the number of 
lines.) The i-th line of the program for t, for 1 2 i 2 1 is 
of the form: 

Yi = G,l 0 &,2 (2) 

where o is one of the two boolean operators V and A, and 
every za,k is either a literal, or else yj or flj for some pre- 
viously computed yj (i.e., j < i).2 We say I is the size 
of such a straight line program. In Figure 1 we show a 
straight line program for the dependent concept defined in 
equation 1 above. 

2.2 An easy but trivial way to Beam. 
As a first attempt to develop a protocol for learning our 
arbitrary t piece by piece, we might try the following: 
Have the teacher supply not only examples, but also the 
pieces-the yi . In particular, let the yi be rearranged in 
some arbitrary order, yjl,. . . , yjl. Now, each time the 
learner requests an example, he gets more than just a la- 
beled example drawn according D. The learner receives 
~l,.-.,Xn#Yjl,‘. . , yjl (and its label). Given all this help, 

2Note that straight line programs are equivalent to circuits, 
with lines being equivalent to the gates of the circuit, topolog- 
ically sorted. 
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it turns out to be easy to learn. It is not hard for the learn- 
ing algorithm to determine which of the other variables a 
given variable depends on. 

This solution is not very satisfying, however, since it 
requires that the learner receive a large amount of “extra 
help” with each and every example. In essence, it would 
mean that every time our learner was given an example 
while learning dependent, he would have to be told whether 
it was a child in college, whether it was a relative, and so 
on. Our approach will be to first teach the learner about yi 
for a while, assume the learner has learned yi, then move 
on to ~2, never to return to yr , and so on, yi by yi. 

2.3 High level view of our solution 
The learning proceeds as follows: As in regular pat learn- 
ing, there will be one fixed probability distribution, D, on 
examples throughout; the teacher is not allowed to help 
the student by altering it. 

There will be d rounds. The teacher will move from 
round i to round i + 1 when the learner tells him to do so. 
In round i, the learner is going to learn yi. 

When our learner requests an example during round i, 
the teacher will give the learner a pair, (xl,. . . , xn, s), 
where xl,...,jcn is drawn according to D, and s tells 
whether xl,..., xn is a positive or negative instance of 
Yi. In other words, in round i, s gives the truth 
value of yi (21, . . . , xn) (rather th an the truth value of 
t(x1 , * * * , x:n)). 

During each round i, the learner tries to E’ = r/pr(n), 
61 = 6/p2(n) learn the concept gi where pr and pa are poly- 
nomials to be determined. This learning task at first glance 
appears to be extremely simple, because yi must be a sim- 
ple conjunction or disjunction of x1, . . . , xta and ~1, . . . yi-1 
(and perhaps their negations). The catch is that while the 
learner gets the true values for 21, . . . , xla he only gets his 
computed values for ~1, . . . , yi-1, and these computed val- 
ues are at best probably approximately correct. 

For instance, it might be that the true formula for yi is 
yr A ~2. However, the values of yr and y2 are not inputs 
to the learning algorithm. The only knowledge the learner 
has about yr and y2 are the formulas, fii, 92 that he has pat 
learned. It may well be that the learner calls EXAMPLES 
and gets back a particular xl, . . . , xn and the information 
that yi(x1,. . . , x~) is true, and indeed, yr(zl,. . .,xn) is 
true, but both $1(x1,. . . , xn) and jj2(z1,. . . , x~) evaluate 
to false. 

Our job will be to show how to do this learning in such 
a manner that at the end, when we have a representation 
for yl in terms of all the xi and yi, and we substitute the 
xi back in for the yi, the final expression, yl(xr, . . . , x~) 
e-approximates the target concept with probability 1 - 6. 

In fact, as we said above, we will do something stronger. 
Our learner will not merely pat learn, but will reliably, 
probably almost always usefully learn. 

A key technique 

The technique we use to achieve this goal is having the 
learner learn and maintain a list of all possible candidates 
for a given yi. For each subconcept yi we explicitly main- 
tain the “most specific” list of the version space represen- 
tation [Mitchell, 19771. 

The reason we can maintain this list is that the set of all 
the possible candidates for any particular yi is of polyno- 
mial length: Recall that the target function t is specified 
by a straight line program. Let K be the total number of 
possible distinct lines, zi,r o zi,2. 

. 

The important thing to notice is that I< is polynomial in n 
and 1, the size of (the representation of) the target concept. 
Ii takes on the particular value it does because each yi is 
in the class 1CNF U lDNF, but the only thing special 
about 1CNF U 1DNF is that it is of polynomial size. Our 
technique will work equally well using any polynomial-size 
concept class 

We exploit this technique by designing an algorithm with 
three fundamental parts: 

1. 

2, 

3. 

We 

In round i we get various examples of yi. We will say 
that an example, (xl, . . . , xn, s), is “good” if for every 
previously learned yj, 1 5 j < i, all the formulas in the 
list for yj take on the same truth value on x1, . . . , x,. 
Since one of the formulas in the list for yj is the correct 
one, in every good example all the yj’s are computed 
correctly. We begin by filtering our examples to obtain 
a set of good examples. 
Given good examples, we can be certain of the values 
of the yj, so we can proceed to learn yi as a function 
of the attributes 51,. . . , xn, yr, . . . , yi-1. 
Finally, we need something to specify the algorithm 
that we output at the end of round 1. 

specification of our 
learning protocol 

assume in this paper that the learner is given I, the 
length of the straight line program, at the beginning of 
the learning protocol. This assumption will make the pre- 
sentation simpler and clearer. The learner can in fact do 
equally well without being given 1. (Details omitted.) 

3.1 Learning yi 
During each round i, the learner simply needs to learn 
yi as a function of the input literals and previous yj and 
- Yj - Moreover, the formula for yi will be in the class 
1CNF U 1DNF. There are at most I< candidates for the 
the formula for yi . 

The traditional method of E’, S’ pat learning a con- 
cept yi that is one of at most I< functions of 

yi-1, where th e values of those attribute 
%i%;e%?nown perfectly is the following [Valiant, 1984; 
Blumer et al., 19871: 

The learner chooses 

m> $(,K)+ln(-$)) (3) 
and obtains m labeled instances from EXAMPLES. The 
learner then checks the candidates for the formula for yi (at 
most K) one by one until one is found that is one consistent 
with allm examples, and outputs that candidate. 

We could use exactly this method for our e’, 6’ learning of 
yr , since we do always get the correct values of the instance 
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attributes when we request a labeled example in round 1 of 
our learning. In fact, we will use this method, except that 
we will check all the possible formulas for yr , and “output” 
the set of all the formulas that were consistent with all m 
examples. (Learning yr is merely an internal subroutine 
used in the the first stage of a multi-stage learning protocol; 
we don’t really output anything at this point.) 

The idea of using a set here is that, when all functions 
in the set agree, we know we have the correct value of yi. 
Otherwise we know we “don’t know” yr. 

DEFINITION. Let F = {jr, . . . , f’} be a set of boolean 
formulas, each of the same number of variables, say n. 
We say F is coherent on xl,. . .,xn if jl(~r,. . .,zn) = 
fz(x1,. . . ) x,) = ’ * - = &(x1,. . .) xn). 

Let Fl = {fl,l, fl,2, * . . fr,a, ) be the set of formulas 
we learned for ~1. Notice that for an arbitrary exam- 
ple, XI,...,X~, if Fl is coherent on x1, . . . , x,, then the 
common value of the formulas must be the true value for 
Y&l, * *. , GJ. The reason is that we know the true for- 
mula for yr is contained in Fl. 

Thus, in order to learn an arbitrary yi, we are led to use 

Procedure ConsistentSetLearner (hereinafter CSL) 
Inputs: i; Fl, . . . , Fi- ’ 1 (previously learned formula sets for 
Yl,..* , yi-1); n, E’, and 6’. 
Output: Fi, a set of formulas for yi, or “Fail.” 
Pick m according to equation 3. Repeat the following un- 
til either m “good” examples have been obtained, or else 
2m attempts have been made. In the latter case, output 
“Fail .” 
Obtain an example, xi, . . . , xn, by calling EXAMPLES. If 
every Fj, 1 5 j 5 i - 1, is coherent on x1, . . . , x,, con- 
sider x1, . . . , x, to be “good,” and save it. If not, discard 
it. Once m “good” examples have been obtained, output 
all candidate formulas for yi (as a function of x1, . . . , xra 
and yi,... , yi-1) that are consistent with all m “good” 
examples. 

The key thing to note in Procedure CSL is that once 
an example has been found to be good, then-for that 
example-we know not only the values of the instance at- 
tributes xl,. . . , xn, but also the values of yi, . . . ;~/a-1. 

3.2 Learning the target concept 
Procedure CSL does indeed give us a way to learn our 
target concept t once we calculate appropriate values for 
6’ and 6’. 

Theorem I. Let 8 = e/dIC. Let 6’ = s/t. Call CSL(l), 
CSL(2), . . . , CSL(I). Then, 

1. with probability at least 1 - 6, 
Q no cad1 ever returns ‘%aid, ” and, 
8 with probability at least 1 - E every Fa is coherent 

on a randomly drawn instance, xl,. . . , xn and, 
2. if every Fi is coherent on xl,. . . ,xnr then 

Yl(Xl,..., x,) (making th e appropriate substitutions 
for intermediate ya) correctly classifies x1, . . . , x,. 

(Proof omitted.) 
Thus we get as our output a simple program that with 

probability 1 - S classifies most examples correctly, and 
“knows,” because it found some incoherent Fi, when it is 
given one of the rare examples it can’t classify. 

On the other hand, if we really want to simply pat learn, 
and output a boolean circuit, we can do that as well by 
doing the following: Pick any formula for yr from Fl to 
obtain a gate computing yl. Use this gate wherever y1 
is called for later. In the same manner, pick any formula 
from F2 to be a gate for computing ~2. Continue in this 
fashion until we finally have a circuit for yl taking only 
variables x1, . , . , xn as inputs. 

Corollary 1 If we run the process described in Theorem 1, 
and then convert to a boolean circuit as described above, 
this process pat learns. 

3.3 Noise 
We note here that the above procedure can be modified to 
tolerate a small amount of malicious noise [Valiant, 19851 
or a somewhat larger amount of random labeling noise [An- 
gluin and Laird, 19881, although the behavior we get from 
our algorithm is not quite as good as probably almost al- 
ways useful. 

4 ary an 
In this paper, we have shown how to learn complicated 
concepts by breaking them into subconcepts. The key 
idea we used was maintaining a list of all possible can- 
didates (the “version spaces”) for the correct subconcept, 
instead of simply picking some one candidate. For the 
purposes of this paper, we were concerned with the class 
ICNF U lDNF, but our method is applicable to any poly- 
nomial size class. We expect that this particular method 
will prove to have other applications. 

We believe this general approach is the philosophically 
correct way to do inductive inference, since what distin- 
guishes induction from deduction is that in induction one 
can never be completely certain that one has learned cor- 
rectly. (See [Kugel, 19771.) It is always possible that one 
will see a counterexample to one’s current favorite theory. 
This idea of maintaining a list of all the candidates for 
the correct “answer” has recently born fruit elsewhere in 
the field of inductive inference as well, in a new model of 
recursion theoretic inductive inference [Rivest and Sloan, 
19881, and in a method for inference of simple assignment 
automata [Schapire, 19881. 

Another contribution of this paper has been to intro- 
duce the notion of learning that is reliable, and probably 
almost always useful, and to give a learning procedure that 
achieves such learning. 

In fact, our learning procedure is in one sense not merely 
reliable, but even better: Because it has maintained can- 
didate sets for all subconcepts, it need not simply output 
“I don’t know,” on difficult instances. It has maintained 
enough information to be able to know which subconcept 
is causing it to output “I don’t know.” Thus, in a learning 
environment where it is appropriate to do so, our learn- 
ing procedure can go back and request more help from the 
teacher on that particular subconcept. 
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