
Learning Complicated Concepts eliably and Usefully
(Extended Abst

Ronalld L. ivest* and Robert Sl[sant
MIT Lab. for Computer Science

Cambridge, Mass. 02139 USA

Abstract

We show how to learn from examples (Valiant
style) any concept representable as a boolean
function or circuit, with the help of a teacher
who breaks the concept into subconcepts and
teaches one subconcept per lesson. Each subcon-
cept corresponds to a gate in the boolean circuit.
The learner learns each subconcept from exam-
ples which have been randomly drawn according
to an arbitrary probability distribution, and la-
beled as positive or negative instances of the sub-
concept by the teacher. The learning procedure
runs in time polynomial in the size of the circuit.
The learner outputs not the unknown boolean cir-
cuit, but rather a program which, for any input,
either produces the same answer as the unknown
boolean circuit, or else says “I don’t know.” Thus
the output of this learning procedure is reliable.
Furthermore, with high probability the output
program is nearly always useful in that it says
“I don’t know” very rarely. A key technique is to
maintain a hierarchy of explicit “version spaces.”
Our main contribution is thus a learning proce-
dure whose output is reliable and nearly always
useful; this has not been previously accomplished
within Valiant’s model of learnability.

The field of inductive inference has been greatly broad-
ened by Valiant’s seminal paper [Valiant, 19841 on “prob-
ably approximately correct” identification. He gave an ex-
cellent definition of what it means to learn-in a reason-
able amount of time-a concept (for instance, a boolean
function) from examples. Moreover, in that paper, and
in a number of subsequent papers, (eg.: [Haussler, 1986;
Kearns et al., 1987a; Pitt and Valiant, 19861) algorithms
were given showing how to efficiently learn various different
concept classes.

Thus the good news is that we now have one crisp def-
inition of concept learning, and a number of algorithms

*This paper was prepared with support from NSF grant
DCR-8607494, AR0 Grant DAAL03-86-K-0171, and the
Siemens Corporation.

+Supported by an NSF graduate fellowship and by the Sie-
mens Corporation.

Authors’ AFPAnet addresses are: rivest@theory.lcs.mit.edu,
sloan@theory.lcs.mit.edu

for efficiently learning various classes of concepts. The
bad news is that Valiant presents strong evidence [Valiant,
19841 that learning arbitrary polynomial size circuits is
computationally intractable, and Pitt and Valiant [Pitt
and Valiant, 19861 show that learning certain particular in-
teresting classes of boolean functions, for instance, boolean
threshold formulas, is NP-complete.

In this paper we will examine one path around this
obstacle-a way that a suitably helpful teacher can teach
any polynomial size boolean function.

1.1 ierarchical learning
The way we will escape the infeasibility of learning arbi-
trary concepts is by first learning relevant subconcepts of
the target concept, and then learning the target concept
itself.

Learning by first learning relevant subconcepts has been
a useful technique elsewhere in the field of learning:

b

1.2

Cognitive psychologists believe that one way humans
learn is by first organizing simple knowledge into
“chunks,” and then using these chunks as subconcepts
in later learning [Miller, 19561.

In the artificial intelligence community, the builders of
the Soar computer learning system have built a sys-
tem that saves useful “chunks” of knowledge acquired
in the current learning task for use as subconcepts
in future learning tasks [Laird et al., 1984; Laird et
al., 19861. Also, the SIERRA system learns how to do
arithmetic in a manner broadly similar to what we will
suggest; it learns “one subprocedure per lesson.” [Van-
Lehn, 19871

Within the framework of theoretical inductive infer-
ence, Angluin et. al. [Angluin et al., 19871 recently
showed how to learn certain otherwise unlearnable
recursive functions by first learning relevant subcon-
cepts.

e-view of Valiant Model
Before we can discuss our results, we first give a brief re-
view of Valiant’s learnability model. For a more lengthy
discussion of the model and recent results obtained using it,
we refer the reader to the excellent survey article [Kearns
et al., 1987b].

We will say that an algorithm learns from examples if it
can, in a feasible (polynomial) amount of time, find (with
high probability), a rule that is highly accurate. Now we
must define what we mean by such terms as “find a rule,”
“with high probability,” and “highly accurate.”

RIvest and Sloan 635

From: AAAI-88 Proceedings. Copyright ©1988, AAAI (www.aaai.org). All rights reserved.

In order to precisely define learnability, we must first
specify what it is we are trying to learn. For the purposes
of this paper, imagine a universe U of objects each having
n attributes. In this paper we assume the attributes are
binary, although this assumption is not crucial to the learn-
ability model. For instance, U might be the inhabitants of
the U. S., and the attributes might include Sex, Age<lS,
Income<1900, and IsInCollege. Formally, U = (0, lln.

A concept, c, is a rule that splits U into positive instances
and negative instances. Given that we have U = (0, l}“,
possible representations for concepts would include truth
tables, boolean formulas, and boolean circuits. (See [Haus-
sler, 19871.) We say that the length of concept c, /cl, is the
number of bits required to write down c in whatever rep-
resentation we have chosen. A concept class is a set of
concepts all defined on U.

If U is the inhabitants of the U. S., concepts would
include both the rather simple concept left-handed adult
mules, defined by the obvious conjunction, and the doubt-
less more complicated concept, people required to pay at
Zeust five hundred doldurs in federal income tax. An ex-
ample of a concept class would be TAX BRACKETS which
would include the concepts people paying no income tax
and peopde required to pay at least five hundred dollars in
federud income tax.

We assume that our algorithm trying to learn concept
c has available to it a black box called EXAMPLES, and
that each call to the black box returns a labeled example,
(2, s), where x E U is an instance, and s is either + or -
according to whether z is a positive or negative instance of
the target concept c. Furthermore, the EXAMPLES box
generates the instances x according to some probability
distribution D on U. We make no assumptions whatsoever
about the nature of D, and our learner will not be told
what D is.

DEFINITION. Let C be a class of concepts. We say
algorithm A probably upproximutedy correctly learn (pat
learns) C if and only if there is a polynomial P such that
(Vn)(Vc E C)(VD)(Vc > O)(VS > 0), A, given only 7,~”
and access to EXAMPLES(c), halts in time P(n, 1~1, :, 5),
and outputs some representation of a concept, c’ that with
probability at least 1 - S has the property

‘);7 D(x) < E.
c’(z)#c(z)

We will say that a concept class C is put
there exists some algorithm that pat learns C.

learnable if

Discussion of the Definition

Intuitively, we are saying that the learner is supposed to
do the following:

1. Ask nature
concept.

for a random set of examples of the target

2. Run in polynomial time.
3. Output a formula that

with the target concept
with high probability agrees
on most of the instances.

We think of Nature as providing examples to the learner
according to the (unknown) probability that the examples
occur in Nature. Though the learner does not know this
probability distribution, he does know that his formula

needs to closely approximate the target concept only for
this probability distribution.

Intuitively, there may be some extremely bizarre but low
probability examples that occur in Nature, and it would be
unreasonable to demand the learner’s output formula clas-
sify them correctly. Hence we require only approximate
correctness. Moreover, with some very low but nonzero
probability, the examples the learner received from Nature
might all have been really bizarre. Therefore we cannot
require the learner to always output an approximately cor-
rect formula; we only require that the learner do so with
high probability.

Further discussion of the motivation for this model may
be found in [Blumer et al., 19861 and, of course, [Valiant,
19841 which introduced this model.

1.3 A new variation on the Valiant
model

We introduce here a new definition of learning which is
very similar to but more stringent than pat learning. In
pat learning, the learner must give as output a concept
in whatever representation is being worked with-say cir-
cuits. Our learner is instead supposed to give a (polyno-
mial time) program taking instances as input, and having
three possible outputs: “Yes,” “No,” and “I don’t know.”

DEFINITION. We call learning algorithm A rediubde if the
program output by A says “Yes” only on positive instances,
and says “No” only on negative instances of the target
concept.

Of course, given that definition of reliable, it is very easy
to design a reliable learning algorithm: Have the learning
algorithm look at no examples, and output the program
which just gives the useless answer “I don’t know” on all
instances. Thus we are led to the following definition, anal-
ogous to pat learning:

DEFINITION. Let C be a class of concepts. We say algo-
rithm A reliably probably almost always usefully learns C
if and only if there is a polynomial P such that (Vn)(Vc E
C)(VD)(Vc > O)(VS > 0), A, given only n, E, S and access to
EXAMPLES(c), halts in time P(n,]c] , $, i), and outputs
a program & such that

1. (Vx)Q(z) = Yes + c(x) = 1, and Q(x) = No j
c(x) = 0. (A is reliable.)

2. With probability at least 1 - 6,

D(x) < E.
Q(c)=1 don’t know

(A is probably almost always useful.)

The above definition is similar to the definition of pat
learning, in that both definitions require the learner to find
some concept that probably agrees with the target concept
most of the time. Our new definition is stronger than pat
learning in that we require, in addition, that the output of
learner must never misclassify an instance. It must some-
how “know enough” to say “I don’t know,” rather than to
misclassify.

In this paper we will present an algorithm
probably almost always usefully learns.

that reliably

636 Learning and Knowledge Acquisition

2 ow to learn: sketch
The original definition of pat learning has many desirable
features. Not least among them is that efficient algorithms
for pat learning a number of interesting concept classes are
now known. Of course, we do not always know a priori
that the concept we want to learn is going to be in 3CNF
or 7DNF or what have you. We would like to have an
algorithm that can pat learn regardless of what class the
target concept is drawn from. More precisely, we would
like to have an algorithm that could pat learn the class of
all functions that can be represented by a polynomial size
boolean formula (or, similarly, a polynomial size boolean
circuit).

Unfortunately, this goal is unlikely to be attainable. As
is explained in [Valiant, 19841, assuming that one way func-
tions exist (an assumption which we feel is likely to be cor-
rect), the class of polynomial size boolean formula is not
pat learnable.

Thus we are driven to look for some way of learning ar-
bitrary boolean formulas. Our solution is to learn in a hi-
erarchical manner. First we will pat learn some important
subconcepts of the target concept, and then we will pat
learn the final concept as a function of these subconcepts.

To be more precise, our method is as follows: We learn
our first subconcept knowing that it must be some simple
boolean function of the instance attributes. We learn each
following subconcept knowing that it must be some some
simple boolean function of the instance attributes and pre-
viously learned subconcepts. Ultimately we learn the origi-
nal target concept as some simple boolean function of the
instance attributes and all of the previously subconcepts.

Consider, for instance, the concept of one’s dependents,
as defined by the IRS.’

1
dependent = (> -SupportFromMe)A

2
TFiledJointReturn A [(Income < 1900 A
(MyChild V MyParent)) V (MyChild A
(Age < 19 V IsInCollege))]. (1)

One can readily imagine such a complicated definition be-
ing too hard to learn from examples. On the other hand,
if we first teach some simple subconcepts, such as “My-
Child V MyParent,” and “Age<19 V IsInCollege,” and
next teach some harder subconcepts as functions of those,
and then finally the dependent concept as a function of
all previously learned subconcepts, then the learning task
becomes easier.

Moreover, because we break the target concept into very
simple subconcepts, we can develop a learning protocol
that has one very nice feature absent from ordinary pat
learning-our learner knows when it is confused. (For-
mally, we will achieve reliable, probably almost always
useful learning.) Continuing with the above example, we
probably do not need to force our learner/taxpayer to learn
the concept dependent perfectly. It is acceptable if the
learner is unable to correctly classify certain unusual, very
low probability instances such as, say, the case of “your
underage great-great-great-granddaughter when all inter-
vening generations are deceased.” The probability of such

‘What follows is, in fact, a great oversimplification of the
IRS definition.

Input variables: FiledJointReturn, > $SupportFromMe,
MyChild, MyParent, Age<lS, IsInCollege, Income<1900.
Output: dependent = 97.

Yl = (> :SupportFromMe) A TFiledJointReturn

Y2 = MyChild V MyParent

Y3 = Age < 19 V IsInCollege

Y4 = Income < 1900 A y2

Y5 = MyChild A y3

YS = Y4 v Y5

Y7 = YI A Y6

Figure 1: A straight line program for dependent

an instance occurring is extremely low. Nevertheless, it
would be desirable, if one ever did encounter such an “ever
so great” grandchild, to be able to say, “I don’t know if she
is an instance of a dependent,” rather than to misclassify
her.

Our learner can, if desired, do precisely that-output a
short fast program taking instances as its input and having
the three outputs, “Yes” (dependent), “No” (not a depen-
dent), and “I don’t know.” This program is guaranteed
to be correct whenever it gives a “Yes” or “No” classifica-
tion, and moreover, with probability 1 - 6 it says “I don’t
know” about at most a fraction E of all people. In short,
it meets our definition of reliable, probably almost always
useful learning.

2.1 Notation
Before showing how to break our target concept, t, into
pieces, we must first specify the problem more precisely.
For convenience’ sake only, we will assume t is repre-
sented as a straight-line program: Let the inputs to t be
El,*..,~tz, and call the output ye. (I being the number of
lines.) The i-th line of the program for t, for 1 2 i 2 1 is
of the form:

Yi = G,l 0 &,2 (2)

where o is one of the two boolean operators V and A, and
every za,k is either a literal, or else yj or flj for some pre-
viously computed yj (i.e., j < i).2 We say I is the size
of such a straight line program. In Figure 1 we show a
straight line program for the dependent concept defined in
equation 1 above.

2.2 An easy but trivial way to Beam.
As a first attempt to develop a protocol for learning our
arbitrary t piece by piece, we might try the following:
Have the teacher supply not only examples, but also the
pieces-the yi . In particular, let the yi be rearranged in
some arbitrary order, yjl,. . . , yjl. Now, each time the
learner requests an example, he gets more than just a la-
beled example drawn according D. The learner receives
~l,.-.,Xn#Yjl,‘. . , yjl (and its label). Given all this help,

2Note that straight line programs are equivalent to circuits,
with lines being equivalent to the gates of the circuit, topolog-
ically sorted.

Rivest and Sloan 637

it turns out to be easy to learn. It is not hard for the learn-
ing algorithm to determine which of the other variables a
given variable depends on.

This solution is not very satisfying, however, since it
requires that the learner receive a large amount of “extra
help” with each and every example. In essence, it would
mean that every time our learner was given an example
while learning dependent, he would have to be told whether
it was a child in college, whether it was a relative, and so
on. Our approach will be to first teach the learner about yi
for a while, assume the learner has learned yi, then move
on to ~2, never to return to yr , and so on, yi by yi.

2.3 High level view of our solution
The learning proceeds as follows: As in regular pat learn-
ing, there will be one fixed probability distribution, D, on
examples throughout; the teacher is not allowed to help
the student by altering it.

There will be d rounds. The teacher will move from
round i to round i + 1 when the learner tells him to do so.
In round i, the learner is going to learn yi.

When our learner requests an example during round i,
the teacher will give the learner a pair, (xl,. . . , xn, s),
where xl,...,jcn is drawn according to D, and s tells
whether xl,..., xn is a positive or negative instance of
Yi. In other words, in round i, s gives the truth
value of yi (21, . . . , xn) (rather th an the truth value of
t(x1 , * * * , x:n)).

During each round i, the learner tries to E’ = r/pr(n),
61 = 6/p2(n) learn the concept gi where pr and pa are poly-
nomials to be determined. This learning task at first glance
appears to be extremely simple, because yi must be a sim-
ple conjunction or disjunction of x1, . . . , xta and ~1, . . . yi-1
(and perhaps their negations). The catch is that while the
learner gets the true values for 21, . . . , xla he only gets his
computed values for ~1, . . . , yi-1, and these computed val-
ues are at best probably approximately correct.

For instance, it might be that the true formula for yi is
yr A ~2. However, the values of yr and y2 are not inputs
to the learning algorithm. The only knowledge the learner
has about yr and y2 are the formulas, fii, 92 that he has pat
learned. It may well be that the learner calls EXAMPLES
and gets back a particular xl, . . . , xn and the information
that yi(x1,. . . , x~) is true, and indeed, yr(zl,. . .,xn) is
true, but both $1(x1,. . . , xn) and jj2(z1,. . . , x~) evaluate
to false.

Our job will be to show how to do this learning in such
a manner that at the end, when we have a representation
for yl in terms of all the xi and yi, and we substitute the
xi back in for the yi, the final expression, yl(xr, . . . , x~)
e-approximates the target concept with probability 1 - 6.

In fact, as we said above, we will do something stronger.
Our learner will not merely pat learn, but will reliably,
probably almost always usefully learn.

A key technique

The technique we use to achieve this goal is having the
learner learn and maintain a list of all possible candidates
for a given yi. For each subconcept yi we explicitly main-
tain the “most specific” list of the version space represen-
tation [Mitchell, 19771.

The reason we can maintain this list is that the set of all
the possible candidates for any particular yi is of polyno-
mial length: Recall that the target function t is specified
by a straight line program. Let K be the total number of
possible distinct lines, zi,r o zi,2.

.

The important thing to notice is that I< is polynomial in n
and 1, the size of (the representation of) the target concept.
Ii takes on the particular value it does because each yi is
in the class 1CNF U lDNF, but the only thing special
about 1CNF U 1DNF is that it is of polynomial size. Our
technique will work equally well using any polynomial-size
concept class

We exploit this technique by designing an algorithm with
three fundamental parts:

1.

2,

3.

We

In round i we get various examples of yi. We will say
that an example, (xl, . . . , xn, s), is “good” if for every
previously learned yj, 1 5 j < i, all the formulas in the
list for yj take on the same truth value on x1, . . . , x,.
Since one of the formulas in the list for yj is the correct
one, in every good example all the yj’s are computed
correctly. We begin by filtering our examples to obtain
a set of good examples.
Given good examples, we can be certain of the values
of the yj, so we can proceed to learn yi as a function
of the attributes 51,. . . , xn, yr, . . . , yi-1.
Finally, we need something to specify the algorithm
that we output at the end of round 1.

specification of our
learning protocol

assume in this paper that the learner is given I, the
length of the straight line program, at the beginning of
the learning protocol. This assumption will make the pre-
sentation simpler and clearer. The learner can in fact do
equally well without being given 1. (Details omitted.)

3.1 Learning yi
During each round i, the learner simply needs to learn
yi as a function of the input literals and previous yj and
- Yj - Moreover, the formula for yi will be in the class
1CNF U 1DNF. There are at most I< candidates for the
the formula for yi .

The traditional method of E’, S’ pat learning a con-
cept yi that is one of at most I< functions of

yi-1, where th e values of those attribute
%i%;e%?nown perfectly is the following [Valiant, 1984;
Blumer et al., 19871:

The learner chooses

m> $(,K)+ln(-$)) (3)
and obtains m labeled instances from EXAMPLES. The
learner then checks the candidates for the formula for yi (at
most K) one by one until one is found that is one consistent
with allm examples, and outputs that candidate.

We could use exactly this method for our e’, 6’ learning of
yr , since we do always get the correct values of the instance

638 Learning and Knowledge Acquisition

attributes when we request a labeled example in round 1 of
our learning. In fact, we will use this method, except that
we will check all the possible formulas for yr , and “output”
the set of all the formulas that were consistent with all m
examples. (Learning yr is merely an internal subroutine
used in the the first stage of a multi-stage learning protocol;
we don’t really output anything at this point.)

The idea of using a set here is that, when all functions
in the set agree, we know we have the correct value of yi.
Otherwise we know we “don’t know” yr.

DEFINITION. Let F = {jr, . . . , f’} be a set of boolean
formulas, each of the same number of variables, say n.
We say F is coherent on xl,. . .,xn if jl(~r,. . .,zn) =
fz(x1,. . .) x,) = ’ * - = &(x1,. . .) xn).

Let Fl = {fl,l, fl,2, * . . fr,a,) be the set of formulas
we learned for ~1. Notice that for an arbitrary exam-
ple, XI,...,X~, if Fl is coherent on x1, . . . , x,, then the
common value of the formulas must be the true value for
Y&l, * *. , GJ. The reason is that we know the true for-
mula for yr is contained in Fl.

Thus, in order to learn an arbitrary yi, we are led to use

Procedure ConsistentSetLearner (hereinafter CSL)
Inputs: i; Fl, . . . , Fi- ’ 1 (previously learned formula sets for
Yl,..* , yi-1); n, E’, and 6’.
Output: Fi, a set of formulas for yi, or “Fail.”
Pick m according to equation 3. Repeat the following un-
til either m “good” examples have been obtained, or else
2m attempts have been made. In the latter case, output
“Fail .”
Obtain an example, xi, . . . , xn, by calling EXAMPLES. If
every Fj, 1 5 j 5 i - 1, is coherent on x1, . . . , x,, con-
sider x1, . . . , x, to be “good,” and save it. If not, discard
it. Once m “good” examples have been obtained, output
all candidate formulas for yi (as a function of x1, . . . , xra
and yi,... , yi-1) that are consistent with all m “good”
examples.

The key thing to note in Procedure CSL is that once
an example has been found to be good, then-for that
example-we know not only the values of the instance at-
tributes xl,. . . , xn, but also the values of yi, . . . ;~/a-1.

3.2 Learning the target concept
Procedure CSL does indeed give us a way to learn our
target concept t once we calculate appropriate values for
6’ and 6’.

Theorem I. Let 8 = e/dIC. Let 6’ = s/t. Call CSL(l),
CSL(2), . . . , CSL(I). Then,

1. with probability at least 1 - 6,
Q no cad1 ever returns ‘%aid, ” and,
8 with probability at least 1 - E every Fa is coherent

on a randomly drawn instance, xl,. . . , xn and,
2. if every Fi is coherent on xl,. . . ,xnr then

Yl(Xl,..., x,) (making th e appropriate substitutions
for intermediate ya) correctly classifies x1, . . . , x,.

(Proof omitted.)
Thus we get as our output a simple program that with

probability 1 - S classifies most examples correctly, and
“knows,” because it found some incoherent Fi, when it is
given one of the rare examples it can’t classify.

On the other hand, if we really want to simply pat learn,
and output a boolean circuit, we can do that as well by
doing the following: Pick any formula for yr from Fl to
obtain a gate computing yl. Use this gate wherever y1
is called for later. In the same manner, pick any formula
from F2 to be a gate for computing ~2. Continue in this
fashion until we finally have a circuit for yl taking only
variables x1, . , . , xn as inputs.

Corollary 1 If we run the process described in Theorem 1,
and then convert to a boolean circuit as described above,
this process pat learns.

3.3 Noise
We note here that the above procedure can be modified to
tolerate a small amount of malicious noise [Valiant, 19851
or a somewhat larger amount of random labeling noise [An-
gluin and Laird, 19881, although the behavior we get from
our algorithm is not quite as good as probably almost al-
ways useful.

4 ary an
In this paper, we have shown how to learn complicated
concepts by breaking them into subconcepts. The key
idea we used was maintaining a list of all possible can-
didates (the “version spaces”) for the correct subconcept,
instead of simply picking some one candidate. For the
purposes of this paper, we were concerned with the class
ICNF U lDNF, but our method is applicable to any poly-
nomial size class. We expect that this particular method
will prove to have other applications.

We believe this general approach is the philosophically
correct way to do inductive inference, since what distin-
guishes induction from deduction is that in induction one
can never be completely certain that one has learned cor-
rectly. (See [Kugel, 19771.) It is always possible that one
will see a counterexample to one’s current favorite theory.
This idea of maintaining a list of all the candidates for
the correct “answer” has recently born fruit elsewhere in
the field of inductive inference as well, in a new model of
recursion theoretic inductive inference [Rivest and Sloan,
19881, and in a method for inference of simple assignment
automata [Schapire, 19881.

Another contribution of this paper has been to intro-
duce the notion of learning that is reliable, and probably
almost always useful, and to give a learning procedure that
achieves such learning.

In fact, our learning procedure is in one sense not merely
reliable, but even better: Because it has maintained can-
didate sets for all subconcepts, it need not simply output
“I don’t know,” on difficult instances. It has maintained
enough information to be able to know which subconcept
is causing it to output “I don’t know.” Thus, in a learning
environment where it is appropriate to do so, our learn-
ing procedure can go back and request more help from the
teacher on that particular subconcept.

ents
We would like to thank the anonymous readers whose com-
ments contributed to both the clarity and content of this
paper.

Rivest and Sloan 639

eferences
[Angluin and Laird, 19881 Dana

Angluin and Philip Laird. Learning from noisy ex-
amples. Machine Learning, 2(4):343-370, 1988.

[Angluin et al., 19871 Dana Angluin, William I. Gasarch,
and Carl H. Smith. Training Sequences. Techni-
cal Report UMIACS-TR-87-37, University of Mary-
land Institute for Advanced Computer Studies, Au-
gust 1987.

[Blumer et ab., 19861 Anselm Blumer, Andrzej Ehren-
feucht, David Haussler, and Manfred K. Warmuth.
Classifying learnable geometric concepts with the
Vapnik-Chervonenkis dimension. In Proceedings of
the Eighteenth Annual ACM Symposium on Theory of
Computing, pages 273-282, Berkeley, California, May
1986.

[Blumer et al., 19871 Anselm Blumer, Andrzej Ehren-
feucht, David Haussler, and Manfred K. Warmuth.
Occam’s razor. Information Processing Letters,
24:377-380, April 1987.

[Haussler, 19861 David Haussler. Quantifying the induc-
tive bias in concept learning. In Proceedings AAAI-
86, pages 485-489, American Association for Artificial
Intelligence, August 1986.

[Haussler, 19871 David Haussler. Bias, version spaces and
Valiant’s learning framework. In Proceedings of the
Fourth International Workshop on Machine Learning,
pages 324-336, University of California, Irvine, June
1987.

[Kearns et al., 1987a] Michael Kearns, Ming Li, Leonard
Pitt, and Leslie Valiant. On the learnability of
boolean formulae. In Proceedings of the Nineteenth
Annual ACM Symposium on Theory of Computing,
pages 285-295, New York, New York, May 1987.

[Kearns et al., 1987b] Michael Kearns, Ming Li, Leonard
Pitt, and Leslie Valiant. Recent results on boolean
concept learning. In Proceedings of the Fourth Inter-
national Workshop on Machine Learning, pages 337-
352, University of California, Irvine, June 1987.

[Kugel, 19771 Peter Kugel. Induction, pure and simple.
Information and Control, 35:276-336, 1977.

[Laird et al., 19841 John Laird, Paul Rosenbloom, and
Allen Newell. Towards chunking as a general learning
mechanism. In Proceedings AAAI-84, pages 188-192,
August 1984.

[Laird et al., 19861 John Laird, Paul Rosenbloom, and
Allen Newell. Chunking in Soar: the anatomy of
a general learning mechanism.
l(l):ll-46, 1986.

Machine Learning,

[Miller, 19561 G. M-11 1 er. The magic number seven, plus or
minus two: some limits on our capacity for processing
information. Psychology Review, 63:81-97, 1956.

[Mitchell, 19771 Thomas. M. Mitchell. Version spaces: a
candidate elimination approach to rule learning. In
Proceedings IJCAI- 77, pages 305-310, International
Joint Committee for Artificial Intelligence, Cam-
bridge, Mass., August 1977.

Learning and Knowledge Acquisition

[Pitt and Valiant, 19861 Leonard Pitt and Leslie G.
Valiant. Computational Limitations on Learning from
Examples. Technical Report, Harvard University
Aiken Computation Laboratory, July 1986.

[Rivest and Sloan, 19881 Ronald L. Rivest and Robert
Sloan. A new model for inductive inference. In Moshe
Vardi, editor, Proceedings of the Second Conference
on Theoretical Aspects of Reasoning about Knowledge,
pages 13-27, Morgan Kaufmann, March 1988.

[Schapire, 19881 Robert E. Schapire. Diversity-Based In-
ference of Finite Automata. Master’s thesis, MIT
Lab. for Computer Science, May 1988.

[Valiant, 19841 Leslie G. Valiant. A theory of the learn-
able. Communications of the ACM, 27(11):1134-
1142, November 1984.

[Valiant, 19851 Leslie G. Valiant. Learning disjunctions of
conjunctions. In Proceedings IJCAI-85, pages 560-
566, International Joint Committee for Artificial In-
telligence, Morgan Kaufmann, August 1985.

[VanLehn, 19871 Kurt VanLehn. Learning one subproce-
dure per lesson. Artificial Intelligence, 31(1):1-40,
January 1987.

