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We present new algorithms for inferring an unknown finite-state automaton from
its input/output behavior, even in the absence of a means of resetting the machine
to a start state. A key technique used is inference of a homing sequence for the
unknown automaton. Our inference procedures experiment with the unknown
machine, and from time to time require a teacher to supply counterexamples to
incorrect conjectures about the structure of the unknown automaton. In this set-
ting, we describe a learning algorithm that, with probability 1 — , outputs a correct
description of the unknown machine in time polynomial in the automaton’s size,
the length of the longest counterexample, and log(1/6). We present an analogous
algorithm that makes use of a diversity-based representation of the finite-state
system. Our algorithms are the first which are provably effective for these problems,
in the absence of a “reset.” We also present probabilistic algorithms for permutation
automata which do not require a teacher to supply counterexamples. For inferring
a permutation automaton of diversity D, we improve the best previous time bound
by roughly a factor of Dz/]og D. ) 1993 Academic Press, Inc.

1. INTRODUCTION

Imagine a simple, autonomous robot placed in an vunfamiliar environ-
ment. Typically, such a robot would be equipped with some sensors
(a camera, sonar, a microphone, etc.) that provide the robot limited
information about the state of its environment. Being autonomous, the
robot would also have some simple actions that it has the option of
executing (step ahead, turn left, lift arm, etc.).

For instance, the robot might be in the simple toy environment of Fig. 1.
In this environment, the robot can sense its local environment (whether the
“room” it occupies is shaded or not), and can traverse one of the out-going
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edges by executing action “x” or action “y.”
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D

Fi1G. 1. An example robot environment.

A priori, the robot may not be aware of the “meaning” of its actions, nor
of the sense data it is receiving. It may also have little or no knowledge
beforehand about the “structure” of its environment.

This problem motivates the research presented in this paper: How can
the robot infer on its own from experience a good model of its world?
Specifically, such a model should explain and predict how the robot’s
actions affect the sense data received.

Certainly, once such a model has been inferred, the robot can function
more effectively in the learned environment. However, programming the
robot with a complete model of a fairly complex environment would be
prohibitively difficult; what is more, even if feasible, a robot with a pre-
programmed world model is entirely lacking in flexibility and would likely
have a hard time coping in environments other than the one for which it
was programmed. Thus, the development of effective learning methods
would both simplify the job of the programmer, and make for a more
versatile robot.

This problem of learning about a new environment from experience has
been addressed by a number of researchers using a variety of approaches:
Drescher (1986) explores learning in quite rich environments using an
approach based on Piaget’s theories of early childhood development.
Wilson (1985) studies so-called genetic algorithms for learning by
“animats” in unfamiliar environments. Kuipers and Byun (1988) advocate
a “qualitative” approach to the related problem of learning a map of a
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mobile robot’s environment. The map-learning problem is also studied by
Mataric (1990).

In this paper, we take an initial step toward a general, algorithmic
solution to the robot’s learning problem. Specifically, we give a thorough
treatment to the problem of inferring the structure of an environment that
is known a priori to be deterministic and finite state. Such an environment
can be naturally modeled as a deterministic finite-state automaton: the
robot’s actions then are the inputs to the automaton, and the automaton’s
output is just the sense data the robot receives from the environment. Our
goal then is to infer the unknown automaton by observing its input—output
behavior.

This problem has been well studied by the theoretical community, and
it continues to generate new interest. (See Pitt’s paper (1989) for an
excellent survey.) Virtually all previous research, however, has assumed
that the learner has a means of “resetting” the automaton to some start
state. Such an assumption is quite unnatural, given our motivation; as in
real life, we expect the robot to learn about its environment in one
continuous experiment. The main result of this paper is the first set of
provably effective algorithms for inferring finite-state automata in the
absence of a reset.

Here is a brief history of some of the previous, theoretical work on
inference of automata. The most important lesson of this research has been
that a combination of active experimentation and passive observation is
both necessary and sufficient to learn an unknown automaton.

First, concerning inference of an unknown automaton from passively
received data, Angluin (1978) and Gold (1978) show that it is NP-
complete to find the smallest automaton consistent with a given sample of
input-output pairs. Pitt and Warmuth (1993) show that merely finding an
approximate solution is intractable (assuming P # NP). In Valiant’s (1984)
so-called “probably approximately correct” model, Kearns and Valiant
(1989) consider the problem of predicting the output of the automaton on
a randomly chosen input, based on a random sample of the machine’s
behavior. Extending the work of Pitt and Warmuth (1990}, they show that
this problem is intractable, assuming the security of various cryptographic
schemes. Thus, learning by passively observing the behavior of the
unknown machine is apparently infeasible.

What about learning by actively experimenting with it? Angluin (1981)
shows that this problem is also hard. She describes a family of automata
that cannot be identified in less than exponential time when the learner can
only observe the behavior of the machine on inputs of the learner’s own
choosing. The difficulty here is in accessing certain hard-to-reach states.

In spite of these negative results, Angluin (1987), elaborating on Gold’s
results (1972), shows that a combination of active and passive learning
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is feasible. Her inference procedure is able to actively experiment with
the unknown automaton, and in addition, in response to each incorrect
conjecture of the automaton’s identity, her algorithm passively receives a
counterexample, a string that is misclassified by the conjectured
automaton. (Such counterexamples are considered passive data because
they are not freely chosen by the learner.) Angluin’s algorithm exactly
identifies the unknown automaton in time polynomial in the automaton’s
size and the length of the longest counterexample.

As mentioned above, a serious limitation of Angluin’s procedure is its
critical dependence on a means of resetting the automaton to a fixed start
state. Thus, the learner can never really “get lost” or lose track of its
current state since it can always reset the machine to its start state. In this
paper, we extend Angluin’s algorithm, demonstrating that an unknown
automaton can be inferred even when the learner is not provided with a
reset.

This paper also includes an improved version of Angluin’s algorithm in
the case that a reset is available; this improved algorithm significantly
reduces the number of experiments that must be performed by the learner.

The generality of our results allows us to handle any “directed-graph
environment,” such as the one in Fig. 1. This means that we can handle
many special cases as well, such as undirected graphs, planar graphs, and
environments with special spatial relations. However, our procedures do
not take advantage of such special properties of these environments, some
of which could probably be handled more effectively. For example, we have
found that permutation automata are generally easier to handle than
non-permutation automata.

In previous papers (Rivest and Schapire, 1987; Rivest and Schapire,
1990; Schapire, 1988), we introduced the “diversity-based” representation
of finite automata, and we argued that, in some situations, this “egocentric”
representation is far more natural and compact than the usual state-based
representation. We also described an algorithm that was proved to be
effective for permutation automata, even in the absence of a reset. Some
general techniques for handling non-permutation automata were also
discussed; although not provably effective, these seemed to work well in
practice for a variety of simple environments.

In this paper, we generalize these results, demonstrating probabilistic
inference procedures that are provably effective for both permutation and
non-permutation automata. More generally, we present new inference
procedures for the usual global state representation, as well as for the
diversity-based representation.

Like Angluin, we assume that the inference procedures have an
unspecified source of counterexamples to incorrectly conjectured models of
the automaton. This differs from our previous work where the learning
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model incorporated no such source of counterexamples; as already men-
tioned, this limitation makes learning of finite automata infeasible in the
general case. For a robot trying to infer the structure of its environment,
a counterexample is discovered whenever the robot’s current model makes
an incorrect prediction. For the special class of permutation automata, we
show that an artificial source of counterexamples is unnecessary.

Our algorithms use powerful new techniques based on the inference of
homing sequences. Informally, a homing sequence is a sequence of inputs
that, when fed to the machine, is guaranteed to “orient” the learner: the
outputs produced in executing the homing sequence completely determine
the state reached by the automaton at the end of the homing sequence.
(This should not be confused with a distinguishing sequence, described later,
whose output determines the starting state from which the sequence was
executed.) Every finite-state machine has a homing sequence. For each
inference problem, we show how a homing sequence can be used to infer
the unknown machine, and how a homing sequence can be inferred as part
of the overall inference procedure.

In sum, the main results of this paper are four-fold: We describe efficient
algorithms for inference of general finite automata using both the state-
based and the diversity-based representations; both of these algorithms
require a means of experimenting with the automaton and a source of
counterexamples. Then, for permutation automata, we give efficient algo-
rithms for both representations that do not require an external source of
counterexamples. The time of the diversity-based algorithm for permuta-
tion automata beats the best previous bound by roughly a factor of
D3/log D, where D is the size of the automaton using the diversity-based
representation. In the other three cases, our procedures are the first
provably effective polynomial-time algorithms.

2. TwO REPRESENTATIONS OF FINITE AUTOMATA

2.1. The Global State-Space or Standard Representation

An environment or finite-state automaton & is a tuple (Q, B, 3, g4, 7)
where:
» @ is a finite nonempty set of states,
¢ B is a finite nonempty set of input symbols or basic actions,
» J is the next-state or transition function, which maps Q x B into Q,
* qo, a member of Q, is the initial state, and
« y is the owtput function, which maps Q into {0, 1}.



304 RIVEST AND SCHAPIRE

This is the standard, or state-based, representation. Note that, although we
prove all our results for two-value output functions y, the generalization of
these results to multiple-value output functions is straightforward.

For example, the graph of Fig. 1 depicts the global state representation
of an automaton whose states are the vertices of the graph (4, B, C, D),
whose transition function is given by the edges, and whose output function
is given by the shading of the vertices (i.e., y(g)=1 if and only if ¢ is
shaded).

We denote the set of all finitely long action sequences by 4 = B*, and we
extend the domain of the function é(qg, -) to 4 in the usual way: é(q, 1) =g,
and d(q, ab)=46(d(q, a), b) for all ge Q, ae A, be B. Here, 1 denotes the
empty or null string. Thus, d(q, a) denotes the state reached by executing
sequence a from state g; for short, we often write ga to denote this state.

We say that & is a permutation automaton if for every action b, the
function &( -, b) is a permutation of Q.

We refer to the sequence of outputs produced by executing a sequence
of actions a=b,b,---b, from a state g as the output of a at g, denoted

glay:
glay = <{y(q), y(ghy), 7(gb,b,), ..., 7(gh by ---b,) ).

For instance, if the robot in Fig. 1 executes action g = xy from its current
state ¢ = C, then it will observe the sequence of outputs

glay=C{xy ) =010.

(Do not confuse y(qa) and g{a). The former is a single value, the output
of the state reached by executing « from g; for instance, y(ga) =0 in the
example above. In contrast, ¢g<{a) is a (|a| + 1)-tuple consisting of the
sequence of outputs produced by executing @ from state ¢.)
Finally, for ac A, we denote by @<a) the set of possible outputs on
input a:
Q<ay={q{a).qeQ}.

Clearly, |Q<{a)| <|Q| for any a.

Action sequence a is said to distinguish two states ¢, and g, if
g,{a) #qg,{a). For instance xy distinguishes states C and D of the
environment of Fig. 1, but not states A and B. We assume that & is reduced
in the sense that, for every pair of distinct states, there is some action
sequence that distinguishes them.

2.2. The Diversity-Based Representation

In this section, we describe the second of our representations. Our
interest in this representation derives from the fact that, for a variety of
environments, the diversity-based representation is far more compact and
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natural than the usual state-based representation. (An example is given
below.) See our previous papers (Rivest and Schapire, 1987; Rivest and
Schapire, 1990; Schapire, 1988) for further background and detail.

The diversity-based representation is based on the notion of rests and
test equivalence. A test is an action sequence. (This definition differs slightly
from that given in previous papers where the automata considered had
multiple outputs (or “sensations”) at each state.) The value of a test ¢ at
state g is y(gqt), the output of the state reached by executing ¢ from g¢.

Two tests ¢, and ¢, are equivalent, written t, =1,, if the tests have the
same value at every state. For instance, in the environment of Fig. 1, tests
yxx and xx are equivalent since the value of each is 1 in every state;
similarly, tests yy and A are equivalent since each has value 1 in states A
and B, and O in states C and D.

It is easy to verify that *=" defines an equivalence relation on the set of
tests. We write [¢] to denote the equivalence class of t, the set of tests
equivalent to 1. The value of [¢] at ¢ is well defined as y(g¢). The diversity
of the environment, D(&), is the number of equivalence classes of the
automaton: D(&)=|{[t]:re A}|. We will see that D(&) is a natural
measure of the size of the diversity-based representation. It can be shown
that I1g(]Q]) < D(€) < 2'?), so the diversity of a finite automaton is always
finite (Rivest and Schapire, 1987; Schapire, 1988).

As described in our previous papers, there are natural environments with
small diversity but an enormous number of states. For example, this is the
case in the “Register World.” In this environment, the robot observes the
leftmost bit of an r-bit register. The robot’s actions allow it to flip the value
of this bit, or to rotate the contents of the entire register left or right (with
wrap-around). It can be shown that the diversity of this environment is
only 2r: it turns out that for each of the register’s bits, this environment has
one test equivalence class corresponding to the bit, and one corresponding
to the complement of the bit. In contrast, the usual global-state representa-
tion for this environment is enormous—there is one state for each of the 2’
possible configurations of the register’s r bits.

The equivalence classes can be viewed as state variables whose values
entirely describe the state of the environment. This is true because two
states are equal (in a reduced sense) if and only if every test has the same
value in both states.

It is often convenient to arrange the equivalence classes in an wupdare
graph such as the one in Fig. 2 for the environment of Fig. 1. Each vertex
in the graph is an equivalence class so the size of the graph is D(£). An
edge labeled b € B is directed from vertex [¢,] to [¢,] if and only if ¢, = bt,.
These edges are well defined since if r=1¢ then br=bt. Note that, by
transitivity of the equivalence relation, each vertex has exactly one in-going
edge labeled with each of the basic actions.
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[xx] [x] [yx]

Fi6. 2. The update graph for the environment of Fig. 1.

We associate with each vertex [¢] the value of ¢ in the current state g.
In the figure, we have used shading to indicate the value of each vertex in
the robot’s current state. The output of the current state is given by vertex
[1], so this is the only vertex whose value can be directly observed. When
an action b is executed from ¢, the value of each vertex [¢] is replaced by
the old value of [br], the vertex at the tail of [¢]’s (unique) in-going
b-edge. That is, in the new state gb, equivalence class [¢] takes on the old
value of [b?] in the starting state g. This follows from the fact that
y({gb)t) =y(q(bt)). For instance, if action y is executed in the environment
of Figs. 1 and 2 from the current state C, then the value of [A] in the new
state is 1, the old value of [y]; the new value of [yxy] is 0, the old value
of [xy ]. One can verify from Fig. 1 that these are indeed the correct values
of these tests in the new state Cy =B.

Thus, the value of each equivalence class in the state reached by
executing any action can be determined easily using the update graph.
Thus, the update graph can be used to simulate the environment.

2.2.1. Simple-Assignment Automata

The update graph can be viewed more abstractly as a special kind of
automaton: A simple-assignment automaton & is a tuple (V, B, Y, v,, w),
where:
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» Vis a finite nonempty set of variables,

» B is a finite nonempty set of input symbols or basic actions,
e Y is the update function, which maps V x B into V,

* vy, a member of V, is the output variable, and

» w is the initial-value function which maps V into {0, 1}.

Here, we interpret V' as a vector of state variables whose values
determine the state of &. The initial values of these variables are given
by w, and the output of the machine is the current value of the special
variable v,. When an action b e B is executed, each variable v is updated
in the new state with the old value of variable Y (v, b).

The function ¥ can be extended to the domain Vx A by defining
Y{v, A)=v and I(v, ba)=Y(XY(v,a),b) for veV, aec A and be B. Note
that, unlike the more usual extension of this kind, Y processes action
sequences from right to left, rather than from left to right. We define ¥ in
this fashion to give it the desired property that when action sequence a is
executed, variable v is updated with the old value of variable Y (v, a). In
particular, this means that the output of .¥ after executing a€ A4 from the
initial state is (Y (v,, a)).

Thus, the update graph is itself a simple-assignment automaton. In this
case, the set V is the set of equivalence classes {[7]: 1€ A}; the update
function is defined by the rule I([¢], #)=[bt]; the output variable is
vo=[4]; and w([¢]) is the value of [¢] in the initial state, y(gy¢). With
these definitions, it is straightforward to verify that Y(v,, )= [¢], and so
(¥ (vg, 1)) =7y(6(gq, t)) for all 1€ A.

On first blush, the structures of simple-assignment automata (such as the
update graph of Fig. 2) and of ordinary finite-state automata (such as the
one given by the transition diagram of Fig. 1) appear to be quite similar.
In fact, their interpretations are very different. In the global-state represen-
tation, the robot moves from state to state while the output values of the
states remain unchanged. On the other hand, in the diversity-based (or
simple-assignment) representation, the robot remains stationary, only
observing the output of a single variable ([4]), and causing with its actions
the values of the variables to move around. Thus, the diversity-based
representation is more egocentric—the world is represented relative to
the robot. In contrast, in the state-based representation, the world is
represented by its global structure.

3. HOMING SEQUENCES

Henceforth, we set D= D(&), n=10Q|, k=|B|.
A homing sequence is an action sequence h for which the state reached by
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executing A is uniquely determined by the output produced: thus, 4 is a
homing sequence if and only if

(Vq, € @WVg,€ Q) q,<h)y =q,{h)=q,h=q,h

“w 9

For example, the string consisting of the single action “x” is a homing
sequence for the environment of Fig. 1. If g{(x>=00, then ¢gx=C; if
q{x» =01, then ¢gx=B; and, if g{(x)> =11 then gx =A.

It is easy at first to confuse a homing sequence with a distinguishing
sequence, a sequence a whose output uniquely determines the starting state
from which the sequence was executed (i.e., if ¢, {a) =¢,{a) then g, =gq,).
Every distinguishing sequence is a homing sequence, but the converse is
false. For example, although x is a homing sequence for the environment
of Fig. 1, it is not a distinguishing sequence since if g{x ) is observed to be
11, then it is impossible to determine if the starting state ¢ was A or B. In
fact, this environment has no distinguishing sequence. In contrast, every
environment has a homing sequence. Distinguishing sequences will play an
important role in the permutation-environment algorithms of Sections 6
and 7.

It is perhaps also helpful to contrast the notion of a homing sequence
with that of a synchronizing sequence. A synchronizing sequence is a
sequence a whose execution brings the automaton into the same state,
regardless of the starting state. That is, ¢,a = g,a for all states ¢, and ¢,.
For example, xxx is a synchronizing sequence for the environment of
Fig. 1 since gxxx = A for all states g. Every synchronizing sequence is a
homing sequence (trivially), but the converse is false. (For example, in
Fig. 1, x is not a synchronizing sequence.) Also, not every environment has
a synchronizing sequence. (For example, no non-trivial permutation
automaton has a synchronizing sequence.)

Kohavi (1978) gives a complete discussion of homing sequences (as well
as distinguishing and synchronizing sequences). He distinguishes between
preset and adaptive homing sequences. Initially, we make use only of
the former because they are simpler; later, we show that our inference
procedures can be improved using adaptive homing sequences.

We outline next two techniques for constructing homing sequences.
These will play central roles in all of the inference algorithms that follow.

Given full knowledge of the structure of &, a homing sequence 4 can be
constructed easily as shown in Fig. 3. Initially, A= 4. On each iteration of
the loop, a new extension x is appended to the end of 4 so that A now
distinguishes two states not previously distinguished. Thus, [Q(h)| <
[Q<hx )| <n, and therefore the program will terminate after at most n — |
iterations. Further, since each extension need only have length n—1 (see,
for instance, Kohavi (1978, Theorem 10-2})), we have shown how to
construct a homing sequence of length at most (n—1)2,
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Input: £ - a finite-state automaton

Output: h - a homing sequence

Procedure:

1he2A

2 while ¢;{h} = g2({h) but g1k # g2k for some q,,¢2 € Q do
3 let z € A distinguish ¢,k and q2h

4 h+— hx

5 end

F1G. 3. A state-based algorithm for constructing a homing sequence.

In Sections 5 and 7, we will be interested in a special kind of homing
sequence that is formulated in terms of the diversity-based framework.
Recall that a homing sequence h has the defining property that the final
state reached after executing 4 from some starting state ¢ can be deter-
mined from the observed output sequence g<{h). Recall also that the
current state of the environment is given by the values of all the tests re A.
Thus, 4 is a homing sequence if the value of every test ¢ can be determined
at gh, the final state reached, given the observed output sequence g<{h>.

An important special case occurs when the value of any test 7 at gh is
simply equal to one of the components of g(4 >, for every state ¢. That is,
for some prefix p of A, y(ght) =y(gp) for all g€ Q, which of course means,
by definition, that p = Az

More formally, we define a diversity-based homing sequence to be an
action sequence h satisfying the property described above, namely, that for
all tests 1€ A there exists a prefix p of & that is equivalent to Az

As outlined above, every diversity-based homing sequence 4 is indeed a
homing sequence. For suppose g,k # g,h. Then there is some 7 for which
v(q,ht) #y(q,ht). Since At is equivalent to some prefix p of 4, we have
(g1 2) #7(q2p). Thus, g, {h) # g, h).

As an example, it can be shown that h=xxyx is a diversity-based
homing sequence for the environment represented in Figs. 1 and 2. For
instance, if t = yxy then ht = xxyxyxy = xxy.

Figure 4 shows an algorithm for constructing a diversity-based homing
sequence k. Again, A is built up from A by appending extensions x. On each
iteration, the cardinality of the set {[ p]: p prefix of 4} increases by at least

Input: & - a finite-state automaton

Output: h - a diversity-based homing sequence
Procedure:

lhe2A

2 while (3z € A)(Vp prefix of k) p # hz do

3 h +— hz

4 end

F1G. 4. A diversity-based algorithm for constructing a homing sequence.

643/103;2-11
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one; since the cardinality of this set is clearly bounded by D, there can be
at most D—1 iterations. Also, each extension need be no longer than
D— 1. (For if [x| = D, then x has at least D+ 1 suffixes, at least two of
which must be equivalent. Thus, for some p, r,'s, x=prs, rs=s and r+ 1;
therefore, ps is a shorter extension of # than x for which Aps is inequivalent
to every prefix of A.) Thus, we can find a diversity-based homing sequence
of length at most (D —1)2

Some other remarks about the length of homing sequences: First, the
homing sequences constructed by the preceding algorithms are the best
possible in the sense that there exist environments whose shortest homing
sequence has length Q(n?) (or 2(D?)). However, given a state-based (or a
diversity-based) description of a finite-state machine, it is NP-complete to
find the shortest homing sequence for the automaton. (This can be shown,
for instance, by a reduction from exact 3-set cover.)

4. A STATE-BASED ALGORITHM FOR GENERAL AUTOMATA

In this and the next sections, we describe general algorithms for inferring
the structure of an unknown environment &.

We say that the learner has a perfect model of its environment if it can
predict perfectly the output of the environment given any sequence of
actions. The goal of our inference procedures is to construct a perfect
model.

We assume that the learner is given access to &, in other words, that the
learner can observe the output of the environment when actions of its own
choosing are executed. We also assume that there is a “teacher” who
provides the learner with counterexamples to incorrectly conjectured
models of the environment. A counterexample is a sequence of actions
whose true output from the current state differs from that predicted by the
learner’s model. Typically, there will be many sequences of actions that are
counterexamples to a given conjecture, and by choosing an especially long
or short counterexample, the teacher can significantly affect the running
time of the procedure. This fact is reflected in our running times which
depend on the length of the counterexamples provided.

The notion of a teacher who provides counterexamples may at first seem
unnatural in the context of a robot exploring its environment. However, in
practice, it may often be possible for the robot to find counterexamples on
its own without the aid of an outside agent. For instance, we might imagine
the robot, upon completion of a model of the environment which it believes
to be correct, using that model to make predictions of the output of the
environment’s next state until an incorrect prediction is made. In this
situation, the sequence of actions leading up to the error is the needed
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counterexample. Thus, the number of counterexamples needed by our
algorithms can be viewed as the number of times the robot’s conjectured
world model must be revised due to incorrect predictions.

Alternatively, to find a counterexample, the robot might simply execute
a random sequence of actions. Again, a counterexample is obtained if the
random walk causes the robot’s model to make an incorrect prediction.
The use of random walks in lieu of counterexamples is a central theme of
the algorithms for permutation automata presented in Sections 6 and 7. It
is an open problem to characterize generally those environments in which
random walks are an adequate substitute for an external source of
counterexamples.

We assume that the unknown automaton is strongly connected, that is,
every state can be reached from every other state:

(Vq:€ Q)(Vq,€ Q)(Fae A)(q1a=q,).

We make this assumption with little loss of generality: if & is not strongly
connected, then an experimenting inference procedure, having no reset
operation, will sooner or later fall into a strongly connected component of
the state space from which it cannot escape, and so will have to be content
thereafter learning only about that component.

This section focuses on an algorithm based on the global state represen-
tation for inferring an arbitrary unknown automaton.

4.1. Angluin’s L* Algorithm

Our procedure is based closely on Angluin’s L* algorithm for learning
regular sets (1987). Angluin shows how to efficiently infer the structure of
any finite-state machine in the presence of what she calls a minimally
adequate teacher. Such a teacher can answer two kinds of queries: On a
membership query, the learner asks whether a given input string w is in the
unknown language U, i.e., whether the string is accepted by the unknown
machine. (In our framework, a string w is accepted if y(gow)=1.) On an
equivalence query, the learner conjectures that the unknown machine
is isomorphic to one it has constructed. The teacher replies that the
conjecture is either correct or incorrect, and in the latter case provides a
counterexample w, a string accepted by one machine but not the other.

The idea of Angluin’s algorithm is to maintain an observation table
(S, E, T). Here, S is a prefix-closed set of strings, and E is a suffix-closed
set of strings. We can think of S as a set of strings that lead from the start
state to the states of the automaton, and E as experiments which are
executed from these states. The last variable T is a two-dimensional table
whose rows are given by S SB, and whose columns are given by E. Each



312 RIVEST AND SCHAPIRE

entry T(se), where se SU SB and e e E, records whether the string se is in
the unknown language. For fixed s, Angluin denotes by row(s) the vector
of entries T(se) for varying e € E. Her algorithm extends S and E based on
the results of queries, and ultimately outputs the correct automaton based
on an equivalence between the states of the unknown machine and the
distinct rows of the table 7. We denote by N,, and N, the number of
membership and equivalence queries made by L*. These variables are
implicit functions of n, k and m, where m is the length of the longest
counterexample received. For Angluin’s procedure L*, we have N, =
O(kmn*) and N, =n—1. However, in Section 4.5 below, we show how N,
can be improved to O(kn® + nlog m).

In our framework, the learner could easily simulate Angluin’s algorithm
L* if it were given a reset: to perform a membership query on w, the
learner resets the environment, and executes the actions of w, observing the
output of the last state reached. To perform an equivalence query on &,
the learner resets the automaton and conjectures that §” is a perfect model
of the environment. The teacher returns an action sequence w on which the
conjectured model fails; this is the counterexample needed by L*.

4.2. Using a Homing Sequence in Lieu of a Reset

Of course, in our model the learner is not provided with a reset. The
main idea of our algorithm is to replace the reset with a homing sequence.
In many respects, a homing sequence behaves like a reset: by executing the
homing sequence, the learner discovers “where it is,” what state it is at in
the environment. However, unlike a reset, the final state is not fixed, and
the learner does not know beforehand what state it will end up in. (As
mentioned above, an automaton need not possess a synchronizing
sequence, a sequence that forces the automaton into a given state
independent of its starting state. So we use homing sequences instead.)

We begin by supposing that the learner has been provided with a true
homing sequence h. Later, we show how to remove this assumption.

Suppose we execute h from the current state g, producing output
ag=q{h). If we ever repeat this experiment from state ¢ and find
q'{h> =0, then, because 4 is a homing sequence, the states where we
finished must have been the same in both cases: gh=q'h If we could
guarantee that the output of 4 would continue to come up ¢ with good
regularity, then we could simply infer & by simulating Angluin’s algorithm,
treating gh as the initial state. When L* demands a reset, we execute h: if
the output comes up ¢, then we must be at gh, and our “reset” has
succeeded; otherwise, try again. Unfortunately, in the general case, it may
be very difficult to make 4 produce o regularly.

Instead, we simulate an independent copy L* of L* for each possible
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Input: access to £, a finite-state automaton
h - a homing sequence for £
QOutput: a perfect model of £
Procedure:
1 repeat
2 execute h, producing output o
3 if it does not already exist, create L}, a new copy of L*
4 simulate the next query of L:
5 if L} queries the membership of action sequence a then
6 execute a and supply L} with the output of the final state reached
7 if L;, makes an equivalence query then
8 if the conjectured model £’ is correct then

9 stop and output £’
10 else
11 obtain a counterexample and supply it to L7
12 end

FIG. 5. A state-based algorithm for inferring & given a correct homing sequence.

output ¢ of executing A, as shown in Fig. 5. Since |Q<h)| <n, no more
than » copies of L* will be created and simulated. Furthermore, on each
iteration of the loop, at least one copy makes one query and so makes
progress towards inference of &. Thus, this algorithm will succeed in
inferring & after no more than n(N,, + N.) iterations.

4.3. Constructing a Homing Sequence

We now describe how to combine construction of the homing sequence
h with the inference of §. We maintain throughout the algorithm a
sequence 4 which we presume is a true homing sequence. When evidence
arises indicating that this is not the case, we will see how # can be extended
and improved, eventually leading to the construction of a correct homing
sequence. Initially, we take A=A

We use our presumably correct homing sequence # as described above
and in Fig. 5. If 4 is indeed a true homing sequence, we will of course
succeed in inferring &.

On the other hand, if /4 is incorrect, we may discover inconsistent
behavior in the course of simulating some copy of L*: suppose on two dif-
ferent iterations of the loop in Fig. 5, we begin in states ¢, and ¢,, execute
h, produce output ¢,{h> =q,{h)> =0, and, as part of the simulation of L},
execute action sequence x. If & were a homing sequence, then x’s output
would have to be the same on both iterations since ¢, # and ¢,4 must be
equal.

However, if 4 is not a homing sequence, then it may happen that
g h{x) #q,h{x>. That is, we have discovered that x distinguishes ¢4
and ¢,A, and so, just as was done in the algorithm of Fig. 3, we replace 4
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Input:  access to £, a finite-state automaton
n - the number of states of £
Output: a perfect model of £

Procedure:
1heA
2 repeat
3 execute h, producing output o
4 if it does not already exist, create L?, a new copy of L*
5 if |{row(s) : s € S}| < n then
6 simulate the next query of L as in Figure 5 (and check for inconsistency)
7 else
8 let {s1,...,3n41} C S, be such that row(s;) # row(s;)
9 randomly choose a pair s;,s; from this set
10 let e € E; be such that Tp(s;e) # To(s5€)
11 with equal probability, re-execute either s;e or sje (and check for inconsistency)
12 if inconsistency found executing some string = then
13 discard all existing copies of L*
14 h— hx

15 until a correct conjecture is made

FiG. 6. A state-based algorithm for inferring &.

with Ax, producing in a sense a “better” approximation to a homing
sequence. At this point, the existing copies of L* are discarded, and the
algorithm begins from scratch (except for resetting A, of course). Since A
can only be extended in this fashion n—1 times, this only means a
slowdown by at most a factor of n, compared to the algorithm of Fig. 5.

Figure 6 shows how we have implemented these ideas. Here we have
assumed #, the number of global states, has been provided to the learner.
In fact, this assumption is entirely unnecessary. Although we omit the
details, we can show that the stated bounds below hold (up to a constant)
for a slightly modified algorithm which does not require that the learner be
explicitly provided with the value of n The trick is the usual one of
repeatedly doubling our estimate of ».

Recall that L* requires maintenance of an observation table (S, E, T).
Let (S,, E,, T,) denote the observation table of L}*. Of course, T, can only
record output produced when executing an action sequence from what is
only presumed to be a fixed initial state.

Angluin’s analysis implies that if L* makes more than N,, + N queries,
then the number of distinct rows will exceed n. This can only happen if A
is not a homing sequence, but how do we know how to correctly extend
h if we have not actually seen an inconsistency? We show that if an
inconsistency has not been found by the time the number of rows exceeds
n, then we can use a probabilistic strategy to find one quickly with high
probability.

Suppose we execute 4 from state ¢, with output o, and we find that for
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LY, there are more than n distinct rows. Then, as in Fig. 6, there exist
strings s;, .., 5,,, in S, whose rows are all distinct. By the pigeon-hole
principle, there is at least one pair of distinct rows s, s; such that
ghs; = ghs,. Further, since row(s;) # row(s;), there is some e € E, for which
T,(s;e) # T,(s;e). However, y(qhs;e) = y(qhs;e). Therefore, either y(ghs;e) #
T,(s.e) or y(ghs,e)# T,(s;e), and so re-executing s,e (or s,e, respectively)
from the current state gh will produce the desired inconsistency. (Recall
that T, records the results of previous executions of these strings.) If such
an inconsistency is detected, then h is extended as usual with the
appropriate sequence (s;e or s;e).

So the chance of randomly choosing the correct pair s,, 5; as above is at
least ("3')"', and the chance of then choosing the correct experiment to
re-run of s,e or s;e is at least 1/2. Thus, the probability of finding an incon-
sistency using the technique of Fig. 6 in this situation is at least 1/n(n+ 1).
Repeating this technique n(n+ 1)In(1/) times gives a probability of at
least 1 — ¢ of finding an inconsistency.

Since 4 is extended at most # — 1 times, and since at most »n copies of L*
can be in existence at any one time, there can be at most n{n — 1) copies
of L* ever created by the procedure. Thus, the total number of counter-
examples required is at most n(n— 1) N.. Also, since each of the n—1
extensions of h has length O(n+ m) (a bound on the length of any query
required by L*), the total length of # cannot exceed O(n?+ nm). Finally,
since the probabilistic procedure described above for finding inconsistencies
may need to be applied to each of the n(n—1) copies of L*, we replace 8
with §/n? to ensure an overall probability of success of 1 — 6.

Putting these facts together, we have proved:

THEOREM 1. Given & >0, the algorithm described in Fig. 6 halts and
outputs a perfect model with probability at least 1 — 9 in time polynomial in
n, m, k and log(1/6), and after executing

O(n*(n+ m)(n?log(n/6) + N,y + Nyz))

actions. Also, the total number of counterexamples required is at most
O(nNy).

If we assume m=0(n) and k=0(1) and use the previously given
bounds on N,, and N, then the number of actions executed by the
procedure (and the running time as well) simplifies to O(n® log(n/8)).

The procedure can be modified, replacing the preset homing sequence
which we have been using with an adaptive one whose input at each step
depends on the output seen up to that point. This modification shaves a
factor of n off the bound given above, and is described in greater detail in
the next section.
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It is an open question whether this bound can be significantly tightened.
It seems likely that an algorithm which combines the many copies of L*
into one would have a superior running time, but we have not been
successful in implementing this intuition.

4.4. Adaptive Homing Sequences

The algorithm of Fig. 6 is certainly quite wasteful in that, when / is
discovered not to be a homing sequence, everything is thrown away and
the algorithm starts over from scratch. As a result, up to n copies of L* are
discarded each time 4 is extended. Since 4 can be extended up to n—1
times, this means as many as n” copies of L* may eventually be simulated
by the algorithm.

In this section, we describe a way of modifying the procedure so that
only one copy of L* is discarded when 4 is extended, leading to an O(n)
bound on the total number of copies of L* that are simulated.

As mentioned above, the idea of the modification is to replace our preset
homing sequence (the kind described up to this point) with an adaptive
one. In many ways, preset homing sequences are rather inefficient tools.
For example, it may be that, starting from some states, executing only half
the sequence is sufficient to reach a state uniquely determined by the
observed output. An adaptive homing sequence is a much more intelligent
kind of homing sequence. It is like a preset homing sequence in that the
output observed can be used to determine the state reached. However,
the difference is that the action executed at each step may depend on the
output observed up to that point.

Despite its name, an adaptive sequence a is not a sequence at all but a
decision tree with the following properties: The root node of a is labeled 4,
and each of the other nodes in the tree is labeled with one of the basic
actions in B. Every node has at most one 0-child, and at most one 1-child.
An example adaptive sequence is given in Fig. 7.

An adaptive sequence is executed in a natural manner: We begin at the

Fic. 7. An example adaptive homing sequence.
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root node. If the output of the current state is 0 (or 1) then we proceed to
the O-child (1-child) of the root. The basic action labeling the node reached
is then executed, and, based on the resuiting output, we proceed down
the tree in the same fashion, at each step branching to the 0- or 1-child
depending on the output observed. This continues until we “fall off” the
tree, i.e., until it is necessary to move to a node that does not exist in the
tree.

For example, if the tree of Fig. 7 is executed from the current state of
Fig. 1, then the action sequence “x” will be executed producing output 01;
if the sequence is executed from state D, then “xy” will be executed with
output 001.

As with ordinary sequences, we write ga to denote the state reached by
executing adaptive sequence a from state ¢, and we write g{a) to denote
the output produced by executing a from state gq. Thus, as for preset
homing sequences, an adaptive homing sequence is an adaptive sequence h
for which ¢g,{h> =¢g,{h) implies g,h=gq,h for all ¢,,q,€ Q.

44.1. Modifying the Algorithm

We are now ready to describe how the algorithm of Fig.6 can be
modified to use adaptive rather than preset homing sequences. The
structure of the algorithm is not changed at all. Nor is the simulation of
queries, the handling of over-sized copies of L*, etc. Only the construction
of the adaptive homing sequence h is modified.

Initially, A is chosen to be the adaptive sequence consisting just of a root
node i. As before, 4 is repeatedly executed; each time, its output selects a
copy of L*. A query of the selected copy is then simulated, just as before.
Now, however, a detected inconsistency is handled differently: Suppose an
inconsistency is found executing x. More precisely, suppose that on two
different iterations, we began in states ¢, and ¢,, executed A, and observed
output ¢g,{h>=g¢-,{h) =0. Further, when x was then executed, it was
discovered that g,h<{x> # q,h{x ). This latter fact implies that ¢ 4 # ¢, h,
and so & canpot be an adaptive homing sequence. As before, we would like
to use x to repair h: we would like to “graft” x onto tree 4 so that the
resulting tree 4’ distinguishes ¢, and ¢,.

In fact, this can be done quite easily: Let x=5,---b,, where b,e B, and
let v, be the last node of 4 visited when # was executed from ¢, and ¢, (it
must be the same node in both cases since ¢,{#)=¢q,{h)). In other
words, when h was executed from ¢,, our traversal of tree » must have
ended at v,. For the traversal to have terminated at this point, it must be
the case that v, has no child labeled with the output of the final state
reached by executing 4 from ¢, ; that is, v, must have no y(q, #)-child. The
grafted tree 4’ is the same as 4 except that in A’, node v, has a y(g, h)-child
which is the root of a linear subtree corresponding to the execution of x.
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More precisely, in #', each node v,_ |, has a y(q hb,---b,_,)-child v, labeled
b, for 1 gi<r.

It can be verified that g, (#'> #¢,{h’) since g, A{x> #g,h{x>. Thus
|Q<Ch>] < |Q<h D] <n, and so h will be grafted in this fashion at most n— 1
times.

So line 14 in Fig. 6 is replaced by a call to a grafting subroutine as
described above. Further, since # and A’ are the same except for node v,
it is no longer necessary to discard at line 13 all copies of L*—it is
sufficient to discard only L}, the copy on which an inconsistency was
discovered. Thus, since |Q (A )| increases each time a single copy of L* is
discarded, at most n — 1 copies are ever discarded throughout the execution
of the algorithm. Since the number of copies in existence at any one
time is also bounded by #, it follows that at most 2n — 1 copies of L* are
simulated by this modified procedure. Thus, this improves the bounds
given in Theorem 1 by a factor of 6(n), both on the number of actions
executed and on the number of counterexamples required.

4.5. Improving Angluin’s L* Algorithm

In this section, we describe a variant of Angluin’s L* algorithm that
significantly improves the worst-case number of membership queries made
by the inference procedure. This, in turn, leads to immediate improvements
in the performance of our homing sequence algorithms.

As mentioned above, Angluin’s algorithm maintains an observation table
(S, E, T). The function or table T records the value T(x)= y(g,x) for each
string xe (Su SB)E. (Here, g, is &’s initial state to which, in Angluin’s
model, the automaton can always be reset.) The entries of T are filled
in using membership queries, and it follows that the number of queries
needed is just the cardinality of (Su SB)E. For Angluin’s algorithm, |S|
is bounded by O(mn), and |E| by O(n). Our algorithm improves on
Angluin’s by limiting |S| to just n; however, to achieve this bound on [§],
nlgm additional queries will be needed, giving an overall bound of
O(kn*+ nlog m) on the required number of membership queries.

As mentioned earlier, S is a prefix-closed set of strings representing states
of &. Unlike Angluin’s algorithm, ours maintains the condition that for all
$1,8,€8, if 5, #5, then g5, # qo5,. Thus, |S| <n at all times. Also, S only
grows in size (strings are never deleted from §). The set E represents a set
of experiments which distinguish the states of S (i.e., the states gqs for
seS).

Here is an outline of our algorithm, which is very similar to Angluin’s.
Initially, S and E are initialized to the set {1}. Using membership queries,
fill in the entries of table T, and make (S, E, T) closed (discussed below).
Then, from (S, E, T), construct and conjecture machine &'. If the
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conjecture is correct, quit. Otherwise, update the set E using the returned
counterexample, and repeat until a correct conjecture is made.

We say observation table (S, E, T} is closed if for all se SB there exists
s'e S such that row(s)=row(s’). (Recall that row(s) is that function
S E—{0,1} for which f(e)=T(se).) If se SB witnesses that (S, E, T) is
not closed, then s is simply added to S (and 7 updated using membership
queries). Note that this maintains the condition that all rows of § are
distinct (and thus, the states to which they lead from ¢, are also distinct).

{Angluin’s algorithm also requires that the observation table be consis-
tent, that is, that row(s,b)=row(s,b) whenever row(s,)=row(s,) for
51, 5,€ 8 and be B. However, since our algorithm maintains the condition
that row(s,)#row(s,) for s,#s,, this condition is always trivially
satisfied. )

The conjectured machine &' =(Q’, B,J', gy, ') is constructed in a
natural manner: its state set is Q' = § with initial state gy = 4; its output
function is defined by y'(s}= T(s); and its transition function is given by
d'(s, 6)=ys', where s’ is that unique member of § for which row(sh)=
row(s’).

Finally, if & is different from &, a counterexample z is obtained, and
the set £ must be updated. Our algorithm adds only a single string to £
using z. However, to find this string, the procedure makes up to Ig |z|
membership queries.

The key property that must be satisfied by the new experiment e (which
will be added to F) is the following: for some s, s'€ S and b e B for which
row(s)=row(s’'b), it must be that y(q,se)# y(q,s'be). That is, experiment
e must witness that g,s and q,s'6 are different states. If this property is
satisfied, then adding e to E will cause | S| to increase by at least one (to
maintain closure) so that the total number of equivalence queries is
bounded by n— 1.

We now describe how such an experiment can be found. For 0<i<|z|,
let p,, r; be such that z=p,r,, and |p,| =i Let 5,=03'(4, p;) be the state
reached in &' after the first i symbols of z have been executed. Recall that
s; is both a state of &' and a string of A.

On input z, machine & reaches a state outputting the value y(gqz)=
Y(qoSors). (Assume this value is 0.) On the other hand, on input z, machine
&' reaches a state outputting the value y'(8'(4 2))=7'(s)=T(s54) =
7(qo5: ¥ = )- Since z is a counterexample, this value must be 1.

Let a,=7y(qq5;r;). Roughly speaking, a, is the output obtained by
processing the first / symbols of z using &', and the rest using &. Note that,
by simulating &, s; can be computed, and so a; can be determined with a
membership query for any i From the comments above, we have that
oy =0 and a,;= 1. Using a kind of binary search, we can find some i such
that a, # a,,  (such an i clearly must exist): first we query o, ; if the result
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is 1, then query a,,,4; otherwise, query a; .4, etc. In this manner, such an
i can be found in lg |z| queries.

We claim then that r,,, is the desired experiment: Let b be the first
symbol of r,. Then y(qes:bri, )=y(qosir)=a;#,,. =7qoSis17ic1)
However, by definition of s;, we have 5;,, =4'(s;, b) and so row(s;, )=
row(s;b). Thus, as argued above, adding r,,, to E causes |S| to increase.
It follows that at most n — 1 equivalence queries are required by the algo-
rithm. For each equivalence query, g m membership queries are needed to
find the right experiment to add to E. Also, since |E| <n and |S| <~n, at
most |(S U SB)E| < (k+1)n* membership queries are needed to record
the entries of 7. Finally, it can be seen that each membership query has
length at most n+ m. The procedure is clearly polynomial time, and its
correctness follows from arguments given above and by Angluin.

In a quite naive implementation of the algorithm, the rows of § are filled
n first, and, once a row of some string in SB has been completed, it is
compared in O(n?) time to every other row of S until an identical row is
discovered, or until it is determined that there is no other identical row in
S (in which case, (S, E, T) is not closed). For even such a naive implemen-
tation, it can be verified that each query requires processing time that is at
worst proportional to the bound of O(n’ + nm) on the length of A in the
algorithm of Fig. 6.

Combining this improvement to L* with the adaptive homing sequence
ideas described in Section 4.4, we thus have shown:

THEOREM 2. There exists an algorithm that halts and outputs a perfect
model of any finite-state environment & with probability at least 1 — 6. The
algorithm’s running time, and the number of actions executed are both
bounded by

O(n’(n+ m)(nlog(n/d) + kn + log m)).

Also, the total number of counterexamples required is at most O(n?).

5. A DIVERSITY-BASED ALGORITHM FOR GENERAL AUTOMATA

In this section, we describe a diversity-based algorithm for inferring finite
automata in the general case.

In the presence of a reset, it can be shown that Angluin’s L* algorithm
can be modified to infer the unknown automaton in time polynomial in the
diversity D (rather than the number of states n). This follows from an
observation made independently by Angluin and Young that is described
in Section 2.7 of Schapire’s master’s thesis (1988). Briefly, this observation
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states that the update graph captures, in some sense, the “reverse behavior”
of the unknown automaton &. More specifically, by reversing the direction
of all edges in &’s update graph, we obtain a structure that is essentially
equivalent to another automaton &’. Angluin and Young’s observation says
that a string w is accepted by & (i.e., y(gow)=1) if and only if w®, the
reverse of w, is accepted by &’. Thus, a structure that is basically
isomorphic to the update graph (modulo the reversal of all edge directions)
can be inferred using L* (assuming a reset) by appropriately “reversing” all
queries made by the algorithm.

In the absence of a reset, the problem of inferring a diversity-based
representation becomes considerably more involved. As far as we know,
there is no direct application of L* that solves this problem, as was the
case in Section 4.

The main idea of the algorithm described in this section is to construct
a simple-assignment automaton that is equivalent to the update graph.
More specifically, the algorithm builds a set 7 of tests which eventually
contains exactly one representative of each equivalence class. These tests
become the variables of the constructed simple-assignment automaton,
with the obvious correspondence of tests re T to nodes [¢] of the update
graph.

Recall that, in the update graph, each node [t] has a single in-going
b-edge which is directed from node [bt]. Therefore, to construct an
appropriate update function, our algorithm tries to determine for each test
te T and basic action b € B, that test ' € T which is equivalent to bt. Setting
Y(1, b) =1, this clearly yields a structure that is isomorphic to the update
graph.

So to summarize, our algorithm constructs a simple-assignment
automaton by constructing a set T of tests representing all of the
equivalence classes, and by determining which test in 7T is equivalent to x,
for all xe BT.

Initially, the set T is the singleton {i}. A test ¢ is added to T only after
it has been determined that ¢ is inequivalent to every test already in T.
Thus, at all times, |7| < D, and, as desired, each test of 7 represents a
different test-equivalence class (i.e., a node of the update graph); eventually,
we would like for all of the equivalence classes to be represented.

As described above, for each test x € BT, we want to determine that test
in 7 which is equivalent to x. To this end, a function or table r: BT — 27
is maintained with the interpretation that r(x) represents those tests in T
which are plausibly equivalent to x. Initially, »(x)= T since at the start we
have no evidence that any test 1€ T is or is not equivalent to x. When
evidence arises that 1 # x, the test 7 is removed from r(x).

Note that if | 7] = D (so that every equivalence class is represented in T),
and if, for all xe BT, r(x) is a singleton {s.} for some s, € T, then x must
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be equivalent to s,, and, as outlined above, a simple-assignment
automaton isomorphic to the update graph can be easily constructed: its
variable set is 7, its output variable is 4, and its update function ¥ is
defined by (¢, b) = s,,. (The initial values function w is handled below.)

The simple-assignment automata conjectured by our algorithm are
constructed from T and r in a very similar manner. We choose V=T and
vy = A. However, in general, it may not be the case that |r(x)| =1 for all
x € BT. Therefore, we choose (s, b) to be an arbitrary element of r(bt). If
one or more of our choices is incorrect, then we can use the provided coun-
terexample to correct our error. More precisely, we show below that, using
experiments and counterexamples to this conjectured automaton, we can
find te T and b€ B such that (¢, b) Zbt. When this happens, our choice
for Y(t, b) can be removed from r(bt). Thus, for some xe BT, r(x) is
reduced in size.

Also, note that if r(x) is reduced to the empty set, then x is inequivalent
to every member of T, and so can itself be added to 7. The table r is then
updated appropriately. Since |T| < D, since r(x)< 7, and since some r{x)
shrinks on each iteration, it follows that this simplified algorithm converges
to a perfect model after at most (k + 1) D? iterations.

5.1. An Algorithm That Uses a Provided Homing Sequence

As in Section 4, we assume initially that a diversity-based homing
sequence A is given. Later, we show how A can be constructed.

Let ¢ be any test. Then Af is equivalent to some prefix of 4. It will be
important, for selected tests ¢ in A4, to determine specifically that prefix
which is equivalent to 1. For this reason, we maintain candidate sets C(t) <
{0, ..., |h|} representing the prefixes of 4 which are plausibly equivalent to
ht. Let h, denote that prefix of h of length i Initially, C(¢)= {0, .., {4},
and, when it has been determined that h;# A¢, index i is removed from the
set. Note that when A¢ is executed from some state ¢, both of the outputs
v(gh;) and y(ght) are observed since h; i1s a prefix of At. Thus, if we find that
these outputs differ, then clearly ;% At and so i can be deleted from C(¢).

Suppose A has been executed from some state ¢ producing output o=
{Gg, - Oy ». We say that a set X< {0, ..., ||} is coherent (with respect to
o) if 6,=0; for i, je X. If X is coherent, then the common value of all o,
with ie X is called X’s selected value (with respect to ¢), and it is denoted
a(X].

Note that, if C(7) is coherent, then the value of r in the current state gh
is known—it is just C(t)’s selected value (since At must be equivalent to
some h; with ie C(¢)). On the other hand, if candidate set C(¢) is
incoherent, then if 7 is executed, at least one element of C(¢) will be
eliminated.
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What’s more, if i is eliminated from C(¢), then every other index j for
which A, =4, is also removed since the two tests have the same value in
every state. That is, |{[h;]: ie C(2)}} decreases by at least one. Thus, C()
can be reduced in this fashion at most D — 1 times.

Also, if we find for tests 1, and 7, that C(¢,) and C(z,) are disjoint, then
hat, and ht, cannot possibly belong to the same equivalence class.
Moreover, if for any ae A we find that C(at,) and C(at,) are disjoint, then
hat, #hat, and therefore ¢, #1t,. This is the primary technique used by
our procedure for determining inequivalence of tests (and thus for the
elimination of tests from r(x)).

Our algorithm maintains a candidate set for each te T. If all of these
candidate sets are coherent (after /2 has been executed from some state g),
then the value of every test re T is known in the current state gh; these
values are used then to determine the function w in the conjectured
automaton. Specifically, if all the candidate sets for the tests in 7 are
coherent, then a conjecture may be made in which V, vy, and ¥ are as
described above, and w(t) is taken to be the selected value of C(r) (which
is, from the preceding remarks, the value of ¢ in the current state).

We describe next how a counterexample z to such a conjecture & is
handled. The technique is similar in some ways to that described in Sec-
tion 4.5. Let z= p,s;, where |p,] =i for 0<i<|z|. Let t;= Y(4, 5;). Finally,
let u;= p;t;, We maintain henceforth a candidate set for each test u,. Our
hope is that these candidate sets will be reduced to the point that, for some
i, C(u;)nClu;,,)=. For if this happens, then we can conclude that
u;#Zu;,,. Noting that u,=p,;t, and wu,,,= p,;bt;,, where b is the last
symbol of p,, ,, this implies that ¢,# bt ,. Since t,= ¥ (¢;,,, b)er(bt;, ),
it follows that ¢; can be deleted from r(bs,, ) as desired.

We show that C(u,) and C(u,) are disjoint. This will allow us,
eventually, to reduce the candidate sets C(u;) sufficiently so that two
consecutive sets C(u;) and C(u,, ) will be made disjoint as needed. Note
that the conjectured automaton & predicted that the value of z in the
current state gh is w(Y (4, z)) = w(ty). Assume this value is 0. Then, by @’s
definition, C(uy)=C(to)c o '(0), where ¢ '(x)={0<i<|h|:0,=x}.
On the other hand, since z is a counterexample, y(ghz)=1. Thus, if z is
executed from the current state, then C(u )= C(z) will be included in
6 '(1), and, as claimed C(u,) " C(u,;) will be empty.

Unfortunately, to continually reduce the sets C(u;), these sets must
continually be found incoherent. This may be a problem because they may
very well all be found to be coherent without any consecutive pair being
disjoint. To handle this situation, our algorithm makes a new conjecture
that leaves V, v, and Y alone, but which chooses w appropriately as
described above. This gives a new sequence of tests u, for which candidate
sets must also be maintained. We show below that no more than D—1
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Input: access to £, a finite-state automaton
h - a diversity-based homing sequence for £
Output: a perfect mode] of £
Procedure:
1 T« {A}; C(A) «{0,...,]|h}
2r(d)—T,TA\b)—Aforbe B
340
4 repeat
5 execute h, producing output o
6 if C(t) is incoherent for some ¢t € T then
7 execute ¢ and update C(t)
8 else if K(i,7) is incoherent for some 1 <7 < ¢, 0 £ j < m,; then

9 choose the smallest i for which K'(7, j) is incoherent for some 0 < j < m;
10 execute u;; and update K(i,7)
11 else
12 w(t) —o[C(t)] fort € T
13 conjecture § = (T, B, T, \,w)
14 if S is a perfect model then
15 stop and output S
16 else
17 obtain counterexample z
18 L— €+ 1; me — |2
19 for 0 < j < my:
20 ug; + pj - T(A, 8;) where z = pjs; and |p;| = j
21 K(£,7) « {0,...,|h]}
22 K(£,0) — o~ (w(uw))
23 execute z = ugy, and update K (¢, my)
24 if K(1,7)NK(i,j+1) =0 forsome 1 £1< ¢, 0<j<m; then
25 T « botg where u; ;41 = pboto, |p] = j and by € B [this implies ui; = p- T(to, bo)]
26 r{z) —r(z) = {T{to, bo)}
27 if r(z) = @ then
28 r(t) —r(t)U{z} forte BT-T
29 T —TU{z}; Clz) — {0,...,|h|}
30 r(bz) — T for be B
31 T(t,b) «— any member of r(bt) forbe B,t €T
32 £—0
33 end

FiG. 8. A diversity-based algorithm for inferring & given a diversity-based homing sequence.

such sequences need ever be started by the algorithm before one of the sets
r(x) is reduced.

The complete algorithm is shown in Fig. 8. In the figure, when a coun-
terexample z is received, a sequence of tests uy, ..., U,,, is constructed as
described above; variable [ counts the number of such counterexamples
received for the same choice of Y. The set K(i, j) is a candidate set for test
u;. Note that the same test may have several candidate sets, not necessarily
the same: even if u;=u,,, it may be that K(i, j)# K(i’, j') if (i, j)#
(i', j">. Although this may seem inefficient, it appears to be necessary for
proving the algorithm’s correctness.
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Also, candidate sets are updated in the obvious way: if te T is executed
leading to a state outputting the value x, then C(t) « C(1)n ¢~ '(x) (and
similarly for sets K(i, j)). Note that only the specified candidate set is
modified.

THEOREM 3. The algorithm described in Fig. 8 halts in polynomial time
after executing at most

O(kmD*(|h| + D + m))

actions, and outputs a perfect model.

Proof. If the algorithm halts, then it outputs a perfect model. Therefore,
it suffices to prove that it halts having executed only the stated number of
actions.

Most of the arguments needed to prove this theorem were given above.
Here, we try to pull those arguments together, filling in missing details.
Below, we say that a property holds on each iteration if it holds at the
beginning each iteration of the main loop.

First, on each iteration, if i ¢ C(r) then A, # Ar for any 1. This follows from
the manner in which C is updated. Also, the contrapositive implies that
C(¢) is non-empty on each iteration since h,= ht for some i since 4 is a
diversity-based homing sequence. These statements hold also for candidate
sets K(i, j). (At line 22, this follows from the fact that, by w’s definition,
Clu) < 6~ Hwlup)).)

These facts imply that if K(i, j))n K(i, j+ 1)=& as at line 24, then
u;#u,; ;,,, which implies that x = by, # Y(¢,, by), where b, 1, and x are
as defined at line 25. Therefore, we can conclude generally that, on each
iteration, t¢r(x) only if x#¢, for te 7, xe BT. Note also that r(x) is
non-empty on each iteration, due to the code at lines 27-30.

Thus, if the last element of r(x) is eliminated, then x ¢ for all re T, and
so it follows that the tests in 7 are pairwise independent. Thus, by defini-
tion of diversity, | 7| < D on each iteration, and so lines 25-32 are executed
at most (k + 1) D? times; in particular, this implies that / is reset to zero at
most this many times.

We say a set x respects set y if either xc y or xny=(.

By definition of equivalence, and also because of the manner in which C
is updated, the set {0<i< [h|: h;=x} respects C(¢) for any tests ¢ and x,
on each iteration. (That is, if #,=h,; and / is removed from C(z), then so
is j.) Thus, C(¢) can be reduced in size at most D — 1 times (and similarly
for K(i, j)). Combined with the fact that |7] < D, this implies that the
condition at line 6 is satisfied at most D(D — t) times.

We show below that /< D—1 on each iteration. This will complete the
theorem: Since / is reset to zero at most (k + 1) D? times, the condition at

643/103/2-12
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line 8 can be satisfied at most (k 4+ 1) mD?*(D —1)? times (where, as usual,
m is the length of the longest counterexample so that each m; <m). Also,
since / is incremented at line 18, the conditions at lines 6 and 8 can fail to
be satisfied at most (k + 1) D*(D — 1) times. This gives us an overall bound
on the total number of iterations of the main loop, and, since at most
[h| + m+ D — 1 actions are executed on each iteration, the result follows.
Thus, to complete the proof, we show that /<D —1 on each iteration.

LemMma 4. /< D-—1.

Proof. First, note that on each iteration, K(i, /) K(i, j+ 1) # & for
1 <i</ and 0<j<m, This follows from the fact that if the condition at
line 24 is satisfied, then / is reset to zero.

We claim that on each iteration K(i’, j') respects K(i, j) for 1 i’ <i</,
0<j<m, and 0<j' <m,;. To see that this is so, note that K(i, j) can only
be reduced at lines 10, 22, and 23. If K(i, j) is reduced at line 10, it must
be that K(i',j') is coherent since the smallest i for which K(i, j) is
incoherent is chosen at line 9. Thus, if one element of K(i', j') is removed
from K(i, j), then so are all the others, and so K(i’, j'} will respect K(i, j)
following an update at line 10. Similarly, if K(i, f) is updated at lines 22 or
23, then it must be that K(i', j') is coherent (since the condition at line 8
did not hold). Thus, as before, K(i', j') respects K(i, j) following an update
at these lines. Therefore, as claimed, K(i', j') respects K(i, /) on each
iteration for i’ <.

To prove I/ < D — 1, we define a sequence of undirected graphs G, ..., G,.
The vertex set of each graph is the set {0, ..., || }. In G,, an edge connects
two vertices r and s if and only if A, =h, or {r,s} < K(i’, j) for some
1<i'<i, 0<jsm,..

We are interested in counting the number of connected components of
each graph G,. First, note that G, has at most D connected components by
definition of diversity. We show below that each graph G,_; has at least
one more connected component than G,. Since every (non-empty) graph
has at least one connected component, this implies that /<D — 1.

Since the edge set of G,_, is a subset of the edge set of G, it suffices to
find a single pair of vertices which are connected in G,, but not in G,_ .

As argued above in discussing the handling of counterexamples, the sets
K(i, 0) and K(i, m;) are disjoint. Let r and s be respective members of these
sets. Then r and s are connected in G, because, as remarked above,
K(i, j)n K(i, j+ 1) # & on each iteration, for 0< j<m,.

We claim that r and s are not connected in G,;_,. For if they were, then
since r but not s is contained in K(i, 0), there must be adjacent vertices r’
and s’ on the path from r to s for which r* but not s’ is contained in K(i, 0).
Since r’ and s’ are adjacent, either A, =h, or {r, s’} = K(i’, j) for some
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i’ < i. However, as already argued, either case implies that {r’, s’} respects
K(i, 0), a contradiction.

This completes the proof of the lemma, as well as the proof of
Theorem 3. |}

So Theorem 3 shows that an effective diversity-based algorithm exists for
inferring a finite-state environment, assuming a diversity-based homing
sequence has been provided. We turn next to the problem of extending this
algorithm to handle environments when such a sequence is not available.

5.2. Constructing a Homing Sequence

As was done in the algorithm for learning with a state-based representa-
tion (Section 4), we presume that some sequence # is a true diversity-based
homing sequence until it becomes necessary to extend and improve 4. Our
algorithm constructs 4 in a manner similar to that outlined in Fig. 4.
Initially, A= A. If for some test x, candidate set C(x) is reduced to the
empty set, then clearly # cannot be a diversity-based homing sequence since
this implies that Ax is inequivalent to every prefix of A. We therefore replace
h with hx as is done in Fig. 4. Since more equivalence classes are
represented by the prefixes of 4x than by those of 4, it follows that 2 must
converge to a correct homing sequence if extended in this fashion at most
D —1 times.

Our extended algorithm is quite similar to the one given in Fig. 8. As
before, we maintain a set 7 and function r, which together record
inequivalences determined among the tests. Now, however, the problem of
determining that two tests are inequivalent becomes more difficult: we saw
earlier that if 4 is a diversity-based homing sequence and C(x)n C(y)= &
for two tests x and y, then x# y. However, if & is not a diversity-based
homing sequence, this conclusion may be false since it may be that x and
y are equivalent to one another, but that 4x and hy are not equivalent to
any prefix of A.

Nevertheless, we show that if x and y are in fact equivalent, then by
re-running these tests repeatedly in an appropriate manner, we can with
high probability eliminate all the elements of one of the candidate sets, thus
yielding an extension to A as described above.

Suppose that, having executed h from state ¢, we find that C(x) and
C(y) are coherent, and furthermore, that their selected values are different.
If x = y then, by definition of equivalence, the true values of the two tests
in the current state gh are equal. Thus, the selected value of one of the
candidate sets must disagree with the common value of the two tests in the
current state. If this is the case for x (say), and x is executed, then C(x)
will be reduced to the empty set (and Ax can replace #). In general, if the
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algorithm randomly chooses which of x or y to execute, then with probability
1/2, the candidate set of the chosen test is emptied. Of course, by repeating
such an experiment many times, we can lift our confidence to arbitrarily
high levels.

This then is the approach used by our extended algorithm (Fig. 9) in
determining test inequivalence. The algorithm proceeds just as before.
Now, however, when the candidate sets of two tests are found to be
disjoint (line 27), the procedure does not immediately conclude that the
tests are inequivalent. Rather, it keeps the two candidate sets around and,
when given the opportunity, re-runs the two tests as described above. Only
after the tests have been re-run many times with neither of the candidate
sets emptying does the algorithm conclude that the tests are inequivalent.

THEOREM S. The algorithm of Fig. 9, with probability at least 1 — 5, halts
and outputs a perfect model. The algorithm’s running time, and the number
of actions executed are both bounded by

O(kD*(m + D)(mD + log(kD/3))).

Also, the total number of counterexamples required by the algorithm is at
most O(kD?).

Proof. The proof of this theorem is quite similar to the proof of
Theorem 3. As before, we need only show that the algorithm halts in the
stated number of steps since it only halts when a perfect model has been
found.

As before, i¢ C(¢) only if h;# ht for any test ¢t and 0 < i< |A|. Similarly
for K(i, j).

In the algorithm, the variable s, serves two purposes: When the sequence
of tests u,g, ..., Uy, is first created (lines 21-22), s, is set to — 1. Variable s,
remains negative until the candidate sets of two consecutive tests in this
sequence are reduced to the point that they are disjoint. At this point, s,
become a (non-negative) counter indicating how many times the tests u,q
and u,, have been re-run without either candidate set emptying. It is easily
verified that, on each iteration, K(i, )" K(i, j+ NN# & for 0<j<m,; if
5;<0,and m;=1 and K(i,0)n K(i, 1) =¥ if 5,2 0. (This is because of the
modifications to these data structures that take place at line 29.) Note that
this implies at line 8 that {J; K(i, j) is coherent if and only if every K(i, j)
is coherent and K(i, 0) and K(i, 1Ys selected values agree.

The algorithm is randomized, and can only be shown to behave correctly
when certain low probability events do not occur. Therefore, to simplify the
analysis, we will assume that the algorithm has a good run—specifically,
that if u,, = u;, then s; does not exceed 1g(1/d,), for 1 <i</ Later, we will
show that a good run occurs with probability at least 1 — 4.
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Input:  access to £, a finite-state automaton
D - the diversity of £
é - desired confidence
Output: a perfect model of £
Procedure:
lheA
2 6 —6/((D-1){(k+1)D*+D-1))
3 initialize T, r, T, C and £ as in Figure 8 (lines 1-3)
4 repeat

5 execute h, producing output ¢
6 if C(t) is incoherent for some t € T then
7 execute ¢ and update C(t)
8 else if U;"z‘o K(i,7) is incoherent for some 1 < i < ¢ then
9 choose the smallest ¢ for which this is so
10 if K(i,7) is incoherent for some 0 < j < m; then
11 execute u;; and update K (%, 5)
12 else [m; =1, K(3,0) N K(3,1) = @ and o[K(3,0)] # o[K(3,1)]]
13 choose j € {0,1} randomly
14 execute u; and update K(3, 5)
15 if K(i,7) # 0 then
16 8i+—8;+1
17 if 3, > lg{1/6y) then
18 conclude ujp # uy1: update r, T, C, T as in Figure 8 (lines 25-31)
19 £—~0
20 else
21 make conjecture; handle returned counterexample as in Figure 8 (lines 12-23)
22 8¢ — —1
23 if K(i,7) =@ forsome 1 <:{ < £, 0 < j <m; then
24 h — hu;;
25 C(t)+—{0,...,|h|]} forteT
26 £—0

27 else if K(i,j)NK(i,j +1) =0 and s; <0 for some 1 < i < ¢, 0 < j <m,; then
28 8 —0
29 Ui — tig; it — Ui ja1; K(3,0) — K(4,5); K(i,1) — K(5,j +1); m; — 1
30 end
FiGg. 9. A diversity-based algorithm for inferring &.

Assuming then that a good run occurs, it is clear that 7¢ r(x) only if
x#t for te T, xe BT. Thus, all pairs of tests in T are inequivalent, and
| 7| < D. Further, this shows that lines 18-19 are executed no more than
(k+ 1) D? times.

As argued above, & cannot be extended more than D — 1 times, implying
that lines 24-26 are executed at most D — 1 times. Thus, variable / is reset
to zero no more than R=(k+1)D?*+ D—1 times. Later we will again
argue that /< D — 1 on each iteration; assume for now that this is the case.
Then since s; <1g(1/d,) on each iteration, lines 13-19 are executed at most
R(D —1)1g(1/,) times.

It can be verified, as in Theorem 3, that the set {0<i<|h|: h,=x}
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respects C(¢) for any tests + and x, on each iteration (and likewise for
K(i, j)). Applying our bound on / and on the number of times / is reset, this
implies line 11 is executed at most R(D — 1)? m times, and so the condition
at line 8 is satisfied at most R(D — 1)((D — 1)m +1g(1/6,)) times.

The sets C(z) for te T are reset to {0, .., |#]} at most D —1 times (ie.,
only when 4 is extended). Thus, the condition at line 6 is satisfied at most
D(D —1)? times.

Finally, since / is bounded and is incremented at line 21, the conditions
at lines 6 and 8 fail to be satisfied at most R(D — 1) times, yielding the
stated bound on the number of counterexamples needed. Thus, the number
of iterations of the outer loop can be computed, and the bound on the
number of actions executed follows from the fact that |h|<(D-1)
{m+ D—1). Note that this also gives the stated bound on the number of
counterexamples needed.

The proof that /< D —1 is quite similar to that given in Lemma 4. As
before, we define graphs G, ..., G, on vertex set {0, .., |4 }. We let {r, s} be
an edge of G, if and only if h,=h, or {r,s} =7, K(i', j) for some
1 </’ <i Then G, has at most D connected components. It can be argued
as before that {J, K(i', j) respects K(i, j') if i’ <i. Also, K(i,0) and K(i, m;)
are disjoint. Therefore, if r is in K(;, 0) and s is in K(i, m,) then r and s are
connected in G, but not in G, ; by the argument given in the proof of
Theorem 3. Thus, G;_, has at least one more connected component than
G,andI<D-1.

Thus, we have proved that the stated bound on the number of actions
executed holds on a good run. It remains then only to show that a good
run occurs with probability at least 1 — 4.

As argued above, if K(i,0) and K(i, 1) are coherent with different
selected values, and if u,,=u;,, then the probability is 1/2 that K(i, j) is
empty after u, is executed, for j chosen randomly from {0, 1}. Thus, if
u,o=u;,, then the probability that s, exceeds k is less than 2% In
particular, s; exceeds 1g(1/5,) with probability less than é,.

We argued above that, on a good run, lines 21-22 are executed at most
R(D — 1) times; that is, at most this many pairs u,,, u,; are created. The
chance that s, exceeds Ig(1/d,) when u,, = u,, for any of these pairs is thus
bounded by é. Thus, 6 bounds the probability of a bad run, completing the
proof of the action execution bound.

It is clear that this algorithm runs in polynomial time. It is not so
obvious, however, how it can be implemented to run in time proportional
to the bound on the number of actions executed. We discuss techniques
that can be used to achieve such a time bound.

Perhaps the most time consuming task performed by the algorithm is in
checking the coherence of the many candidate sets. In a naive implementa-
tion, determining the coherence of a subset of {0, ..., |4|} takes O(lh|) time.
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Thus, for instance, checking the |T| candidate sets C(f) at line 6 takes up
to O(D |A|) time; since only O(|h| + D+ m) actions are executed on each
iteration, this gives a time bound that exceeds the action execution bound
by at least a factor of D.

We show instead how the coherence of any candidate set can be checked
in O(D) time using a different representation: We maintain a partition n of
the set {0, .., |h|} with the interpretation that ; and j are in the same block
of = if and only if every time that s was previously executed (line 5), it was
observed that g, = g, (where o was the observed output sequence, as usual).
In particular, if h;= A4, then i and j are always in the same block of n. Thus
Izl < D.

Note that if such a partition is maintained, then on each iteration, each
block of n respects each candidate set C(r) or K(i, j). It therefore makes
sense to represent each candidate set as a set of pointers to the blocks of
7 that it includes. If this is done, then each candidate set contains at most
D pointers, and each set’s coherence can be determined in O(D) time (it is
only necessary to examine the value of one member of each block since all
the other members have the same value).

It is quite easy to see how the partition n can be maintained: Initially,
and each time & is extended, = is set to {{0, .., |4|}}. After h is executed
with output ¢ at line 5, the coherence of each block of n is determined.
Since each index O, .., |4| occurs in only one block of n, this only takes
O(|h]) time. If any block s is incoherent, then it is split into two new blocks
sno '(0) and sna~'(1). Since |n| < D, this can happen at most D — 1
times. Naturally, when it does happen, all of the candidate sets must be
changed so that their members point to blocks of the new partition. This
takes O(D) time for each of the O(mD) candidate sets. Thus, since 4 can
be extended at most D—1 times, the algorithm spends at most O(mD*)
time updating candidate sets in this fashion. (This time is negligible
compared to the number of actions executed.)

This still does not give the desired time bound because, even with this
modification, naively computing / unions, each of up to m candidate sets
as at line 8, can take O(mD?) time. Instead of the naive approach, we
therefore maintain a counter e(i, s) for each 1 <i</ and se n. This counter
indicates the number of candidate sets K(i, j} which include s:e(i,s)=
1{0<j<m;:s< K(i, j)}|. It is straightforward how such a counter can be
efficiently maintained, and the union | ; K(i, j) can now be easily computed
in O(D) time as the union of those blocks s e n for which e(i, s) > 0.

Finally, lines 23 and 27, which appear to require a great deal of search,
actually do not because only a small number of values i, j (those for which
K(i, j) was modified) need actually be checked.

With these ideas, it can now be fairly easily verified that the algorithm
halts within the stated time bound. ||
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6. A STATE-BASED ALGORITHM FOR PERMUTATION AUTOMATA

In this and the next section, we present algorithms for inferring
permutation automata. Unlike the procedures described up to this point,
these procedures do not rely on a means of discovering counterexamples;
the procedures actively experiment with the unknown environment, and
output a perfect model with arbitrarily high probability.

As before, we describe both a state-based and a diversity-based
procedure. In both cases, we describe deterministic procedures that, given
a (diversity-based) homing sequence %, output a perfect model of the
environment in time polynomial in n (or D) and |h|. To construct the
needed homing sequence, we show that any sufficiently long random
sequence of actions is likely to be a homing sequence.

We begin in this section with the state-based case. Consider first the sim-
pler problem of inferring a visible automaton, i.e., one in which the identity
of each state is readily observable. For instance, suppose each state, instead
of outputting 0 or 1, outputs its own name. In this situation, inference of
the automaton is almost trivial. From the current state g, we can
immediately learn the value of d(g, b) by simply executing b and observing
the state reached. If 6(q, b) is already known for all the basic actions, then
either we can find a path based on what is already known about é to a
state for which this is not the case, or we have finished exploring the
automaton. It is not hard to see that O(kn?) actions are executed in total
by this procedure.

Now suppose that the unknown environment & is a permutation
automaton and that a homing sequence 4 has been provided. Because & is
a permutation environment, we can easily show that & is also a distin-
guishing sequence; that is, & distinguishes every pair of unequal states of &.
Put another way, ¢, (h>=¢q,(h) if and only if ¢, =¢,. (For if g, {(h)> =
g,<{h) then, since A is a homing sequence, g, h =g,h. This implies ¢, = ¢,
since & is a permutation environment.) Thus, the identity of any state is
uniquely given by the output of /# at that state; its identity is almost directly
observable.

To infer the environment, we therefore use the inference procedure
sketched above for visible automata. Each state ¢ is named or represented
by g<{# >, the output of 4 at that state. To identify the current state, simply
execute # and observe the output produced.

Although executing 4 is helpful in identifying the state from which the
sequence was executed, doing so is also likely to leave us in a state at the
end of the sequence whose identity is unknown. This is a problem because
the visible-automaton inference procedure requires that we be able to find
a state whose identity is known even without executing A We can
overcome this problem, however, by maintaining a table ¥ which records
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the fact that if 6 =qg<{h) was just observed as the output of executing h,
then the output of 4 if executed from the current state gh is given by u(a).

Thus, we can reach a state whose identity is known (without executing
h from it), we can execute an experiment as dictated by the visible-
automaton inference procedure, and we can identify the last state reached
by executing A. This can of course be repeated as many times as necessary.

Our procedure is given in Fig. 10. As mentioned, each state g is
represented by g{#>, the output of 4 at q. For o€ @<{h», we write g, to
denote that state for which ¢,{h) =0o. This state is well-defined since A
is a distinguishing sequence. A function or table w: Q<h) = QCh) is
maintained for which w(o)=q,h<{h). That is, if 4 was just executed with
output o, then the current state is q,,,.

The transition function is represented by the program variable
d- Q<{hYx B—~ Q<h). For notational purposes, the function 4 can be
extended in the usual manner to the domain Q{4 ) x 4. The variable d is
used to store and compute the output of # in future states. Given o€ @<{4)
and be B, d(o, b) denotes the output of 4 in state g, 6. That is, if properly
constructed, d(a, b)=q,b{h>.

Input: access to £, a permutation automaton
h - homing sequence

Qutput: a perfect model of £

Procedure:

1 d,u are initially undefined everywhere

2 execute h, producing output o

3 repeat

4 if u(o) is not defined then
5 execute A, producing output r
6 u(o) « 7
7 o7
8 else if (3a € A,b € B) d{u(s),a) is defined, but d(u(s), ab) is undefined then
9 choose the shortest such ab
10 o ~ d(u(a),a)
11 execute ab
12 execute A, producing output 7
13 d(a,b) — 1
14 T
15 else
16 exit loop

17 end

18 let g be the current state

19 output the following prediction rule (model of £}):

20 on input @ € A,

21 a — d(u(o),0)

22 predict ¥(ga) = ag  [where ag is the first symbol of qf

Fic. 10. A state-based algorithm for inferring permutation environment &.
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THEOREM 6. The algorithm of Fig. 10 halts and outputs a perfect model
of & after executing at most Olkn(|h| +n)) actions, and in time
O(kn({h| + kn)).

Proof. Clearly, |Q<{h)>|<n, so that after at most n+ kn iterations, the
procedure will halt since every entry of 4 and d will be defined.

We can view d as defining a directed graph whose vertices are the
elements of Q{4 >, and whose edges are of the form ¢ — d(a, b) whenever
ce@<(h>, beB, and d(a, b} is defined. Then the problem of finding an
experiment ab as in the figure can be treated as that of finding a path in
the graph from u{o) to another vertex a whose out-degree is less than .
This is easily done in O(kn) time (for instance, using breadth-first search),
and the resulting experiment ab has length at most », the size of the graph.
This proves the upper bound on the number of actions executed.

The remaining steps of the loop can be achieved in O(|4]) time, for
instance, if we store the elements of ¢ (4> at the leaves of a depth (|4 + 1)
binary tree. It remains then only to show that the prediction rule output by
the algorithm is a perfect model of &.

We prove this by showing that the following invariants hold between
each iteration of the main loop:

1. If e Q<¢h) and u(o) is defined, then u(a) =g, h{h>.
2. WoeQ<{h), be B and d(o, b) is defined then d{a, b)=q,b{(h).

Initially, these invariants hold vacuously since v and 4 are undefined
everywhere. Suppose at the top of an iteration of the loop that h was just
executed from some state ¢ with output o. Then ¢=g4,, and the current
state is g, h. If u(o) is undefined, then 4 is executed from the current state
with output 1. Thus, we learn that t = ¢,2{h). Setting u(o) to 7, invariant
1 is maintained.

On the other hand, if u(o) is defined, then the current state is ¢,,,. If an
experiment ab is found as shown in the figure, then invariant 2, together
with an easy induction argument on the length of a, shows that
a=d(ul(o), a)=q,.,alh). The state we reach by executing a then is just
q,- Executing b, and then & with output 7, we learn that t=¢q,b{h).
Setting d(«, ) =1, invariant 2 is maintained.

With these invariants, it is not hard to see why, after the loop is exited,
the output prediction rule is correct. The current state g is just g, as
before. Given ac 4, we have galh)=d(u(o), a). Therefore, the first
element of d(u(a), a) is y(qa). 1

Finally, we must consider how to construct 4. In fact, any sufficiently
long random sequence of actions is likely to be a homing sequence:
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THEOREM 7. Let 6 >0, and let h be a random sequence of length 8kn® -
In(n)- (n+1n(1/8)). Then h is a homing sequence with probability at least
1-a4.

Proof. The idea is to randomly construct the homing sequence in the
manner described in Fig. 3. On each iteration, an appropriate extension x
which distinguishes some pair of states as needed by the algorithm is likely
to be given by any sufficiently long random walk. This follows from
previous results on random walks in permutation automata. Specifically,
we use the following result:

LEmMMA 8. Let q, and q, be two distinct states and let x be a random
sequence of length 2kn® In(n) of the following form: At each step, with equal
probability, we either do nothing, or we execute a uniformly and randomly
chosen basic action from B. Then the probability that y(q,x)# y(q.x) is at
least 1/2n.

Essentially, the same result is proved in Schapire’s master’s thesis (1988)
using results of Fiedler (1972) on the eigenvalues of doubly stochastic
matrices, in addition to certain properties of point-symmetric graphs.
There, the result was proved for update graphs, but, because of the “dual”
relationship between update graphs and finite automata, the results hold as
stated as well.

Let x,, .., x, be a sequence of random strings, each of length 2kn* In(n).
Let v, =x,x,---x;. We wish to show that y, is a homing sequence with
high probability. Consider a sequence of trials in which “success” on the ith
trial means that either y, _, is a homing sequence (so that y; is as well) or
1@< yi>1>109<y;_>|. Clearly, if n of the trials succeed, then y, is a
homing sequence.

For any choice of y,_ |, Lemma 8 shows that the probability of success
on the ith trial is at least 1/2n. To probabilistically lower bound the total
number of successes, we use the following form of Chernoff bounds due to
Angluin and Valiant (1979):

LemMMma 9. Let X, .., X,, be a sequence of m independent Bernoulli trials,
each succeeding with probability p so that E[ X, J=p. Let S=X,+ --- + X,
be the random variable describing the total number of successes. Then for
0<y <1, the following hold:

o Pr{S>(1+7y) pm]l<e 777> and
« Pr[S<(1—y) pm]<e 7™
Thus, applying this lemma, we see that the probability of fewer than »

successes in r trials is at most 6 if r=4n(n+In(1/6)). This proves the
theorem. |
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These theorems give our inference procedure a running time of
O(k*n® log(n) - (n + log(1/6))).

7. A DIVERSITY-BASED ALGORITHM FOR PERMUTATION AUTOMATA

We can show in a similar manner how a permutation environment can
be inferred using a diversity-based representation. As before, we reduce the
problem to that of inferring a visible automaton—in this case, one for
which all of the test-equivalence classes are known, and for which the value
of each test class is observable in every state. The problem of inferring such
automata is solved in Chapter 4 of Schapire’s master’s thesis (1988); the
solution is based on the careful planning of experiments, and on the
maintenance of candidate sets similar to those described in Section 5.

Let /4 be a given diversity-based homing sequence for the unknown per-
mutation environment &. As before, to simulate the inference algorithm for
visible automata, it suffices to show that the state of the automaton (i.e.,
the values of the test classes) can be observed by executing 4, and further
that it is possible to reach a state whose identity is known even without
executing A. Since & is a permutation environment, we can show that every
test class is represented by some prefix of 4. Therefore, at the current state
g, the values of all the test classes can be observed simply by executing A.

If, having executed /4 from some state g, we find that candidate set C(4;)
is coherent, then the value of test A; in the current state gh is just the
selected value of C(4,;). (As before, 4, is the prefix of & of length i) Thus,
if all the candidate sets are coherent, then gh{h), the output of the entire
sequence, is known in the current state. On the other hand, if one of the
candidate sets is incoherent, then by re-executing # we are guaranteed to
reduce one of the candidate sets. Thus, we can quickly reach a state in
which the output of /# is known without actually executing it.

We say action sequence a is a diversity-based distinguishing sequence if
every test is equivalent to some prefix of a. Such a sequence is clearly a dis-
tinguishing sequence, since if ¢, # ¢, then there exists a test ¢ distinguishing
the two states; since ¢ = p for some prefix p of a, y(q, p)# y(g. p) and so
q.{a) #g,{ay.

A diversity-based distinguishing sequence is also a diversity-based
homing sequence, as is obvious from their definitions. In permutation
environments (but not in general), the converse holds: Suppose 4 is a
diversity-based homing sequence. Let [¢,], [¢;], .., [, ] be the equivalence
classes of &. Then there exist prefixes p,, p,, .., pp of & such that p,=ht,.
Since £ is a permutation environment, if 7,2 ¢, then ht,# hz;. Therefore, the
D prefixes p, are pairwise inequivalent, and so every equivalence class is
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represented by some prefix of 4. Thus, 4 is a diversity-based distinguishing
sequence.

As in the last section, we assume a diversity-based homing sequence A
has been given, and show later how such a sequence can be randomly
constructed.

Our procedure is given in Fig. 11. As mentioned above, the algorithm
maintains various kinds of candidate sets. First, for each 0<i< |A], a set
G(i) is maintained with the interpretation that j is in G(i) if 4, could
plausibly be equivalent to Ah,, ie., if it has not yet been determined that
h;#hh,. (Thus, G(i)=C(h;) in the notation of Section 5.) As described
above, such candidate sets are useful for reaching a state in which the
output of 4 is known prior to its execution from that state.

The algorithm also maintains sets U(i, ) for 0 <7< |h| and b e B; these
sets consist of indices j for which 4, is plausibly equivalent to #k;. To see
why such sets might be useful, suppose # has been executed from some
state g with output o. As seen before, if G(i) is coherent for all i, then
B=qh{h) is known, the output of 4 if executed from the current state g/.
If, moreover, U(i, b) is coherent with respect to f, then y(ghbh;) is known;

Input: access to £, a permutation automaton
h - a diversity-based homing sequence
Output: a perfect model of £
Procedure:
1 G(3),U(i,b) < {0,...,]h|} fori € {0,...,|h]},be B
2 execute h, producing output o
3 repeat

4 if G(z) is incoherent for some 0 < i < |h| then
5 execute A, producing output 7
6 GGE) — Gi)no~(r) for i € {0,..., |k]}
7 g T
8 else
9 Bi — alG(?)] for i € {0,...,[h|}
10 if PLAN-EXP can find a shortest useful experiment ab then
il a; +— BlU(,a)] for i € {0,...,[h{}
12 execute ab
13 execute h, producing output 7
14 U(i,b) «— U(5,b) N o~ (x;) for i € {0,..., |k}
15 o —T
16 else
17 exit loop
20 end

21 let g be the current state

22 B; « olG(i)) for i € {0,...,}h}}

23 output the following prediction rule (model of £):
24 on input a € A, predict y(ga) = B{U(0,a)]

Fic. !1. A diversity-based algorithm for inferring permutation environment £.
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thus, if this is the case for all /, then ghb<{s) can be determined, the output
of & from the state reached if » were executed.

The function U can be extended in a natural manner to the domain
{0, ..., [A]} x A by the rule U(i, 1) = {i} and U(i,ab) =), v(.a) U, b) for
ie {0, .., |k}, aec A and be B. Then the above statements also hold if 4 is
replaced by any action a€ A.

Our algorithm works by trying to reduce the candidate sets U(i, b) as
much as possible until U(i, a) is coherent for all { and all ae A; at this
point, from the preceding comments, a perfect model has been attained.

Let o, B, and g be as above, assuming all G(i)’s are coherent with respect
to o. If U(i, b) is incoherent (with respect to f), then executing b and then
A will clearly cause some candidate set U(, b) to shrink. In this case, b is
called an immediately useful experiment. However, it may be the case that
there is no immediately useful experiment (all the sets U(i, b) are coherent)
but, nevertheless, some set U(i, a) is incoherent for ae A so that a perfect
model has not been achieved. In this case, it is possible to find a wuseful
experiment; this is an experiment in which a “set-up” action ae€ A4 is first
executed, leading to a state in which an immediately useful experiment can
be executed.

More precisely, a sequence ab, where ae 4 and be B, is a useful experi-
ment if, for some 0 < i< |h|, U(i, ab) is incoherent, but U(}, a) is coherent
for je U(i, b). Note that the shortest useful experiment has the additional
property that U(J, a) is coherent for all j, 0 < j<|h| (otherwise, a prefix of
a would be a shorter useful experiment). A procedure for finding a shortest
useful experiment, called PLAN-EXP, was described in Schapire’s master’s
thesis (1988), and is treated here as a “black-box” subroutine. (The inputs
required by PLAN-EXP are omitted from Fig. 11, but are described fully
below.)

Thus, at a high level, our algorithm is simple: execute #; if some G(i) is
incoherent, then re-execute # and update G; otherwise, find and execute a
shortest useful experiment, and update U. If no useful experiment exists,
then a perfect model has been found.

Below, a(-, -) is an inverse of Ackermann’s function (Tarjan, 1975); « is
an extremely slow growing function.

THeOREM 10. The algorithm described in Fig. 11 halts and outputs a
perfect model of & after executing at most O(kD{(\h| + D)) actions, and in
time O(kD(|h| + D* + kD - a(kD, D))).

Proof. First, note that because of the manner in which G is updated, an
index j is removed from G(i) only if h;# hh;. Thus, since / is a diversity-
based homing sequence, G(i) is never empty. Also, if j is removed from
G(i), then every other index j' for which 4, = h;. must also be removed since
equivalent tests have the same value in every state.
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In addition, every index j appears in some set G(i); ie, J,G(i)=
{0, ..., |h|}. To see that this is so, note that, because # is a diversity-based
distinguishing sequence, every equivalence class is represented by the
prefixes of h, that is, |{[h,]:0<i<|h|}|=D. Since & is a permutation
environment, h; = h; if and only if A, = hh;. Thus, [{[hh,;]:0<i<|A|}|=D.
Therefore, the test h; is equivalent to some hh;, implying j e G(i).

For the analysis, it is important to note that the set {G(i):0<i< |k} is
a partition of {0, .., |4 }. This can be proved by an inductive argument.
For suppose, prior to the execution of line 6, that G(i) and G(j) are equal
or disjoint, for some i, j. Then if G(i)=G(j) and 7,=1,, then clearly
G(Y o N 1,)=G(j)n 6 (z;). On the other hand, if G(i} and G(j} are
disjoint or if 1,#1;, then G(i)na ~'(1,) and G(j)n o '(1;) must also be
disjoint. In either case, the new sets following the execution of line 6 will
be equal or disjoint.

Thus, since the set {0<i<|h|: h,=x} respects G(i) for any test x on
each iteration, it follows that |{G(i):0<i<|h|}| <D on each iteration.
Since, some G(i} shrinks each time that lines 5-7 are executed, it follows
that this block is executed at most D — 1 times.

We would like to give a similar argument showing that lines 9-17 are
executed at most k(D —1) times. We first give an inductive proof that
J¢U(i, b) only if h; £bh,:

Suppose that 4 has been executed from ¢ with output ¢. Suppose also
that each G(i) is coherent with respect to g. Then there is some j for which
h;=hh;, and which is therefore in G(i). Thus y(ghh)=y(qh)=0,=
g[G(i)], and so gh(h)> = f where B,=06[G(i)], as in the figure.

Suppose that PLAN-EXP returns an experiment ab. Then U(i, a) is
coherent (with respect to f) for all 0 < i< |A|, but, for some i, U(i, ab) is
not. Since A is a diversity-based distinguishing sequence, there exists j for
which h; = ah,. By inductive hypothesis, j e U(i, a). Since U(i, a) is coherent,
we have a, = BLU(i, a)] = y(qhh,) = y(qhah,). Thus, a =ghalh).

It can now be verified that j is removed from U(i, b) only if h,#bh,,
completing the induction. As before, this implies that each U(i, b) is non-
empty on each iteration, and that {J; U(i, b) = {0, ..., |4} on each iteration
for each be B. Also, having argued that a=ghalh) at this point in the
program, it can now be argued as before that the set {i:h,=x} respects
each U(i, b), and that the set {U(i, ):0<<i<|h|} is a partition consisting
of at most D blocks for each be B.

Since ab is a useful experiment, some set U(i, b) must shrink at line 14.
Thus, by the preceding arguments, lines 9-17 are executed at most
k(D ~ 1) times.

We argue later that the returned useful experiment has length at most D.
This will then complete the proof of the action execution bound.

Given the above arguments, it is quite easy to prove the correctness of
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the output prediction rule: On exiting the main loop, each set G(i) or
U(i, @) is coherent (with respect to ¢ and f, respectively, as in the figure)
for all i and ae A. As argued above, in the current state g, this implies that
gl{h)=PB. Also, given ae 4, we showed above that y{gah,)= B[ U(, a)].
Thus, y(ga) = BLU(0, a)], and the output rule is a perfect model.

Finally, we turn to efficiency considerations. If naively implemented, the
running time of the procedure may be quite poor. However, using similar
techniques to those described in Section S, we can derive a time bound
comparable to the action execution bound.

In particular, we maintain a partition n over the set {0, .., |4[} with the
condition that i and j belong to the same block of x if and only if the values
of 4, and h; have never differed on any execution of 4 (so that the two tests
are plausibly equivalent). As before, if #,=4,, then i and j must be in the
same block of n. Thus, |z| < D.

It 1s easily verified that, on each iteration, if / and (' are in the same
block of =, then G(i)=G(i"), and {i, i'} respects each set G(j). Similarly,
for be B, U(i, b)=U(i’, b) and {i, i"} respects each set U(j, b). Thus, with
respect to the data structures G and U, the two indices / and i’ are entirely
indistinguishable. Therefore, we can represent these structures more
efficiently in terms of the blocks of =.

In particular, as was done in Section 5, we can represent each candidate
set as a list of pointers to those blocks of 7 which it includes. Thus, the
representation of such a set has size at most D. Also, since G(i) = G(j) if
{ and j are in the same block, we only need maintain a candidate set for
a single member of each block (say, the minimum element). That is, we
maintain a candidate set G(i) or U(i, b) (explicitly represented as described
above) if and only if / is the smallest member of its block; the other
candidate sets are only implicitly maintained, based on the equalities
among candidate sets described above.

With such a representation, lines 4, 6, and 14 take only time O(D?).
Using the fact (to be proved) that [ab| < D, we can also show that line 11
takes time O(D?+ |h]): computing ;= B[ U(i, a)] for a single value of i
takes O(D) time since |a| is bounded, and since U(i, a) is known to be
coherent. Thus, computing «, for each i€ {min(s): se n} takes O(D?) time.
Finally, all the other values of «, can be computed by setting a; « ;) for
semn, ies in O(|h]) time.

The partition = is easily maintained in the same manner described in
Section 5: Each time that A is executed, the coherence of each block of n
is checked in O(JA]) time. If any block is incoherent, then the structures G
and U must be updated; this takes O(kD?) time. Since 7 can be partitioned
at most D times, this adds O(kD?) to the total running time of the
procedure.

It remains then only to show how the running time of PLAN-EXP can
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be bounded. The procedure PLAN-EXP takes as input a set V' of variables;
a set of candidate sets for each ve V, be B; and an assignment to the
variables in V. It returns a shortest useful experiment ab (or reports that
none exists) in time O(k |V|-a(k V|, |V])). The length of the returned
experiment ab is bounded by |V].

Thus, if we use {0, ..., |k|} as our variable set in our call to PLAN-EXP,
then the procedure may take too long, and could plausibly return an
experiment far longer than D. Instead, we will use the blocks of # as our
variable set. The candidate sets are then defined naturally by the rule
Us,b)={s'en:s’ < U(min(s), b)} for sen and be B. The assignment
B’(s) is similarly defined to be f(min(s)).

Note that our representation scheme for U is essentially equivalent to the
structure U’, and the structure f’ is easily computed in O(D) time. Also,
since |n| € D, PLAN-EXP runs in time O(kD .a(kD, D)), and returns an
experiment of length at most D.

It can be argued by induction on the length of a that U'(s, a)= {s' e m:
s' < Ui, a)} for se m and a e A, assuming i € s. With this fact, it can be seen
that U’(s, a) is coherent with respect to §’ if and only if U(i, a) is coherent
with respect to B.

In particular, this shows that if PLAN-EXP when called in this manner
returns an experiment ab, then U(i, a) is coherent (with respect to ) for all
0 <i<|h|, but, for some i, U(i, ab) is not; that is, ab is indeed a shortest
useful experiment. Likewise, if PLAN-EXP fails to find a useful experiment,
then each U(i, a) is coherent for all i and all ae A.

This completes the proof. |

As in the state-based case, we can construct a diversity-based homing
sequence by choosing a sufficiently long sequence of actions. Below, H,=
>7_,(1/i) is the ath harmonic number. It is well known that H, = 6(log n).

THEOREM 11. Let >0, and let h be a random sequence of length
2kD*Hp, - In(D)-In(D/8). Then h is a diversity-based homing sequence with
probability at least 1—-4.

Proof. We follow the algorithm of Fig. 4 for constructing a diversity-
based homing sequence. On each iteration, we need to find an extension x
to h for which hx is inequivalent to every prefix of 4. That is, if v equiv-
alence classes are represented by the prefixes of 4, and {¢,], [,1, ..., [*p_.]
are the equivalence classes not represented, then we wish to find x such that
hx=t, for some i. Equivalently, we want x=h 't,, (Here, h~' is a
sequence of actions for which A~ '4 is the “identity” action; i.e., gh " 'h=gq
for all ge Q. The existence of h~' is guaranteed by the fact that & is a
permutation environment.)

643:103;2-13
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Based on the results on random walks given in Schapire’s master’s thesis
(1988), it is easy to conclude the following:

LEMMA 12. Let ¢t be any test, and let x be a random sequence of length
kD?In(D) of the following form: At each step, with equal probability, either
we do nothing, or we execute a uniformly and randomly chosen basic action
from B. Then the probability that t = x is at least 1/2D.

Thus, the probability that an extension x as described above is
equivalent to any h~'t; is at least (D —wv)/2D. Extending # in this
manner (2D/(D—v))-In(1/6) times gives a probability of at least 1 — & of
successfully increasing the number of equivalence classes represented by the
prefixes of A. Replacing & with 4/D, we can conclude that A is a homing
sequence with probability at least 1 — ¢ if its length is at least

Z kD?* In( D) -ln(D/(S)

as claimed. (This sequence may be longer than strictly necessary since v
may increase by more than one with each extension; also, many of the
“actions” required by the lemma are actually “no-ops.” This, however, does
not affect the argument since a homing sequence remains one even if
suffixed or prefixed.) ||

Thus, our inference procedure runs in time O(k2D*log?(D) -log(D/é)).
This improves our previously best-known bound (Rivest and Schapire,
1987; Schapire, 1988) of O(k’D7 log(D) -log(kD/8)) by roughly a factor of
D3*/log(D).

8. EXPERIMENTAL RESULTS

The algorithm described in Section 4 has been implemented and tested
on several simple robot environments.

In the “Random Graph” environment, the robot is placed on a randomly
generated directed graph. The graph has n vertices, and each vertex has one
out-going edge labeled with each of the & basic actions. For each vertex i,
one edge (chosen at random) is directed to vertex i + 1 mod »; this ensures
that the graph contains a Hamiitonian cycle, and so is strongly connected.
The other edges point to randomly chosen vertices, and the output of each
vertex is also chosen at random.

In the “Knight Moves” environment, the robot is placed on a square
checker-board, and can make any of the legal moves of a chess knight.
However, if the robot attempts to move off the board, its action fails and
no movement occurs. The robot can only sense the color of the square it
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occupies. Thus, when away from the walls, every action simply inverts the
robot’s current sensation: any move from a white square takes the robot to
a black square, and vice versa. This makes it difficult for the robot to orient
itself in this environment.

Finally, in the “Crossword Puzzle” environment, the robot is on a
crossword puzzle grid such as the one in Fig. 12. The robot has three
actions available to it: it can step ahead one square, or it can turn left or
right by 90°. The robot can only occupy the white squares of the crossword
puzzle; an attempt to move onto a black square is a “no-op.” Attempting
to step beyond the boundaries of the puzzle is also a no-op. Each of
the four “walls” of the puzzle has been painted a different color. The
robot looks as far ahead as possible in the direction it faces: if its view is
obstructed by a black square, then it sees “black”; otherwise, it sees the
color of the wall it is facing. Thus, the robot has five possible sensations.
Since this environment is essentially a maze, it may contain regions which
are difficult to reach or difficult to get out of.

In the current implementation, we have used an adaptive homing
sequence or homing tree as described in Section 4.4. We have also used the
modified version of L* described in Section 4.5. Finally, we have imple-
mented a heuristic that attempts to focus effort on copies of L* that have
already made the most progress: if the homing sequence is executed and
the L* copy reached is not very far along, then the procedure is likely to
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FiG. 12. A crossword puzzle environment.
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re-execute the homing sequence to find one that is closer to completion.
The idea of the heuristic is not to waste time on copies that have a long
way to go. The heuristic seems to improve the running time for these three
environments by as much as a factor of six.

For the “Random Graph” and “Crossword Puzzle” environments, the
inference procedure was provided in some experiments with an oracle
which would return the shortest counterexample to an incorrect conjecture.
All three environments were also tested with no external source of
counterexamples; to find a counterexample, the robot would instead
execute random actions until its model of the environment made an
incorrect prediction of the output of some state.

Table 1 summarizes how our procedure handled each environment. In
the table, “Source” refers to the robot’s source of counterexamples: “S”
indicates that the robot had access to the shortest counterexample, and “R”
indicates that it had to rely on random walks. The column labeled
“lran(y)|” gives the number of possible sensations which might be
experienced by the robot. (Extending our algorithms to the case that the
range of y consists of more than two elements is trivial.) “Copies” is the
number of copies of L* which were active when a correct conjecture was

TABLE 1

Experimental Results

Environment  Size n  k jran(y)} Source Copies Queries Actions  Time

Random 25 25 3 2 20 1,108 10,504 :01.0
graph 21 1,670 17,901 :01.2
50 O 3 2 37 5,251 69,861 06.0

33 4,581 61,325 03.6

68 14,788 279,276  24.1
64 17,221 342,450 8.1
137 34,182 1,100,244 1:31.9
136 29,796 1,012,279 475
275 72,027 3,010,377 4:52.0
258 33,388 1,757,720 1:195

200 200 3 2

Knight 4 16 8 2 10 2,082 19,621 014
moves 8 64 8 2 50 17,818 385,678 :19.4
12 144 8 2 88 22,208 780,595 :36.3

16 256 8 2 124 63,476 3,855,520 2419

200 400 8 2 157 129,407 8,329,257 5:589

Crossword 4 48 3 5 41 2,424 30,285 02.5
puzzle 41 2,817 55,749 :04.1

8 208 3 5 97 18,523 839,087  :529
104 16,643 1,049,466  :51.0
188 68,793 5,564,299 5:15.6

193 58,222 8,850,079 7:12.5

12 416 3 5
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made, “Queries” is the total number of membership and equivalence
queries which were simulated, “Actions” is the total number of actions
executed by the robot, and “Time” is elapsed cpu time in minutes and
seconds. The procedure was implemented in C on a DEC MicroVax Il
For example, inferring the 8x8 “Knight Moves” environment using
randomly generated counterexamples required about 400,000 moves and
19 seconds of cpu time.

Note that for the “Random Graph” environment, the learning procedure
sometimes did better with randomly generated counterexampies than with
an oracle providing the shortest counterexample. It is not clear why this
is so, although it seems plausible that in some way the random walk
sequences give more information about the environment. For example,
the counterexamples often become subsequences of the homing sequence,
and it may be that random walk counterexamples make for better, more
distinguishing homing sequences.

In sum, the running times given are quite fast, and the number of moves
taken is far less than allowed for by the theoretical worst-case bounds.
Nevertheless, it is also true that the number of actions executed is still
somewhat large, much too great to be practical for a real robot. There are
probably many ways in which our algorithm might be improved—both in
a theoretical sense, and in terms of heuristics which might improve the
performance in practice. We leave these questions as open problems.

9. CONCLUSIONS AND OPEN QUESTIONS

We have shown how to infer an unknown automaton, in the absence of
a reset, by experimentation and with counterexamples. For the class of
permutation automata, we have shown that the source of counterexamples
is unnecessary. We have described polynomial-time algorithms which are
both state-based and diversity-based.

As discussed in the introduction, these results represent only modest
progress toward our ultimate goal, the development of a robot capable of
inferring a usable model of its real-world environment. It is not clear how
to get there from where we are now. To begin with, we need algorithms
that are even more efficient than the ones described here. Perhaps more
importantly, we need techniques for handling more realistic environments.
These would include environments with infinitely many states, and also
environments exhibiting various kinds of randomness or uncertainty. Some
progress on this latter problem has recently been made by Dean eral
(1992) who extended some of the results described in this paper to handle
automata with stochastic output functions.

For truly realistic environments, inference of a perfect model will almost
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certainly be out of the question. What then is the best we can hope for?
What are the skills most needed for the robot to function in its environ-
ment, and how can those skills be learned?
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